
Simulating a Virtual Machining Model in an Agent-

Based Model for Advanced Analytics

David Lechevalier1, Seung-Jun Shin2, Sudarsan Rachuri3, Sebti Foufou4, Y. Tina

Lee5, Abdelaziz Bouras4

1Le2i, Université de Bourgogne, Dijon, France, david_lechevalier@etu.u-bourgogne.fr

2Graduate School of Management of Technology, Pukyong National University, Busan,

South Korea, sjshin@pknu.ac.kr

3Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office,

Department of Energy, Washington, DC, USA, sudarsan.rachuri@hq.doe.gov

4CSE Department, College of Engineering, Qatar University, Qatar,

sfoufou@qu.edu.qa, abdelaziz.bouras@qu.edu.qa

5Systems Integration Division, National Institute of Standards and Technology,

Gaithersburg, MD, USA, yung-tsun.lee@nist.gov

Abstract. Monitoring the performance of manufacturing equipment is critical to

ensure the efficiency of manufacturing processes. Machine-monitoring data

allows measuring manufacturing equipment efficiency. However, acquiring real

and useful machine-monitoring data is expensive and time consuming. An

alternative method of getting data is to generate machine-monitoring data using

simulation. The simulation data mimic operations and operational failure. In

addition, the data can also be used to fill in real data sets with missing values

from real-time data collection. The mimicking of real manufacturing systems in

computer-based systems is called “virtual manufacturing”. The computer-based

systems execute the manufacturing system models that represent real

manufacturing systems.

In this paper, we introduce a virtual machining model of milling operations. We

developed a prototype virtual machining model that represents 3-axis milling

operations. This model is a digital mock-up of a real milling machine; it can

generate machine-monitoring data from a process plan. The prototype model

provides energy consumption data based on physics-based equations. The model

uses the standard interfaces of Step-compliant data interface for Numeric

Controls (STEP-NC) and MTConnect to represent process plan and machine-

monitoring data, respectively. With machine-monitoring data for a given process

plan, manufacturing engineers can anticipate the impact of a modification in their

actual manufacturing systems.

This paper describes also how the virtual machining model is integrated into an

agent-based model in a simulation environment. While facilitating the use of the

virtual machining model, the agent-based model also contributes to the

generation of more complex manufacturing system models, such as a virtual

shop-floor model. The paper describes initial building steps towards a shop-floor

model. Aggregating the data generated during the execution of a virtual shop-

floor model allows one to take advantage of data analytics techniques to predict

performance at the shop-floor level.

Keywords: STEP-NC, MTConnect, milling, data generator, simulation,

advanced analytics, manufacturing simulation

1 Introduction

Data analytics examines large amounts of data to extract insights to help make better

decisions (LaValle et al. 2011). As an emerging topic, data analytics has being used

with many applications in various domains (Sun and Reddy 2013; Guo et al. 2011;

Ticknor 2013). These applications can typically be grouped into four categories:

descriptive analyses, diagnostic analyses, predictive analyses, and prescriptive

analyses. Descriptive analyses study what happened, while diagnostic analyses try to

explain why it happened. Predictive analyses try to predict what will happen, while

prescriptive analyses determine how to achieve a desired outcome.

The development of smart manufacturing platforms embraces big data analytics. The

Smart Manufacturing Leadership Coalition recognizes the importance of big data in its

leading effort on smart manufacturing including the development of an open platform

for smart manufacturing and smart manufacturing system test beds (SMLC, 2016).

Wang and Alexander (2015) identify big data issues and challenges in design and

manufacturing and discuss the impact and opportunities that big data can have in

manufacturing.

Noor (2013) examines the plethora of sensors integrated with modern products. He

discusses the benefits of sophisticated and automated data analytics technologies in the

filtering and processing of the information provided by these sensors. These benefits

include reduced costs of defects and controls. The author provides a few examples from

heavy industrial manufacturers such as Raytheon and Ford.

Manufacturing data are necessary to explore the use of the different techniques

available with data analytics. The framework described by Lechevalier et al. (2014)

highlights the importance and the necessity of data collection for developing data

analytics in the manufacturing applications. Such applications may continuously

generate large amounts of structured and unstructured data (Young and Pollard 2012).

The data formats used in the proposed framework must be clearly specified for data to

be analyzed. Many modern machines provide real-time data to monitor values of the

operating parameters. These data can be specified in the MTConnect standard

(MTConnect 2015), which facilitates communication between equipment and software

applications.

Since acquiring actual data is expensive and time consuming, simulation approaches

are explored. Brown and Sturrock (2009) show that simulation approaches allow

manufacturers to lower costs and save time at the factory level by generating simulation

data; the data are then analyzed to improve performance of the systems in the factory.

In this simulation context, Marinov and Seetharamu (2004) defined virtual

manufacturing as the concept of integrating different areas of manufacturing using

computer technology to create and execute of virtual models that mimic actual

manufacturing systems. A virtual model represents a manufacturing system.

One virtual model can be comprised of several other virtual models that are

considered sub-models. For example, a virtual shop-floor model is built using a set of

virtual machining operation models. These models simulate the execution of operations

at the machine-tool level. Individual virtual machining operation models can be

developed and validated independently. Zhang et al. (2011) review several research

efforts on the simulation of Numerical Control (NC) machining activities. They classify

these simulation methods into four categories: solid-based, object space-based, image

space-based, and web-based NC machining simulations. Bouhadja and Bey (2015)

survey simulation methods for multi-axis machining. Hanwu and Yueming (2009)

propose a Web-based NC machine tool operation virtual system, where various

practical operations were executed virtually. The proposed machine operation system

combines several technologies such as HTML (W3C 2014), Java (Gosling 2000), and

Javascript (Flanagan 2006).

This paper makes two main contributions. First, we develop a virtual machining

model for a 3-axis milling operation to generate machine-monitoring data from a

process plan. We apply the approach described by (Shin et al. 2016) to a milling

process. This model allows one to generate simulation data as if the data were produced

by sensors from a real machine. The generated data help a manufacturing engineer to

predict performance of the real machine and perhaps, make adjustment or modification

of the machine or the process plan in order to improve the efficiency of the real

machine. One advantage of this approach is that it is based on standards for process

plan and monitoring data representation. This facilitates the comprehension and

communication of the data by the manufacturing practitioners who are going to use this

model. The standards are described in the next section.

Second, our integration of the virtual machining model into an agent-based model

allows it to be incorporated into a broader simulation environment. We show the

execution of the agent-based model and how it can contribute, in the future, to the

generation of virtual shop-floor models.

This paper is organized as follows: Section 2 introduces the data models involved in

the virtual machining model and related work. Section 3 presents the work to develop

the milling-machine model and its three major components. Section 4 shows the

integration of the virtual machining model into an agent-based model, the execution of

the agent-based model in a simulation environment, and the validation of the simulation

data. Section 5 describes the motivation, logic and challenges for building a virtual

factory model. We conclude in Section 6.

2 Data definitions

In this section, we provide descriptions of the input and output of the virtual

machining model. The input and output are in ISO 14649-1 Step-compliant data

interface for Numeric Controls (STEP-NC) (ISO 2003) and MTConnect

representations, respectively. STEP-NC supports standard representations for process

planning while MTConnect enables standard representations of machine-monitoring

data. We also discuss related research that involves both STEP-NC and MTConnect

standards.

2.1 Input data in ISO 14649 STEP-NC representation

ISO 14649-1 STEP-NC provides a data model for computer numerical control

(CNC). NC programs allow manufacturers to automatically control machine tools. The

use of NC machines and computers in manufacturing led to the development of

computer-aided manufacturing (CAM) where computers interpret CAM files and send

a set of instructions to the individual NC machines for production. STEP-NC provides

capabilities to describe a machining operation by defining working steps and sequences

for operation. ISO 14649-11 (ISO 2004), or Process Data in Milling, defines the

required data model for describing a milling operation. Because this standard clearly

defines the process sequence and the parameters involved in a milling operation, its use

allows us to observe the impact of a given process plan on machine performance.

2.2 Output data in MTConnect representation

MTConnect is an XML-based (W3C 2008) communication standard that enables

manufacturing equipment to provide data in structured XML to facilitate the organized

retrieval of process information from NC machine tools. This standard is designed for

the exchange of data between shop-floor equipment and software applications used for

monitoring and data analysis. Vijayaraghavan et al. (2008) emphasize MTConnect

capabilities to enhance data acquisition from devices and improve the integration of the

data in software solutions. In MTConnect, a machine tool is treated as a device. Each

device contains its own information model to communicate the available capabilities

and components such as axes or spindle. This information model is called a probe

document. In addition, devices generate MTConnect documents that capture the

machine-monitoring data including the power consumption and the position of the tool.

An agent, which is a computer program, collects data from the device and transmits the

data to MTConnect-compatible applications.

Using the MTConnect standard for the output data, we ensure that the data have a

well-formed structure that facilitates the integration with MTConnect-compliant

downstream applications.

2.3 Related work to STEP-NC and MTConnect

STEP-NC and MTConnect are two different standards. Mapping the heterogeneous

information contained in the two standards requires solutions that fill the gaps between

their information models. Ridwan and Xu (2013) take advantage of these two standards

for real-time machining operation optimization, as well as optimization that could be

applied at the next run. They interpret STEP-NC programs and generate a tool path.

They also collect real MTConnect data for further optimization. In contrast, our

research strives for the generation of MTConnect data independent of any physical

machining operation. As mentioned in the Introduction, (Shin et al. 2016) proposed a

virtual machining model for a 2-axis turning operation that generates machine-

monitoring data from process-planning data. While they provide a specific interface for

using their turning model, we want to facilitate the use of the model in a more complex

scenario. We develop a virtual machining model for a 3-axis milling operation

extending the approach followed for the turning model. We also integrate the virtual

machining model into an agent-based model in a simulation environment. This

integration is the first step towards a virtual shop-floor model.

3 A Virtual Machining Model for Milling Operation

In this section, we describe a virtual machining model for a milling operation. The

logic flow of the virtual machining model; the model’s three components (the STEP-

NC module, the Milling Operation Modeler, and the MTConnect Module) and the

benefits of the model are described.

3.1 Logical Flow of the Virtual Machining Model

The virtual machining model is composed of three components: the STEP-NC

module, the Milling operation modeler (MillOp), and the MTConnect Module. The

virtual machining model follows a logical flow. Figure 1 illustrates the model’s logical

flow, that is, a step-by-step process from receiving input of STEP-NC part program to

generating its final output of an MTConnect data file. Information about tools involved

and outputs generated at each step is also presented in Figure 1.

The virtual machining model takes a STEP-NC part program as an input. The STEP-

NC module interprets the part program and generates a tool path as well as a G-code

part program, which is an NC program in the ISO 6983 format (ISO 1982). The STEP-

NC module uses a toolkit referred to as ISO 14649 Toolkit in Figure 1. The tool path

Figure 1. Logical flow of the Virtual Machining Model

output from the STEP-NC module is used as input to the MillOp. The MillOp computes

kinematics and dynamics of the machine tool using physics-based equations and

outputs a milling data set. The MTConnect module takes the milling data set as input

and generates required data using the MTConnect format. We explain each of the model

components in details in Sections 3.2-3.4.

3.2 STEP-NC Module

The STEP-NC module is composed of two components: 1) an ISO 14649 Toolkit,

and 2) a G-code Generator. The ISO 14649 Toolkit (Kramer et al. 2006), developed at

the National Institute of Standards and Technology (NIST), includes an ISO 14649

interpreter and an ISO 10303 (ISO 1994) interpreter. The STEP-NC module uses the

ISO 10303 interpreter to analyze the characteristics of the ISO 10303 or STEP

application-protocol file, and uses the ISO 14649 interpreter to parse and interpret

STEP-NC files using ISO 14649’s Parts 10, 11, and 111 (related to milling process data

and tools). The Toolkit generates a tool path from the input STEP-NC file and its

associated machine tool specification.

We developed a G-code generator that generates a G-code part program from a tool

path. Using the G-code program, a G-code interpreter can generate a visualization of

the tool path and we can check if the tool path matches the requirements described in

the process plan.

Figure 2 shows the relationship among a STEP-NC part program, a tool path, and a

G-code part program. The figure shows the communication of the required information

Figure 2. Mapping between STEP-NC, tool path and G-code

from a STEP-NC part program to a G-code part program via the tool path. In this

example, the tool id, coolant command, feed rate, and spindle speed are included in the

tool path based on the interpretation of the STEP-NC file. The tool path contains a set

of motions for the tool to execute. The specifications of the motions are then included

in the G-code part program. The G-code part program, in the Figure 2 example, shows

four types of commands: the command to change the tool based on the tool

identification (M06 T1), the command to turn on the coolant (M08), and the commands

to set up the spindle speed (M03 S1798.7880) and the feed rate (F2529.3480). In

addition, a straight motion with no feed is identified as a rapid motion movement with

the G00 instruction while a straight motion with feed is defined as a coordinated motion

with the G01 instruction. It is important to note that different measurement units may

be used in a STEP-NC part program and a G-code part program. For example, the

spindle speed and feed rate values are different between the programs. In a G-code part

program, setting up feed rate is necessary when a motion comes with a feed rate. This

rule explains why the instruction F2529.3480 appears twice in the G-code part program.

The first occurrence of the command sets up the feed rate, and at the same time it also

appears in the tool path. The second occurrence appears in the G-code before a

coordinated motion occurs.

3.3 The Milling Operation Modeler

The MillOp provides capabilities to compute dynamics and kinematics of machining

operations. A STEP-NC program organizes a sequence of machining operations

statically. From this program, a machine-executable G-code program is created. To

simulate machine operation, it is necessary to compute the machine tool’s events and

movements, which are matched with sequential execution of the NC program. It is also

necessary to compute the metrics based on kinematics (e.g., velocity and position) and

dynamics (e.g., force and power) for the events and movements. This computation

requires some properties of the machine tool, which are defined in the machine tool

specification because machine tool properties often influence the simulation of a

machine tool’s kinematics and dynamics. In addition, the equations derived from

physical model-based analysis for the metrics on a machine tool are needed for

computation. In this paper, we compute the metric of power, that indicates the amount

of energy consumed per unit-time by a milling machine tool.

The machine tool specification defines the capability and performance of a machine

tool’s main body and its constituent components. Table 1 shows the properties of the

machine tool specification used to describe the machine tool’s capabilities.

Table 1. The property list for machine tool specification.

Component Property Symbol Unit

Main body system Basic power Pb W

Coolant system Cooling power Pc W

Linear axis system Acceleration/deceleration coefficient aL m/s2

 Rapid movement speed vi m/s

 Pitch of feed screw hp m/rad

 Friction coefficient in guide µgf -

 Table mass mt kg

 Friction coefficient in bearing µb -

 Gear reduction ratio rg -

 Acceleration of table dw/dt m/s2

 Viscous damping coefficient B Nm/(rad/s)

 Pre-load force Fp N

 Servomotor efficiency ηL -

Rotary axis system Rotor diameter Drotor mm

 Rotor length Lrotor mm

 Friction coefficient Fr_coeff Ns/mm2

 Gap between rotor and stator gap mm

 Application inertia Japp kg*m2

 Rotor inertia Jrotor kg*m2

 Acceleration/deceleration coefficient α rad/s2

 Friction torque in the front bearing Tfrfb Nm

 Friction torque in the rear bearing Tfrrb Nm

 Spindle motor efficiency ηS -

We can use these properties to compute the metrics such as positions of the tool axial

components and the corresponding energy use. For our model, we consider the metrics

related to the linear and rotary axes as well as the coolant system. Each of these

properties impacts the metrics that are computed in the MillOp. For instance, movement

speed affects the time it takes the cutting tool to traverse to a new point. An increased

coefficient of friction results in greater power consumption during cutting. To compute

power values on a machine tool, the MillOp simulates times of machine components’

motions, and then calculates linear-axial positions as a function of time. These

positional data can be used to differentiate cutting and non-cutting motions by the

cutting tool, and thus determine whether power consumption is at a cutting or idle rate.

First, we defined a position function by deriving theoretical equations presented by

Avram and Xirouchakis (2011). This function is presented in Equation (1) assuming

that linear velocity has a trapezoidal profile.

saLisiaLidsasa

aiaLisaa

Lia

tttTTavTtvtatLthenttttttifelse

ttvtatLthenttttifelse

tatLthenttif

),2(5.05.0)(,

)(5.0)(,

5.0)(,0

2

2

2

, (1)

Where, L: length from a previous point (mm), t: the current time (ms), ta: acceleration

time (ms), ts: steady-state time (ms), td: deceleration time (ms), vi: velocity on each axis

(m/s).

 Using this function, the MillOp computes the kinematics that include linear-

axial positions as a function of time. These position data can be used to detect cutting

or non-cutting motions that occur. The characterization of the motions contributes to

the determination of power consumption.

Second, the MillOp computes the machine tool dynamics using the theoretical

equations introduced by Altintas (2012). The power profile of a single NC code

command for linear movement consists of acceleration, steady, and deceleration states.

Power consumption during the steady state varies for cutting and non-cutting motions.

During cutting motion, the power corresponds to the idle power plus the cutting power,

which results from cutting forces. We use a physics-based equation, as expressed in

Equation (2), to calculate the cutting forces.

bKbhKF

bKbhKF

fefcf

tetct

 , (2)

where, Ft: tangential force (N), Ff: feed force (N), Ktc: tangential cutting coefficient, Kfc:

feed cutting coefficient, Kte: tangential edge coefficient, Kfe: feed edge coefficient, b:

cutting depth (mm), h: uncut chip thickness (mm).

Equations (3) and (4), respectively, present the linear-axial and rotary-axial power

for a milling machine.

sed

L

d

dL

gf

pfpb

gfs

L

s

sL

sea

L

a

aL

TBw
dt

dw
JT

wT
P

rT
FFd

TT
wT

P

TBw
dt

dw
JT

wT
P

,

/)
2

)(
(,

,

,

,

,

, (3)

where, PL,a: acceleration power (W), PL,s: steady-state power (W), PL,d: deceleration

power (W), w: angular velocity (rad/s), ηL: servomotor efficiency, Ta: acceleration

torque (Nm), Ts: steady-state torque (Nm), Td: deceleration torque (Nm), Je: total inertia

(kg/m2), B: viscous damping coefficient (Nm·s/rad), Tgf: torque friction in a guide way

(Nm), µb: friction coefficient in bearing, dp: feed-screw diameter (mm), Ff: feed force

(N), Fp: pre-load force (N), Tf: torque by cutting force (Nm), rg: gear reduction ratio.

S

runa,S

d,S

S

cc

s,Sc,S

S

run

s,S

S

runa,S

a,S

w)TT(
P

vF
PP

wT
P

w)TT(
P

2

, (4)

where: PS,a: acceleration power (W), PS,s: steady-state power during non-cutting (W),

PS,c: steady-state power during cutting (W), PS,d: deceleration power (W), TS,a:

acceleration torque (Nm), Trun: steady torque (Nm), Fc: resultant cutting force (N), vc:

tangential cutting speed (mm·rad/min), w: angular velocity (rad/s).

The MillOp manipulates the information contained in the tool path and computes

the different dynamics and kinematics using the equations described above. The MillOp

includes a concept called Movement. For each motion in the tool path, the MillOp

creates a new movement with all the current machine parameters (e.g., feed rate, spindle

speed, and coolant) and the properties of the machine tool specification (e.g., rapid

movement speed, and friction coefficient). An overview of a class diagram represented

in UML (OMG 2015) that represents the Movement structure is shown in Figure 3. In

a UML class diagram, each concept is represented by a class. A line with a white

diamond represents a containment relationship, with a numerical range at one end

denoting the number of allowed instances. Triangular ends represent subclass

relationships. In this diagram, we define a class, called Movement, which is extended

by another class, called StraightMovement that is itself extended to by two classes

called TraverseStraightMovement and FeedStraightMovement. These two classes

define two movement types for the milling machine that represent different equations

to compute the required metrics. The class diagram can be extended to represent

additional movement types in the future.

The computed metrics are also represented as classes and are aggregated in the

Movement class. The computed movement metrics are length, acceleration, velocity,

time, cutting, spindle, force, and power. The class Power is extended by two classes:

TraversePower and FeedPower that represent the power depending on the movement

type. The TraversePower class contains the equations for computing power during a

TraverseStraightMovement, while the FeedPower class contains equations to compute

power during a FeedStraightMovement. When a new movement is created, the MillOp

satisfies the equations to compute the metrics using the properties included in the

movement. Depending on the type of the movement, some metrics are computed

differently. For instance, Cutting in a TraverseStraightMovement contains attributes

with no value since there is no cutting operation for this type of movement.

The MillOp generates a collection of Movement instances that represent the machine

tool kinematics and dynamics during the processing of one workpiece, i.e., for one

STEP-NC part program.

Figure 3. Class diagram representing the structure of a movement

3.4 The MTConnect Module

Using the kinematics and dynamics generated by the MillOp, the MTConnect

module creates an MTConnect document representing the position and power

consumption of the tool. Table 2 summarizes the data items available in an MTConnect

document for the virtual machining model.

X-axis position and power consumption are available using

x_axis_position_actual_sample and x_axis_wattage_sample. Data are available for y-

axis and z-axis using the corresponding data items. The power consumed for running

the spindle tool is available using c_axis_wattage_sample; the power consumed by the

machine for the coolant flow is available using coolant_wattage_sample.; and the

power consumed for running the machine is available using electric_wattage_sample.

For every machining data set generated by the MillOp, the MTConnect module

generates an MTConnect document that includes time series data about the position and

power consumption of the tool. The interval of time between two data values for the

same data item is 100 milliseconds. We generate a corresponding MTConnect

document for each STEP-NC file used as input in the virtual machining model. Thus,

we observe the impact of the process plan on the machine power consumption even

before executing the process plan.

Table 2. MTConnect data items available for the virtual machining model

Data items Type ID Unit
X_AXIS_POSITION_ACTUAL_SAMPLE POSITION x_axis_position_sample Millimeter

X_AXIS_WATTAGE_SAMPLE WATTAGE x_axis_wattage_sample Watt

Y_AXIS_POSITION_ACTUAL_SAMPLE POSITION y_axis_position_sample Millimeter

Y_AXIS_WATTAGE_SAMPLE WATTAGE y_axis_wattage_sample Watt

Z_AXIS_POSITION_ACTUAL_SAMPLE POSITION z_axis_position_sample Millimeter

Z_AXIS_WATTAGE_SAMPLE WATTAGE z_axis_wattage_sample Watt

C_AXIS_WATTAGE_SAMPLE WATTAGE c_axis_wattage_sample Watt

COOLANT_WATTAGE_SAMPLE WATTAGE coolant_wattage_sample Watt

ELECTRIC_WATTAGE_SAMPLE WATTAGE electric_wattage_sample Watt

3.5 Benefits

Having virtual machining models provides different benefits. Virtual machining

models provide capabilities to create machine-monitoring data. These data can be used

to observe the behavior of a machine for a given process plan. They can also play an

important role to support the collection of real data. During data acquisition in a factory,

errors might occur that lead to the generation of data sets with missing or inaccurate

values. The problem of missing data for analysis has been studied for years

(Lakshminarayan et al. 1999). Virtual machining models provide simulation data that

can fill the real data set when there are data-related problems such as missing data.

The data generated from a virtual machining model can also contribute to the

generation of a data set for benchmarking. Small and medium enterprises (SMEs) can

use the data set for testing their data analytics solutions before making investments,

such as investing in expensive sensors for collecting real data. The results can help

guide further investment decisions.

Finally, virtual machining models allow users to change properties of the machine

by changing the values in the associated XML document. The process plan can also be

altered by changing the STEP-NC program. Kusiak (2017) highlighted that real-world

experimentation is needed, using virtual reality among others to improve manufacturing

systems. Changing the machine properties and the process plan, a manufacturing

engineer can execute the virtual machining model to observe the impact of the

parameter values on the power consumption or estimate time required to manufacture

a part. Based on the impact analysis, the real machine parameters or the process plan

are adjusted to optimize certain metrics of concern to the engineer.

4 Integration of the Virtual Machining Model into an Agent-

based Model for Simulation

In this section, we describe the integration of the virtual machining model into an

agent-based model for simulation. We first introduce the specification of an agent-

based model that integrates with the virtual machining model. We also describe the

execution of the agent-based model in a simulation environment and demonstrate the

validation of the simulation data.

4.1 Machine State Chart

To build the agent-based model, we first develop a state chart diagram that describes

the behavior of the milling machine we address. The state chart, shown in Figure 4, is

implemented in the agent-based model for execution. It includes of six different states.

The default machine state is the idling state. As soon as a batch arrives (represented by

the transition called batchReception in the figure), the machine goes to the next state

called batchSetup. The batchSetup state models the required machine setup for

processing the batch. Once the batch is set up, the machine goes to the partSetup state

where the machine sets up needed operations for a particular part. The next state, called

machining, represents the milling process. Once the operations have been executed on

the part, the machine goes to the partEjection state that models the unloading of the

part. After the partEjection state, two alternative paths can be taken by the machine.

When there are more parts to process in the batch, the machine goes back to partSetup,

otherwise, the machine goes to the last state, batchEjection, where the batch is

Figure 4. Machine state chart of the agent-based model

unloaded. After a batch has been ejected, the machine goes back to the idling state to

wait for a new batch.

We define the machining state to enable the integration of the virtual machining

model. The software environment called AnyLogic (Borshchev and Filippov 2004)

allows us to customize the instructions for the execution of the states in an agent-based

model using Java code. We generate a Java ARchive (JAR) file, which contains the

virtual machining model functions, and include it in the AnyLogic project to use these

functions at the machining state.

A duration and a power consumption measure are associated with each state. They

can be collected during individual states except the machining state. Figure 5 shows

the time and power required for the states of the machine in an XML file. The XML

file provides time and power for every state and all the property values required for the

virtual machining model. For instance, we collect the time and the power required to

set up the batch at the batchSetup state collecting the value of the attributes

batchSetupTime and batchSetupEnergy.

All the values of time and power are subjected to a standard deviation to represent

uncertainty associated with a physical machine. The distribution type and standard

deviation of the uncertainty are defined by the attributes randomProperty and

randomType. The attribute randomProperty contains the standard deviations for power

during a traverse motion and a coordinated motion. The duration and power

consumption for the machining state are computed using the virtual machining model.

The value of the properties can be slightly different from one machine to another.

Adjusting these values in the machine specifications allows one to use the properties

values that correspond to the properties of the real machine and to obtain simulation

values that are comparable to real values for the same operation.

Before transitioning to the next state, parameters and associated vales required for

the virtual machining model are preset. For example, at the batchSetup state, we

identify the process parameters – feed rate, spindle speed, and cutting depth – that

control the tool path strategies and are necessary to make the given machined features.

The values for these parameters are included in a STEP-NC program used by the virtual

machining model. For the machining state, the duration and power consumption are

Figure 5. Machine specifications

computed using the virtual machining model. During this state, we provide the STEP-

NC program, complete with the parameter values, as an input to the virtual machining

model. Using the appropriate functions, we can compute the machining time and the

consumed power corresponding to the STEP-NC file given as input. In partEjection

state and batchEjection state, we collect time and power consumed to achieve these

ejection operations as we do for the setup states. Once a batch has been processed (after

the batchEjection state), we generate Comma Separated Values (CSV) that aggregate

the time data for the machine and MTConnect output files that provide time series data

for the milling machine tool.

4.2 Execution of the Agent-based Model in a Manufacturing Use Case

In this section, we describe the execution of the agent-based model and the integrated

virtual machining model using a manufacturing use case. We define a scenario to

represent a milling machine in the simulation environment. In this scenario, a milling

machine tool processes a steel part as shown in Figure 6. The steel part is processed to

produce different pockets, slots, and holes. For this use case, we focus only on the tool

path strategy for machining Pocket 1, a series of straight movements to create the square

shape.

To implement this scenario, we create a process-flow model including our agent-

based model that will simulate the flow of batches coming to the machine and the

execution of the operation for Pocket 1 in the machine. This process flow model, as

shown in Figure 7, represents a flow of batches coming to and leaving from the milling

machine, the agent-based model we developed.

Figure 6. An example of a milling part

Figure 7. Process flow model

When we execute this model, the batch leaves source1 to be held in queue1. When

its turn comes, it moves on to delay. Once in delay, the batch waits until the milling

machine is available, i.e., the machine is in idling state. Once all the parts of the batch

have been processed, the batch goes to sink1. Each batch is composed of 10 steel parts

that need to be machined.

Figure 8 shows the execution of the agent for this scenario. As soon as the execution

of the process flow starts, the execution of the agent starts as well. The milling machine

is in the idling state and goes to the batchSetup state as soon as a batch arrives at the

machine. In the batchSetup state, the process parameters required for the virtual

machining model are assigned randomly using a uniform distribution within the

following ranges: feed rate [30, 90] mm/s, spindle speed [75.4, 226.2] rad/s, and cutting

depth [2.5, 3.5] mm. The parameter values are included in a STEP-NC file that defines

the sequence of processes to manufacture Pocket 1.

In the machining state, the STEP-NC file is used by the virtual machining model to

simulate the execution of the milling machine. A tool path and a G-code program are

generated. To validate these files, we use a G-code interpreter to draw the path of the

tool. Figure 9 shows the top view of the tool path in a G-code program interpreter.

The path shown in Figure 9 corresponds to the expected path of the scenario. This

confirms that the generated tool path from the STEP-NC program is correct and can be

used by the MillOp of the virtual machining model. The MillOp satisfies the equations

and generates an MTConnect document containing the time series data for each part

processed. All along the execution, the agent provides real time data that are displayed

as shown in Figure 8. These real data represent machine level data while the execution

of the virtual machining model during the machining state represents process level data.

Using an identical set of process parameters in the virtual machining model could result

in different power values (±10 % uniform-random deviation during feed movement,

and ±5 % uniform-random deviation during traverse movement). This represents the

variation that may be encountered in real machine behavior. Values of these deviations

can be adjusted in the machine specification to match with the variations of the actual

machine.

Figure 8. State chart execution in the agent

The MTConnect documents are stored locally and named using the machine name

and the identification of the related part. This allows the user to quickly find the

MTConnect document related to a given part. Figure 10 shows an example of an

MTConnect document representing the tool position and the consumed power at a given

time for the y-axis.

In addition to the information defined in the element MTConnectStreams (which

represent a collection of streams between a device and an agent), the MTConnect

document defines a component, which is the source of the data in the element

ComponentStream using the attribute componentId. A ComponentStream contains the

information specific to the component within the Device. In this case, the component

is the y-axis of the tool. Then, a Sample (concept defined in MTConnect to contain the

data collected at a given time) is defined for this component that includes the position

Figure 9. Top view of the tool path

Figure 10. MTConnect sample

http://mtcup.org/wiki/Terminology
http://mtcup.org/wiki/Terminology

and the wattage of the tool at the time provided in the attribute timestamp. The

coordinate of the position on the y axis is 116 in this example. The wattage is the power

consumed by the tool on the y axis at this time. In this example, there is no power

consumption at this given time on this axis, which means that the tool is not now

moving.

In real time, the agent-based model also aggregates data in a CSV document as

shown in Figure 11. The aggregated data are identification of the part, material of the

part, machine feed rate, machine spindle speed, cut depth of the machine, time to set up

the machine, time to set up the part, time to machine the part (computed by the virtual

machining model), time to eject the part, and time to eject the batch.

4.3 Data validation

The virtual machining model, presented in previous subsections, has been “partially”

validated through the comparison of actual power data with the simulation power data

of the milling machining. In general, data validation is performed under two scenarios:

1) The machine tool specification parameters are known, or 2) the machine tool

specification parameters are impossible to acquire. Under the first scenario, data

validation is performed by confirming simulation data are matched correctly with actual

data. In the second scenario, data validation can only be done up to data calibration.

The values of machine tool specification parameters are adjusted to make the simulation

data be as correct as the actual data. In this experiment, we applied the second scenario

due to the difficulty in acquiring machine specification parameters. Nevertheless, the

Figure 11. Aggregated data

data calibration that we used would be an effective and practical way to validate the

data generated by simulation models when all the machine tool specifications are not

obtainable.

We used two different cases to validate the model as follows:

• Case 1:

o feed rate: 124.46 mm/min

o spindle speed: 183.3 rad/s (1750 RPM)

o cutting depth: 1.5mm

• Case 2:

o feed rate: 88.9 mm/min

o spindle speed: 183.3 rad/s (1750 RPM)

o cutting depth: 2mm

The number of cutting layers depends on cutting depth. In Case 1, there are four

cutting layers, on the other hand, Case 2 has three cutting layers. Table 3 presents the

setup of experiments.

Table 3. Setup of Experiments

Property Condition

Machine tool Mori Seiki NVD 1500 DCG

Computerized Numerical Controller Fanuc controller 0i

Workpiece Cold finish mild steel 1018
(size: 10.16cm*10.16cm*1.27cm)

Cooling option Wet

Cutting tool Solid carbide

Tool geometry Flat end mill

(8mm diameter, 4 number of flutes)

Power measurement device System insights high speed power meter

(sampling interval: average 0.3 sec)

The power measurement device measures the summed power by all the machine

components on average 0.3 sec. Figure 12 shows the machined part and its machining

feature (i.e., Slot 3 with 6mm thickness) that we used to compare actual data with the

simulation data. This figure also includes relevant tool paths where we focus especially

on feed and back movements.

Figure 13 presents time-series charts that plot the simulated and actual-measured

powers over time for the two cases. Figure 13 (a) corresponds to Case 1, and Figure

13 (b) to Case 2. The trend of simulated power over time matches with actual power.

Some differences take place due to heterogeneous nature of simulation with real

phenomena. We marked these differences in Figure 13 and analyzed them as follows:

1) Data fluctuation: Actual power data typically contain fluctuation of data

distributions during machining because of complex problems, including measurement

errors, misalignment of a cutting tool, and vibration of a machine itself. This complex

phenomenon unavoidably makes differences between our virtual machining model and

real machining. To accommodate this problem, the virtual machining model is designed

to control and generate random data distribution.

2) Slight time difference: Actual machining occasionally takes more time than the

time designated by the input of feed rate. The reasons might be that the resistance of

the cutting tool with the workpiece makes the tool movement slightly slow or the

operator controls override mode in a CNC slows down the machining due to machine

tool safety and tool breakage prevention.

3) Real data missing: Missing or erroneous data are unavoidable in the actual data

recorded by a physical measurement device. In this experiment, real data are missing

and thus it makes the correctness of simulation result undecidable for a specific period

of time. Nevertheless, we conjecture that the virtual machining model generates the

simulation data as good as it appeared in the trends of the previous and next data in the

same conditions.

Data validation in simulation is challenging due to the difficulties in collecting actual

data or machine tool specification parameters and the limitation of simulation itself. In

this experiment, we are able to compare the actual-measured and simulation data in one

Profile 1

Slot 1

Slot 2

Slot 3

Pocket 1 Pocket 2 Pocket 3

Slot 4

Slot 5

Slot 6

Slot 7

Hole 1

Hole 2

+X+Y

Cutting Tool

Slot 3

Feed
Back

Figure 12. The machining feature and tool paths of the machined part used for

data validation

simple machining feature: slotting. Machining a slot is not simple but it provides more

explicit information than other machining features. Data validation on all machining

features would be a future work for making our virtual machining model more practical.

Figure 13. Time-series charts for measured power and simulated power

In addition to the graphical validation, we numerically validated the power

simulation data. We computed the Root Mean Square Error (RMSE) of the simulated

power values compared to actual power values in the two described cases. In case 1,

RMSE is 99.0 Watts (W). In case 2, RMSE is 67.5 W.

Energy is another important metric that can be calculated from power values and

time. Generally, the energy metric is used for energy-efficient machining instead of

power because energy-efficient machining results in minimizing energy consumption

(electricity use), and not minimizing power. Using time and power, we calculated the

measured energy and the simulated energy in Joules for each case. We then compared

the values by calculating the relative error defines as follow:

Relative error = 100*(Measured energy – Simulated energy) / Measured energy

In case 1, relative error is 0.46%. In case 2, relative error is -0.07%. Thus, the virtual

model provides accurate data in the two scenarios that have been studied.

5 Towards a virtual factory model

In this section, we present how to generate a virtual factory model from a collection

of machining process models. We also discuss the motivations for and challenges

involved in generating a virtual factory model.

5.1 Motivation and related work

The companies that possess virtual machining models have obvious technological

and economical advantage. For instance, Procter & Gamble’s simulation models helped

improve the reliability of their complex production lines (Manyika 2012). Their

simulations led to a 44 percent increase in plant productivity and savings of $1 billion

in manufacturing costs globally.

A virtual factory model should represent the main features and operations of the

system, i.e., the factory, in order to analyze the system. A virtual factory model’s

primary objective is to observe the behavior of the factory in response to the changes

from its subsystems. Virtual factory models can be used to predict the system

performance, compare alternative solutions for different change options, or generate

simulation data as if they were real data. As an example, Terkaj, Tolio, and Urgo (2015)

presented an ontology-based virtual factory for predictive analysis. The ontology can

be continuously updated to reflect the events of the corresponding real factory. They

use the ontology to assess the impact of production or maintenance decision on the

factory.

A virtual factory model can be developed using a collection of machining models.

Building a collection of machining models is similar to build a milling machine model,

as described in Section 3. The approach we propose to build a virtual factory model

uses the discrete event simulation (DES) technique. The virtual factory model would

be composed of different, interconnected machining models (that are agent-based

models (ABMs) in this case) that represent the real factory. Such a model provides a

multi-level simulation representing all machining processes, machines, and the layout

of a shop floor. Schönemann et al. (2016) adopted this approach to propose a multi-

level modeling and simulation of manufacturing systems for lightweight automotive

components. They used a DES model to represent the process chain and ABMs in order

to show how the machines execute the processes. The energy consumption of each

process is computed using a MATLAB program executed by the corresponding ABM.

Implementing this approach using AnyLogic, energy consumptions for different parts

in their process chain are then compared. Jain et al. (2015) also discuss the benefits of

combining different agent-based models in a unique DES model of a virtual factory.

A multi-level virtual factory model provides capabilities to observe the behavior of

the factory as a whole or at different levels of granularity such as at the process,

machine, or shop floor levels. A multi-level model also allows manufacturing engineers

to observe the impact of system modifications. With a multi-level model, a variety of

modifications can be easily tested. Examples of modifications include shop floor re-

configuration and machine parameter or process parameter changes. With the milling

machine model represented as an agent-based model, for example, it allows changing

machining or process parameters, and also, generating simulation data at the process

and machine levels.

A manufacturing engineer can use the data generated at the process and machine

levels to fill in missing values in a real data set. The simulation data can also be

compared to the actual data to detect any anomalies. The detection of an anomaly

should trigger maintenance or inspection operations or an investigation of the issue.

The data analytics models provide alternatives to systematic executions of

simulation models. The simulation data could be used to train data analytics models for

predicting specific outputs such as throughput or energy consumption. Scoring a data

analytics model (i.e., using a trained data analytics model with new input data to make

prediction) is not as time consuming as running a complex simulation model; it helps

manufacturing engineers save time and make decisions more quickly. Running the

simulation model, however, could provide more detailed information for observing the

behavior of the system at different levels with unique scenarios.

In practice, the complexities and high costs of data collection preclude generation of

real data across an entire factory. Multi-level virtual factory models could address data

collection gaps by generating simulation data. Such simulation data can also be used to

train data analytics model, as simulation data are theoretically nearly identical to data

collected from the real factory. Jain and Shao (2014) proposed a virtual factory, which

is a high-fidelity simulation of the manufacturing system, to support data analytics.

Feldkamp, Bergmann, and Strassburger (2015) identified that applying data analytics

to simulation data enables the identification of causal relationships that are not revealed

using simulation models alone.

5.2 Building a virtual factory model

A library of agent-based models representing machining processes supports the

generation of virtual factory models. We mentioned that Shin et al. (2016) developed a

virtual machining model for turning. That machining model could be represented in an

agent-based model by using the methodology presented in Section 4. Using the same

methodology, a robust set of machining process models, which include both dynamics

and kinematics machining processes, could be generated. Eventually, the model set can

be used to produce a library that is large enough to support the development of basic

factory models. This proposed library can be extended to include varied types of

machining process models, enabling the creation of much more complex factory

models.

Using the machining process models available in the proposed library, a

manufacturing engineer could represent a factory in a simulation model by selecting

the appropriate agents in the library and using them to represent processes involved in

the actual factory. As described in Section 4, the agent parameters should be easily

modified to match with the actual machine parameters.

Figure 14 shows an example virtual factory model that is composed of a milling

agent-based model (described in Section 4) and a turning agent-based model (including

the virtual model developed by Shin et al. (2016)).

The model of Figure 14 demonstrates an assembly line scenario. Batches are held

in the area called RawMaterialStock until one of the turning machines is available. As

soon as a turning machine is available, a batch is sent to the machine and the parts of

the batch are processed as described in Section 4.2. Once the batch has been processed

in the turning machine, it is sent to another area called WIParea until a milling machine

is available. The milling machine will process the parts of the batch. Once the entire

batch has been processed, it reaches the area of FinishedGoods.

Figure 14. Virtual factory model representing an assembly line

A manufacturing engineer can simply build the example virtual model by using the

agent-based models that are available in the proposed library and connecting them to

represent the flow of batches as they occur in the real factory. In the given assembly

line scenario, only turning and milling models are needed from the library. This

example model represents a very basic assembly scenario but it is sufficient to show

different levels of details.

At the factory level, the data collected from each machine can be aggregated to

evaluate the assembly line’s throughput or the energy consumption used to process all

batches at the assembly line. The assembly line data, such as throughput and energy

consumption, do not depend on the machine and process only. For instance, throughput

varies with the availability of the machines involved in the factory. If machines are

unavailable frequently, the batches stay longer in the waiting areas (e.g.,

RawMaterialStock or WIP areas). It, therefore, impacts throughput value.

Collecting actual factory data is often difficult due to the system’s complexity.

Simulation data, however, could be generated at the process level, at the machine level,

or at the assembly line level by implementing the virtual machining model or the agent-

based model, or aggregating the data resulted from several agent-based models,

respectively.

In the example model, each agent, which represents a machine, could provide

machine-monitoring data, in the MTConnect format, about energy consumption

information and the location of the machine tool. A repository of MTConnect

documents retains the monitoring data collected during the simulation. The agents also

aggregate the data at the machine level to provide time and power consumed for

processing a batch. Extending the agents with failure and maintenance states would

enable the generation of data that better represent an actual machine behavior.

5.3 Challenges

Simulation has been identified as a key component towards Industry 4.0 (Hermann,

Pentek, and Otto 2016). However, building a virtual factory model raises different

challenges. First, building virtual models for each related machining process is time

consuming and expensive. We anticipate proposed libraries, described in Section 5.2,

could be created from 1) companies that have financial resources to and interests in

building their own machining models, or 2) individuals or organizations who contribute

their machining models through crowdsourcing.

Second, dynamics and kinematics are unknown or not easy to model for certain

manufacturing processes. Since the number of processes that can be represented by

their kinematics and dynamics is considered sufficient, we recommend focus on those

processes to create real factory models. If dynamics and kinematics are not available,

approximation models based on real data can be built in order to replace the physics-

based models. The idea of approximation model is to use machine learning techniques

to approximate complicated relationships between the inputs and the outputs of a

process.

Third, an elaborate factory model with different levels of detail requires high

computational capabilities. We believe this challenge can be overcome by taking

advantage of a new breakthrough on cloud computing and parallel computing in

graphical process units that has unlocked new computational capabilities. A growing

number of companies has already taken advantage of these capabilities to perform data

analytics and deep learning towards artificial intelligence. Manufacturing companies

should also leverage these capabilities to execute more complex simulation models

efficiently and hence increase sustainability, productivity, flexibility, and competitive

advantages.

6 Conclusion

This paper highlights two capabilities that enable manufacturers to apply data

analytics for improving their operations: 1) the development of a virtual machining

model that represents manufacturing processes of the machine, and 2) the integration

of virtual machining models into agent-based models for simulating shop floor. We

described an approach to develop virtual machining model, proposed an approach to

include the virtual machining model in an agent-based model, and introduced how a

virtual factory model be built based on a proposed library of agent-based models.

As an example, a virtual machining model for milling operation was developed. The

virtual machining model supports the generation of machine-monitoring data in the

MTConnect format from a process plan presented in a STEP-NC file. An agent-based

model, i.e., a milling machine model, was created to include the virtual machining

model to simulate the execution of the milling machine in a shop-floor scenario. In the

same example, the milling machine model and another turning machine model were

integrated in a simulation environment to demonstrate a simple virtual factory for

simulating assembly line processes. A manufacturing engineer can simulate the

execution of the machines and adjust the process plan before executing it in a real

factory.

We described how to combine different agent-based models built in a similar

approach, described in this paper, to create multi-level simulation models representing

factories. With this proof-of-concept approach, a collection of agents can then be

created to enable the generation of a virtual shop-floor model with finer levels of

granularity. With the virtual shop-floor model, simulation data could be generated at

the process, machine, and shop-floor levels. It offers new capabilities for the application

of data analytics at the shop-floor level. The simulation data could be used to train data

analytics models for predicting specific information at the factory level. Manufacturing

companies could also anticipate potential returns before investing in new sensors for

data collection or new data analytics software.

Future work lies in three directions. The first is the integration of maintenance and

failure into our model. This integration can make data generation more realistic and

enhance our simulation capabilities. The second is the development of additional virtual

machining models and agent-based models for different operations with the goal for

establishing a library for building virtual shop-floor models. The third is studying the

application of data analytics techniques on data aggregated from virtual shop-floor

models. These efforts will help manufacturers realize the benefits of multi-level

modeling that we described in this paper.

ACKNOWLEDGEMENT

The research in this paper was conducted as part of the NIST program on the Design

and Analysis of Smart Manufacturing Systems and supported in part by National

Institute of Standards and Technology’s Foreign Guest Researcher Program.

This research was partially supported by the National Research Foundation of Korea

(NRF) grant funded by the Korea government (MSIP) (No. 2016R1C1B1008820).

The authors would like to acknowledge KC Morris and Moneer Helu whose

suggestions helped improve and clarify this manuscript.

DISCLAIMER

No approval or endorsement of any commercial product by NIST is intended or

implied. Certain commercial software systems are identified in this paper to facilitate

understanding. Such identification does not imply that these software systems are

necessarily the best available for the purpose.

References

Altintas, Yusuf. 2012. Manufacturing Automation: Metal Cutting Mechanics,

Machine Tool Vibrations, and CNC Design. Cambridge university press.

Avram, Oliver Ioan, and Paul Xirouchakis. 2011. “Evaluating the Use Phase Energy

Requirements of a Machine Tool System.” Journal of Cleaner Production 19 (6): 699–

711.

Borshchev, Andrei, and Alexei Filippov. 2004. “Anylogic—Multi-Paradigm

Simulation for Business, Engineering and Research.” In The 6th IIE Annual Simulation

Solutions Conference, 150:45.

Bouhadja, Khadidja, and Mohamed Bey. 2015. “Survey on Simulation Methods in

Multi-Axis Machining.” In Transactions on Engineering Technologies, 367–382.

Springer.

Brown, J. Ethan, and David Sturrock. 2009. “Identifying Cost Reduction and

Performance Improvement Opportunities through Simulation.” In Winter Simulation

Conference, 2145–2153. Winter Simulation Conference.

http://dl.acm.org/citation.cfm?id=1995750.

Feldkamp, Niclas, Sören Bergmann, and Steffen Strassburger. 2015. “Visual

Analytics of Manufacturing Simulation Data.” In Proceedings of the 2015 Winter

Simulation Conference, 779–790. IEEE Press.

Flanagan, David. 2006. JavaScript: The Definitive Guide. O’Reilly Media, Inc.

Gosling, James. 2000. The Java Language Specification. Addison-Wesley

Professional.

Guo, Hanqi, Zuchao Wang, Bowen Yu, Huijing Zhao, and Xiaoru Yuan. 2011.

“TripVista: Triple Perspective Visual Trajectory Analytics and Its Application on

Microscopic Traffic Data at a Road Intersection.” In Visualization Symposium

(PacificVis), 2011 IEEE Pacific, 163–170. IEEE.

Hanwu, He, and Wu Yueming. 2009. “Web-Based Virtual Operating of CNC

Milling Machine Tools.” Computers in Industry 60 (9): 686–697.

Hermann, Mario, Tobias Pentek, and Boris Otto. 2016. “Design Principles for

Industrie 4.0 Scenarios.” In 2016 49th Hawaii International Conference on System

Sciences (HICSS), 3928–3937. IEEE.

ISO. 2003. “ISO 14649-1: Industrial Automation Systems and Integration - Physical

Device Control - Data Model for Computerized Numerical Controllers -- Part 1:

Overview and Fundamental Principles.”

http://www.iso.org/iso/catalogue_detail.htm?csnumber=34743.

ISO. 2004. “ISO 14649-11: Industrial Automation Systems and Integration --

Physical Device Control -- Data Model for Computerized Numerical Controllers -- Part

11: Process Data for Milling.”

http://www.iso.org/iso/catalogue_detail.htm?csnumber=40896.

ISO. 2007. “ISO 10303-238: Industrial Automation Systems and Integration -

Product Data Representation and Exchange -- Part 238: Application Protocol:

Application Interpreted Model for Computerized Numerical Controllers.”

https://www.iso.org/standard/38036.html.

ISO. 2009. “ISO 6983-1: Automation Systems and Integration -- Numerical Control

of Machines -- Program Format and Definition of Address Words -- Part 1: Data Format

for Positioning, Line Motion and Contouring Control Systems.”

http://www.iso.org/iso/catalogue_detail.htm?csnumber=34608.

Jain, Sanjay, David Lechevalier, Jungyub Woo, and Seung-Jun Shin. 2015.

“Towards a Virtual Factory Prototype.” In 2015 Winter Simulation Conference (WSC),

2207–2218. IEEE.

Jain, Sanjay, and Guodong Shao. 2014. “Virtual Factory Revisited for

Manufacturing Data Analytics.” In Proceedings of the 2014 Winter Simulation

Conference, 887–898. IEEE Press.

Kramer, Thomas R., F. Proctor, X. Xu, and J. L. Michaloski. 2006. “Run-Time

Interpretation of STEP-NC: Implementation and Performance.” International Journal

of Computer Integrated Manufacturing 19 (6): 495–507.

Kusiak, Andrew. 2017. “Smart Manufacturing Must Embrace Big Data.” Nature 544

(7648): 23.

Lakshminarayan, Kamakshi, Steven A. Harp, and Tariq Samad. 1999. “Imputation

of Missing Data in Industrial Databases.” Applied Intelligence 11 (3): 259–275.

LaValle, Steve, Eric Lesser, Rebecca Shockley, Michael S. Hopkins, and Nina

Kruschwitz. 2011. “Big Data, Analytics and the Path from Insights to Value.” MIT

Sloan Management Review 52 (2): 20–32.

Lechevalier, David, Anantha Narayanan, and Sudarsan Rachuri. 2014. “Towards a

Domain-Specific Framework for Predictive Analytics in Manufacturing.” In Big Data

(Big Data), 2014 IEEE International Conference on, 987–995. IEEE.

Manyika, James. 2012. Manufacturing the Future: The next Era of Global Growth

and Innovation. McKinsey Global Institute.

Marinov, Valery P., and Sreenath Seetharamu. 2004. “Virtual Machining Operation:

A Concept and an Example.” In Optics East, 206–213. International Society for Optics

and Photonics.

MTConnect Institute. 2015. “MTConnect.” http://www.mtconnect.org/standard-

documents.

Noor, Ahmed. 2013. “Putting Big Data to Work.” Mechanical Engineering, ASME

135 (10): 32–37.

OMG. 2016. “Meta Object Facility.” http://www.omg.org/spec/MOF/2.5.1/.

Ridwan, Firman, and Xun Xu. 2013. “Advanced CNC System with in-Process Feed-

Rate Optimisation.” Robotics and Computer-Integrated Manufacturing 29 (3): 12–20.

Schönemann, Malte, Christopher Schmidt, Christoph Herrmann, and Sebastian

Thiede. 2016. “Multi-Level Modeling and Simulation of Manufacturing Systems for

Lightweight Automotive Components.” Procedia CIRP 41: 1049–1054.

Shin, Seung-Jun, Jungyub Woo, Duck Bong Kim, Senthilkumaran Kumaraguru, and

Sudarsan Rachuri. 2016. “Developing a Virtual Machining Model to Generate

MTConnect Machine-Monitoring Data from STEP-NC.” International Journal of

Production Research 54 (15): 4487–4505.

SMLC, Smart Manufacturing Leadership Coalition. 2016. “The Smart

Manufacturing Project.” Accessed June 6.

https://www.smartmanufacturingcoalition.org/.

Sun, Jimeng, and Chandan K. Reddy. 2013. “Big Data Analytics for Healthcare.” In

Proceedings of the 19th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 1525–1525. ACM.

Terkaj, Walter, Tullio Tolio, and Marcello Urgo. 2015. “A Virtual Factory Approach

for in Situ Simulation to Support Production and Maintenance Planning.” CIRP Annals-

Manufacturing Technology 64 (1): 451–454.

Ticknor, Jonathan L. 2013. “A Bayesian Regularized Artificial Neural Network for

Stock Market Forecasting.” Expert Systems with Applications 40 (14): 5501–5506.

Vijayaraghavan, Athulan, Will Sobel, Armando Fox, David Dornfeld, and Paul

Warndorf. 2008. “Improving Machine Tool Interoperability Using Standardized

Interface Protocols: MT Connect.” Laboratory for Manufacturing and Sustainability.

W3C. 2008. “Extensible Markup Language (XML) 1.0 (Fifth Edition).”

https://www.w3.org/TR/2008/REC-xml-20081126/.

W3C. 2014. “Hypertext Markup Language (HTML).”

Wang, Lidong, and Cheryl Ann Alexander. 2015. “Big Data in Design and

Manufacturing Engineering.” American Journal of Engineering and Applied Sciences

8 (2): 223.

Young, M., and D. Pollard. 2012. “What Businesses Can Learn from Big Data and

High Performance Analytics in the Manufacturing Industry.” Big Data Insight Group.

Zhang, Yu, Xun Xu, and Yongxian Liu. 2011. “Numerical Control Machining

Simulation: A Comprehensive Survey.” International Journal of Computer Integrated

Manufacturing 24 (7): 593–609.

