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Abstract. Monitoring the performance of manufacturing equipment is critical to 

ensure the efficiency of manufacturing processes. Machine-monitoring data 

allows measuring manufacturing equipment efficiency. However, acquiring real 

and useful machine-monitoring data is expensive and time consuming. An 

alternative method of getting data is to generate machine-monitoring data using 

simulation. The simulation data mimic operations and operational failure. In 

addition, the data can also be used to fill in real data sets with missing values 

from real-time data collection. The mimicking of real manufacturing systems in 

computer-based systems is called “virtual manufacturing”. The computer-based 

systems execute the manufacturing system models that represent real 

manufacturing systems.  

In this paper, we introduce a virtual machining model of milling operations. We 

developed a prototype virtual machining model that represents 3-axis milling 

operations. This model is a digital mock-up of a real milling machine; it can 

generate machine-monitoring data from a process plan. The prototype model 

provides energy consumption data based on physics-based equations. The model 

uses the standard interfaces of Step-compliant data interface for Numeric 

Controls (STEP-NC) and MTConnect to represent process plan and machine-

monitoring data, respectively. With machine-monitoring data for a given process 

plan, manufacturing engineers can anticipate the impact of a modification in their 

actual manufacturing systems.  

This paper describes also how the virtual machining model is integrated into an 

agent-based model in a simulation environment. While facilitating the use of the 

virtual machining model, the agent-based model also contributes to the 

generation of more complex manufacturing system models, such as a virtual 

shop-floor model. The paper describes initial building steps towards a shop-floor 



 

 

model. Aggregating the data generated during the execution of a virtual shop-

floor model allows one to take advantage of data analytics techniques to predict 

performance at the shop-floor level. 

Keywords: STEP-NC, MTConnect, milling, data generator, simulation, 

advanced analytics, manufacturing simulation 

1 Introduction 

Data analytics examines large amounts of data to extract insights to help make better 

decisions (LaValle et al. 2011). As an emerging topic, data analytics has being used 

with many applications in various domains (Sun and Reddy 2013; Guo et al. 2011; 

Ticknor 2013). These applications can typically be grouped into four categories: 

descriptive analyses, diagnostic analyses, predictive analyses, and prescriptive 

analyses. Descriptive analyses study what happened, while diagnostic analyses try to 

explain why it happened. Predictive analyses try to predict what will happen, while 

prescriptive analyses determine how to achieve a desired outcome. 

The development of smart manufacturing platforms embraces big data analytics. The 

Smart Manufacturing Leadership Coalition recognizes the importance of big data in its 

leading effort on smart manufacturing including the development of an open platform 

for smart manufacturing and smart manufacturing system test beds (SMLC, 2016). 

Wang and Alexander (2015) identify big data issues and challenges in design and 

manufacturing and discuss the impact and opportunities that big data can have in 

manufacturing. 

Noor (2013) examines the plethora of sensors integrated with modern products. He 

discusses the benefits of sophisticated and automated data analytics technologies in the 

filtering and processing of the information provided by these sensors. These benefits 

include reduced costs of defects and controls. The author provides a few examples from 

heavy industrial manufacturers such as Raytheon and Ford. 

Manufacturing data are necessary to explore the use of the different techniques 

available with data analytics. The framework described by Lechevalier et al. (2014) 

highlights the importance and the necessity of data collection for developing data 

analytics in the manufacturing applications. Such applications may continuously 

generate large amounts of structured and unstructured data (Young and Pollard 2012). 

The data formats used in the proposed framework must be clearly specified for data to 

be analyzed. Many modern machines provide real-time data to monitor values of the 

operating parameters. These data can be specified in the MTConnect standard 

(MTConnect 2015), which facilitates communication between equipment and software 

applications. 

Since acquiring actual data is expensive and time consuming, simulation approaches 

are explored. Brown and Sturrock (2009) show that simulation approaches allow 

manufacturers to lower costs and save time at the factory level by generating simulation 

data; the data are then analyzed to improve performance of the systems in the factory. 

In this simulation context, Marinov and Seetharamu (2004) defined virtual 

manufacturing as the concept of integrating different areas of manufacturing using 



computer technology to create and execute of virtual models that mimic actual 

manufacturing systems. A virtual model represents a manufacturing system.  

One virtual model can be comprised of several other virtual models that are 

considered sub-models. For example, a virtual shop-floor model is built using a set of 

virtual machining operation models. These models simulate the execution of operations 

at the machine-tool level. Individual virtual machining operation models can be 

developed and validated independently. Zhang et al. (2011) review several research 

efforts on the simulation of Numerical Control (NC) machining activities. They classify 

these simulation methods into four categories: solid-based, object space-based, image 

space-based, and web-based NC machining simulations. Bouhadja and Bey (2015) 

survey simulation methods for multi-axis machining. Hanwu and Yueming (2009) 

propose a Web-based NC machine tool operation virtual system, where various 

practical operations were executed virtually. The proposed machine operation system 

combines several technologies such as HTML (W3C 2014), Java (Gosling 2000), and 

Javascript (Flanagan 2006).  

This paper makes two main contributions. First, we develop a virtual machining 

model for a 3-axis milling operation to generate machine-monitoring data from a 

process plan. We apply the approach described by (Shin et al. 2016) to a milling 

process. This model allows one to generate simulation data as if the data were produced 

by sensors from a real machine. The generated data help a manufacturing engineer to 

predict performance of the real machine and perhaps, make adjustment or modification 

of the machine or the process plan in order to improve the efficiency of the real 

machine. One advantage of this approach is that it is based on standards for process 

plan and monitoring data representation. This facilitates the comprehension and 

communication of the data by the manufacturing practitioners who are going to use this 

model. The standards are described in the next section. 

Second, our integration of the virtual machining model into an agent-based model 

allows it to be incorporated into a broader simulation environment. We show the 

execution of the agent-based model and how it can contribute, in the future, to the 

generation of virtual shop-floor models. 

This paper is organized as follows: Section 2 introduces the data models involved in 

the virtual machining model and related work. Section 3 presents the work to develop 

the milling-machine model and its three major components. Section 4 shows the 

integration of the virtual machining model into an agent-based model, the execution of 

the agent-based model in a simulation environment, and the validation of the simulation 

data. Section 5 describes the motivation, logic and challenges for building a virtual 

factory model. We conclude in Section 6. 

2 Data definitions  

In this section, we provide descriptions of the input and output of the virtual 

machining model. The input and output are in ISO 14649-1 Step-compliant data 

interface for Numeric Controls (STEP-NC) (ISO 2003) and MTConnect 

representations, respectively. STEP-NC supports standard representations for process 

planning while MTConnect enables standard representations of machine-monitoring 



 

 

data. We also discuss related research that involves both STEP-NC and MTConnect 

standards. 

2.1 Input data in ISO 14649 STEP-NC representation 

ISO 14649-1 STEP-NC provides a data model for computer numerical control 

(CNC). NC programs allow manufacturers to automatically control machine tools. The 

use of NC machines and computers in manufacturing led to the development of 

computer-aided manufacturing (CAM) where computers interpret CAM files and send 

a set of instructions to the individual NC machines for production. STEP-NC provides 

capabilities to describe a machining operation by defining working steps and sequences 

for operation. ISO 14649-11 (ISO 2004), or Process Data in Milling, defines the 

required data model for describing a milling operation. Because this standard clearly 

defines the process sequence and the parameters involved in a milling operation, its use 

allows us to observe the impact of a given process plan on machine performance. 

2.2 Output data in MTConnect representation 

MTConnect is an XML-based (W3C 2008) communication standard that enables 

manufacturing equipment to provide data in structured XML to facilitate the organized 

retrieval of process information from NC machine tools. This standard is designed for 

the exchange of data between shop-floor equipment and software applications used for 

monitoring and data analysis. Vijayaraghavan et al. (2008) emphasize MTConnect 

capabilities to enhance data acquisition from devices and improve the integration of the 

data in software solutions. In MTConnect, a machine tool is treated as a device. Each 

device contains its own information model to communicate the available capabilities 

and components such as axes or spindle. This information model is called a probe 

document. In addition, devices generate MTConnect documents that capture the 

machine-monitoring data including the power consumption and the position of the tool. 

An agent, which is a computer program, collects data from the device and transmits the 

data to MTConnect-compatible applications. 

Using the MTConnect standard for the output data, we ensure that the data have a 

well-formed structure that facilitates the integration with MTConnect-compliant 

downstream applications.  

2.3 Related work to STEP-NC and MTConnect 

STEP-NC and MTConnect are two different standards. Mapping the heterogeneous 

information contained in the two standards requires solutions that fill the gaps between 

their information models. Ridwan and Xu (2013) take advantage of these two standards 

for real-time machining operation optimization, as well as optimization that could be 

applied at the next run. They interpret STEP-NC programs and generate a tool path. 

They also collect real MTConnect data for further optimization. In contrast, our 

research strives for the generation of MTConnect data independent of any physical 



machining operation. As mentioned in the Introduction, (Shin et al. 2016) proposed a 

virtual machining model for a 2-axis turning operation that generates machine-

monitoring data from process-planning data. While they provide a specific interface for 

using their turning model, we want to facilitate the use of the model in a more complex 

scenario. We develop a virtual machining model for a 3-axis milling operation 

extending the approach followed for the turning model. We also integrate the virtual 

machining model into an agent-based model in a simulation environment. This 

integration is the first step towards a virtual shop-floor model. 

3 A Virtual Machining Model for Milling Operation 

In this section, we describe a virtual machining model for a milling operation. The 

logic flow of the virtual machining model; the model’s three components (the STEP-

NC module, the Milling Operation Modeler, and the MTConnect Module) and the 

benefits of the model are described.   

3.1 Logical Flow of the Virtual Machining Model 

The virtual machining model is composed of three components: the STEP-NC 

module, the Milling operation modeler (MillOp), and the MTConnect Module. The 

virtual machining model follows a logical flow. Figure 1 illustrates the model’s logical 

flow, that is, a step-by-step process from receiving input of STEP-NC part program to 

generating its final output of an MTConnect data file. Information about tools involved 

and outputs generated at each step is also presented in Figure 1. 

The virtual machining model takes a STEP-NC part program as an input. The STEP-

NC module interprets the part program and generates a tool path as well as a G-code 

part program, which is an NC program in the ISO 6983 format (ISO 1982). The STEP-

NC module uses a toolkit referred to as ISO 14649 Toolkit in Figure 1. The tool path 

Figure 1. Logical flow of the Virtual Machining Model 



 

 

output from the STEP-NC module is used as input to the MillOp. The MillOp computes 

kinematics and dynamics of the machine tool using physics-based equations and 

outputs a milling data set. The MTConnect module takes the milling data set as input 

and generates required data using the MTConnect format. We explain each of the model 

components in details in Sections 3.2-3.4. 

3.2 STEP-NC Module 

The STEP-NC module is composed of two components: 1) an ISO 14649 Toolkit, 

and 2) a G-code Generator. The ISO 14649 Toolkit (Kramer et al. 2006), developed at 

the National Institute of Standards and Technology (NIST), includes an ISO 14649 

interpreter and an ISO 10303 (ISO 1994) interpreter. The STEP-NC module uses the 

ISO 10303 interpreter to analyze the characteristics of the ISO 10303 or STEP 

application-protocol file, and uses the ISO 14649 interpreter to parse and interpret 

STEP-NC files using ISO 14649’s Parts 10, 11, and 111 (related to milling process data 

and tools). The Toolkit generates a tool path from the input STEP-NC file and its 

associated machine tool specification. 

We developed a G-code generator that generates a G-code part program from a tool 

path. Using the G-code program, a G-code interpreter can generate a visualization of 

the tool path and we can check if the tool path matches the requirements described in 

the process plan.  

Figure 2 shows the relationship among a STEP-NC part program, a tool path, and a 

G-code part program. The figure shows the communication of the required information 

Figure 2. Mapping between STEP-NC, tool path and G-code 



from a STEP-NC part program to a G-code part program via the tool path. In this 

example, the tool id, coolant command, feed rate, and spindle speed are included in the 

tool path based on the interpretation of the STEP-NC file. The tool path contains a set 

of motions for the tool to execute. The specifications of the motions are then included 

in the G-code part program. The G-code part program, in the Figure 2 example, shows 

four types of commands: the command to change the tool based on the tool 

identification (M06 T1), the command to turn on the coolant (M08), and the commands 

to set up the spindle speed (M03 S1798.7880) and the feed rate (F2529.3480). In 

addition, a straight motion with no feed is identified as a rapid motion movement with 

the G00 instruction while a straight motion with feed is defined as a coordinated motion 

with the G01 instruction. It is important to note that different measurement units may 

be used in a STEP-NC part program and a G-code part program. For example, the 

spindle speed and feed rate values are different between the programs. In a G-code part 

program, setting up feed rate is necessary when a motion comes with a feed rate. This 

rule explains why the instruction F2529.3480 appears twice in the G-code part program. 

The first occurrence of the command sets up the feed rate, and at the same time it also 

appears in the tool path. The second occurrence appears in the G-code before a 

coordinated motion occurs. 

3.3 The Milling Operation Modeler 

The MillOp provides capabilities to compute dynamics and kinematics of machining 

operations. A STEP-NC program organizes a sequence of machining operations 

statically. From this program, a machine-executable G-code program is created. To 

simulate machine operation, it is necessary to compute the machine tool’s events and 

movements, which are matched with sequential execution of the NC program. It is also 

necessary to compute the metrics based on kinematics (e.g., velocity and position) and 

dynamics (e.g., force and power) for the events and movements. This computation 

requires some properties of the machine tool, which are defined in the machine tool 

specification because machine tool properties often influence the simulation of a 

machine tool’s kinematics and dynamics. In addition, the equations derived from 

physical model-based analysis for the metrics on a machine tool are needed for 

computation. In this paper, we compute the metric of power, that indicates the amount 

of energy consumed per unit-time by a milling machine tool.  

The machine tool specification defines the capability and performance of a machine 

tool’s main body and its constituent components. Table 1 shows the properties of the 

machine tool specification used to describe the machine tool’s capabilities. 

Table 1.  The property list for machine tool specification.  

Component Property Symbol Unit  

Main body system Basic power Pb W 

Coolant system Cooling power Pc W 

Linear axis system Acceleration/deceleration coefficient aL m/s2 

 Rapid movement speed vi m/s 

 Pitch of feed screw hp m/rad 

 Friction coefficient in guide µgf - 



 

 

 Table mass mt kg 

 Friction coefficient in bearing µb - 

 Gear reduction ratio rg - 

 Acceleration of table dw/dt m/s2 

 Viscous damping coefficient B Nm/(rad/s) 

 Pre-load force Fp N 

 Servomotor efficiency  ηL - 

Rotary axis system  Rotor diameter  Drotor mm 

 Rotor length  Lrotor mm 

 Friction coefficient  Fr_coeff Ns/mm2 

 Gap between rotor and stator gap mm 

 Application inertia Japp kg*m2 

 Rotor inertia Jrotor kg*m2 

 Acceleration/deceleration coefficient α rad/s2 

 Friction torque in the front bearing Tfrfb Nm 

 Friction torque in the rear bearing Tfrrb Nm 

 Spindle motor efficiency  ηS - 

 

We can use these properties to compute the metrics such as positions of the tool axial 

components and the corresponding energy use. For our model, we consider the metrics 

related to the linear and rotary axes as well as the coolant system. Each of these 

properties impacts the metrics that are computed in the MillOp. For instance, movement 

speed affects the time it takes the cutting tool to traverse to a new point. An increased 

coefficient of friction results in greater power consumption during cutting. To compute 

power values on a machine tool, the MillOp simulates times of machine components’ 

motions, and then calculates linear-axial positions as a function of time. These 

positional data can be used to differentiate cutting and non-cutting motions by the 

cutting tool, and thus determine whether power consumption is at a cutting or idle rate. 

First, we defined a position function by deriving theoretical equations presented by 

Avram and Xirouchakis (2011). This function is presented in Equation (1) assuming 

that linear velocity has a trapezoidal profile. 
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Where, L: length from a previous point (mm), t: the current time (ms), ta: acceleration 

time (ms), ts: steady-state time (ms), td: deceleration time (ms), vi: velocity on each axis 

(m/s). 

 Using this function, the MillOp computes the kinematics that include linear-

axial positions as a function of time. These position data can be used to detect cutting 

or non-cutting motions that occur. The characterization of the motions contributes to 

the determination of power consumption.  

Second, the MillOp computes the machine tool dynamics using the theoretical 

equations introduced by Altintas (2012). The power profile of a single NC code 

command for linear movement consists of acceleration, steady, and deceleration states. 

Power consumption during the steady state varies for cutting and non-cutting motions. 

During cutting motion, the power corresponds to the idle power plus the cutting power, 



which results from cutting forces. We use a physics-based equation, as expressed in 

Equation (2), to calculate the cutting forces.  
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where, Ft: tangential force (N), Ff: feed force (N), Ktc: tangential cutting coefficient, Kfc: 

feed cutting coefficient, Kte: tangential edge coefficient, Kfe: feed edge coefficient, b: 

cutting depth (mm), h: uncut chip thickness (mm). 

Equations (3) and (4), respectively, present the linear-axial and rotary-axial power 

for a milling machine.  
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where, PL,a: acceleration power (W), PL,s: steady-state power (W), PL,d: deceleration 

power (W), w: angular velocity (rad/s), ηL: servomotor efficiency, Ta: acceleration 

torque (Nm), Ts: steady-state torque (Nm), Td: deceleration torque (Nm), Je: total inertia 

(kg/m2), B: viscous damping coefficient (Nm·s/rad), Tgf: torque friction in a guide way 

(Nm), µb: friction coefficient in bearing, dp: feed-screw diameter (mm), Ff: feed force 

(N), Fp: pre-load force (N), Tf: torque by cutting force (Nm), rg: gear reduction ratio.  
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where: PS,a: acceleration power (W), PS,s: steady-state power during non-cutting (W), 

PS,c: steady-state power during cutting (W), PS,d: deceleration power (W), TS,a: 

acceleration torque (Nm), Trun: steady torque (Nm), Fc: resultant cutting force (N), vc: 

tangential cutting speed (mm·rad/min), w: angular velocity (rad/s).  

The MillOp manipulates the information contained in the tool path and computes 

the different dynamics and kinematics using the equations described above. The MillOp 

includes a concept called Movement. For each motion in the tool path, the MillOp 

creates a new movement with all the current machine parameters (e.g., feed rate, spindle 

speed, and coolant) and the properties of the machine tool specification (e.g., rapid 

movement speed, and friction coefficient). An overview of a class diagram represented 

in UML (OMG 2015) that represents the Movement structure is shown in Figure 3. In 



 

 

a UML class diagram, each concept is represented by a class. A line with a white 

diamond represents a containment relationship, with a numerical range at one end 

denoting the number of allowed instances. Triangular ends represent subclass 

relationships. In this diagram, we define a class, called Movement, which is extended 

by another class, called StraightMovement that is itself extended to by two classes 

called TraverseStraightMovement and FeedStraightMovement. These two classes 

define two movement types for the milling machine that represent different equations 

to compute the required metrics. The class diagram can be extended to represent 

additional movement types in the future.  

The computed metrics are also represented as classes and are aggregated in the 

Movement class. The computed movement metrics are length, acceleration, velocity, 

time, cutting, spindle, force, and power. The class Power is extended by two classes: 

TraversePower and FeedPower that represent the power depending on the movement 

type. The TraversePower class contains the equations for computing power during a 

TraverseStraightMovement, while the FeedPower class contains equations to compute 

power during a FeedStraightMovement. When a new movement is created, the MillOp 

satisfies the equations to compute the metrics using the properties included in the 

movement. Depending on the type of the movement, some metrics are computed 

differently. For instance, Cutting in a TraverseStraightMovement contains attributes 

with no value since there is no cutting operation for this type of movement.  

The MillOp generates a collection of Movement instances that represent the machine 

tool kinematics and dynamics during the processing of one workpiece, i.e., for one 

STEP-NC part program. 

Figure 3. Class diagram representing the structure of a movement 



3.4 The MTConnect Module 

Using the kinematics and dynamics generated by the MillOp, the MTConnect 

module creates an MTConnect document representing the position and power 

consumption of the tool. Table 2 summarizes the data items available in an MTConnect 

document for the virtual machining model. 

X-axis position and power consumption are available using 

x_axis_position_actual_sample and x_axis_wattage_sample. Data are available for y-

axis and z-axis using the corresponding data items. The power consumed for running 

the spindle tool is available using c_axis_wattage_sample; the power consumed by the 

machine for the coolant flow is available using coolant_wattage_sample.; and the 

power consumed for running the machine is available using electric_wattage_sample. 

For every machining data set generated by the MillOp, the MTConnect module 

generates an MTConnect document that includes time series data about the position and 

power consumption of the tool. The interval of time between two data values for the 

same data item is 100 milliseconds. We generate a corresponding MTConnect 

document for each STEP-NC file used as input in the virtual machining model. Thus, 

we observe the impact of the process plan on the machine power consumption even 

before executing the process plan. 

Table 2. MTConnect data items available for the virtual machining model 

Data items Type ID Unit 
X_AXIS_POSITION_ACTUAL_SAMPLE POSITION x_axis_position_sample Millimeter 

X_AXIS_WATTAGE_SAMPLE WATTAGE x_axis_wattage_sample Watt 

Y_AXIS_POSITION_ACTUAL_SAMPLE POSITION y_axis_position_sample Millimeter 

Y_AXIS_WATTAGE_SAMPLE WATTAGE y_axis_wattage_sample Watt 

Z_AXIS_POSITION_ACTUAL_SAMPLE POSITION z_axis_position_sample Millimeter 

Z_AXIS_WATTAGE_SAMPLE WATTAGE z_axis_wattage_sample Watt 

C_AXIS_WATTAGE_SAMPLE WATTAGE c_axis_wattage_sample Watt 

COOLANT_WATTAGE_SAMPLE WATTAGE coolant_wattage_sample Watt 

ELECTRIC_WATTAGE_SAMPLE WATTAGE electric_wattage_sample Watt 

3.5 Benefits 

Having virtual machining models provides different benefits. Virtual machining 

models provide capabilities to create machine-monitoring data. These data can be used 

to observe the behavior of a machine for a given process plan. They can also play an 

important role to support the collection of real data. During data acquisition in a factory, 

errors might occur that lead to the generation of data sets with missing or inaccurate 

values. The problem of missing data for analysis has been studied for years 

(Lakshminarayan et al. 1999). Virtual machining models provide simulation data that 

can fill the real data set when there are data-related problems such as missing data.  

The data generated from a virtual machining model can also contribute to the 

generation of a data set for benchmarking. Small and medium enterprises (SMEs) can 

use the data set for testing their data analytics solutions before making investments, 

such as investing in expensive sensors for collecting real data. The results can help 

guide further investment decisions. 



 

 

Finally, virtual machining models allow users to change properties of the machine 

by changing the values in the associated XML document. The process plan can also be 

altered by changing the STEP-NC program. Kusiak (2017) highlighted that real-world 

experimentation is needed, using virtual reality among others to improve manufacturing 

systems. Changing the machine properties and the process plan, a manufacturing 

engineer can execute the virtual machining model to observe the impact of the 

parameter values on the power consumption or estimate time required to manufacture 

a part. Based on the impact analysis, the real machine parameters or the process plan 

are adjusted to optimize certain metrics of concern to the engineer. 

4 Integration of the Virtual Machining Model into an Agent-

based Model for Simulation  

In this section, we describe the integration of the virtual machining model into an 

agent-based model for simulation. We first introduce the specification of an agent-

based model that integrates with the virtual machining model. We also describe the 

execution of the agent-based model in a simulation environment and demonstrate the 

validation of the simulation data. 

4.1 Machine State Chart 

To build the agent-based model, we first develop a state chart diagram that describes 

the behavior of the milling machine we address. The state chart, shown in Figure 4, is 

implemented in the agent-based model for execution. It includes of six different states. 

The default machine state is the idling state. As soon as a batch arrives (represented by 

the transition called batchReception in the figure), the machine goes to the next state 

called batchSetup. The batchSetup state models the required machine setup for 

processing the batch. Once the batch is set up, the machine goes to the partSetup state 

where the machine sets up needed operations for a particular part. The next state, called 

machining, represents the milling process. Once the operations have been executed on 

the part, the machine goes to the partEjection state that models the unloading of the 

part. After the partEjection state, two alternative paths can be taken by the machine. 

When there are more parts to process in the batch, the machine goes back to partSetup, 

otherwise, the machine goes to the last state, batchEjection, where the batch is 

Figure 4. Machine state chart of the agent-based model 



unloaded. After a batch has been ejected, the machine goes back to the idling state to 

wait for a new batch. 

We define the machining state to enable the integration of the virtual machining 

model. The software environment called AnyLogic (Borshchev and Filippov 2004) 

allows us to customize the instructions for the execution of the states in an agent-based 

model using Java code. We generate a Java ARchive (JAR) file, which contains the 

virtual machining model functions, and include it in the AnyLogic project to use these 

functions at the machining state. 

A duration and a power consumption measure are associated with each state. They 

can be collected during individual states except the machining state. Figure 5 shows 

the time and power required for the states of the machine in an XML file. The XML 

file provides time and power for every state and all the property values required for the 

virtual machining model. For instance, we collect the time and the power required to 

set up the batch at the batchSetup state collecting the value of the attributes 

batchSetupTime and batchSetupEnergy.  

All the values of time and power are subjected to a standard deviation to represent 

uncertainty associated with a physical machine. The distribution type and standard 

deviation of the uncertainty are defined by the attributes randomProperty and 

randomType. The attribute randomProperty contains the standard deviations for power 

during a traverse motion and a coordinated motion. The duration and power 

consumption for the machining state are computed using the virtual machining model. 

The value of the properties can be slightly different from one machine to another. 

Adjusting these values in the machine specifications allows one to use the properties 

values that correspond to the properties of the real machine and to obtain simulation 

values that are comparable to real values for the same operation.  

Before transitioning to the next state, parameters and associated vales required for 

the virtual machining model are preset. For example, at the batchSetup state, we 

identify the process parameters – feed rate, spindle speed, and cutting depth – that 

control the tool path strategies and are necessary to make the given machined features. 

The values for these parameters are included in a STEP-NC program used by the virtual 

machining model. For the machining state, the duration and power consumption are 

Figure 5. Machine specifications 



 

 

computed using the virtual machining model. During this state, we provide the STEP-

NC program, complete with the parameter values, as an input to the virtual machining 

model. Using the appropriate functions, we can compute the machining time and the 

consumed power corresponding to the STEP-NC file given as input. In partEjection 

state and batchEjection state, we collect time and power consumed to achieve these 

ejection operations as we do for the setup states. Once a batch has been processed (after 

the batchEjection state), we generate Comma Separated Values (CSV) that aggregate 

the time data for the machine and MTConnect output files that provide time series data 

for the milling machine tool. 

4.2 Execution of the Agent-based Model in a Manufacturing Use Case 

In this section, we describe the execution of the agent-based model and the integrated 

virtual machining model using a manufacturing use case. We define a scenario to 

represent a milling machine in the simulation environment. In this scenario, a milling 

machine tool processes a steel part as shown in Figure 6. The steel part is processed to 

produce different pockets, slots, and holes. For this use case, we focus only on the tool 

path strategy for machining Pocket 1, a series of straight movements to create the square 

shape. 

To implement this scenario, we create a process-flow model including our agent-

based model that will simulate the flow of batches coming to the machine and the 

execution of the operation for Pocket 1 in the machine. This process flow model, as 

shown in Figure 7, represents a flow of batches coming to and leaving from the milling 

machine, the agent-based model we developed. 

Figure 6. An example of a milling part 

Figure 7. Process flow model 



When we execute this model, the batch leaves source1 to be held in queue1. When 

its turn comes, it moves on to delay. Once in delay, the batch waits until the milling 

machine is available, i.e., the machine is in idling state. Once all the parts of the batch 

have been processed, the batch goes to sink1. Each batch is composed of 10 steel parts 

that need to be machined. 

Figure 8 shows the execution of the agent for this scenario. As soon as the execution 

of the process flow starts, the execution of the agent starts as well. The milling machine 

is in the idling state and goes to the batchSetup state as soon as a batch arrives at the 

machine. In the batchSetup state, the process parameters required for the virtual 

machining model are assigned randomly using a uniform distribution within the 

following ranges: feed rate [30, 90] mm/s, spindle speed [75.4, 226.2] rad/s, and cutting 

depth [2.5, 3.5] mm. The parameter values are included in a STEP-NC file that defines 

the sequence of processes to manufacture Pocket 1. 

 

 
In the machining state, the STEP-NC file is used by the virtual machining model to 

simulate the execution of the milling machine. A tool path and a G-code program are 

generated. To validate these files, we use a G-code interpreter to draw the path of the 

tool. Figure 9 shows the top view of the tool path in a G-code program interpreter. 

The path shown in Figure 9 corresponds to the expected path of the scenario. This 

confirms that the generated tool path from the STEP-NC program is correct and can be 

used by the MillOp of the virtual machining model. The MillOp satisfies the equations 

and generates an MTConnect document containing the time series data for each part 

processed. All along the execution, the agent provides real time data that are displayed 

as shown in Figure 8. These real data represent machine level data while the execution 

of the virtual machining model during the machining state represents process level data. 

Using an identical set of process parameters in the virtual machining model could result 

in different power values (±10 % uniform-random deviation during feed movement, 

and ±5 % uniform-random deviation during traverse movement). This represents the 

variation that may be encountered in real machine behavior. Values of these deviations 

can be adjusted in the machine specification to match with the variations of the actual 

machine. 

Figure 8. State chart execution in the agent 



 

 

The MTConnect documents are stored locally and named using the machine name 

and the identification of the related part. This allows the user to quickly find the 

MTConnect document related to a given part. Figure 10 shows an example of an 

MTConnect document representing the tool position and the consumed power at a given 

time for the y-axis. 

In addition to the information defined in the element MTConnectStreams (which 

represent a collection of streams between a device and an agent), the MTConnect 

document defines a component, which is the source of the data in the element 

ComponentStream using the attribute componentId. A ComponentStream contains the 

information specific to the component within the Device. In this case, the component 

is the y-axis of the tool. Then, a Sample (concept defined in MTConnect to contain the 

data collected at a given time) is defined for this component that includes the position 

Figure 9. Top view of the tool path 

Figure 10. MTConnect sample 

http://mtcup.org/wiki/Terminology
http://mtcup.org/wiki/Terminology


and the wattage of the tool at the time provided in the attribute timestamp. The 

coordinate of the position on the y axis is 116 in this example. The wattage is the power 

consumed by the tool on the y axis at this time. In this example, there is no power 

consumption at this given time on this axis, which means that the tool is not now 

moving.  

In real time, the agent-based model also aggregates data in a CSV document as 

shown in Figure 11. The aggregated data are identification of the part, material of the 

part, machine feed rate, machine spindle speed, cut depth of the machine, time to set up 

the machine, time to set up the part, time to machine the part (computed by the virtual 

machining model), time to eject the part, and time to eject the batch. 

4.3 Data validation 

The virtual machining model, presented in previous subsections, has been “partially” 

validated through the comparison of actual power data with the simulation power data 

of the milling machining. In general, data validation is performed under two scenarios: 

1) The machine tool specification parameters are known, or 2) the machine tool 

specification parameters are impossible to acquire. Under the first scenario, data 

validation is performed by confirming simulation data are matched correctly with actual 

data. In the second scenario, data validation can only be done up to data calibration. 

The values of machine tool specification parameters are adjusted to make the simulation 

data be as correct as the actual data. In this experiment, we applied the second scenario 

due to the difficulty in acquiring machine specification parameters. Nevertheless, the 

Figure 11. Aggregated data 



 

 

data calibration that we used would be an effective and practical way to validate the 

data generated by simulation models when all the machine tool specifications are not 

obtainable.  

We used two different cases to validate the model as follows: 

• Case 1:  

o feed rate: 124.46 mm/min 

o spindle speed: 183.3 rad/s (1750 RPM) 

o cutting depth: 1.5mm  

• Case 2:  

o feed rate: 88.9 mm/min 

o spindle speed: 183.3 rad/s (1750 RPM) 

o cutting depth: 2mm  

The number of cutting layers depends on cutting depth. In Case 1, there are four 

cutting layers, on the other hand, Case 2 has three cutting layers. Table 3 presents the 

setup of experiments.  

Table 3. Setup of Experiments 

Property Condition 

Machine tool Mori Seiki NVD 1500 DCG 

Computerized Numerical Controller Fanuc controller 0i 

Workpiece Cold finish mild steel 1018 
(size: 10.16cm*10.16cm*1.27cm) 

Cooling option Wet 

Cutting tool Solid carbide 

Tool geometry Flat end mill 

(8mm diameter, 4 number of flutes) 

Power measurement device System insights high speed power meter 

(sampling interval: average 0.3 sec) 

 

The power measurement device measures the summed power by all the machine 

components on average 0.3 sec. Figure 12 shows the machined part and its machining 

feature (i.e., Slot 3 with 6mm thickness) that we used to compare actual data with the 

simulation data. This figure also includes relevant tool paths where we focus especially 

on feed and back movements.  



Figure 13 presents time-series charts that plot the simulated and actual-measured 

powers over time for the two cases. Figure 13 (a) corresponds to Case 1, and Figure 

13 (b) to Case 2. The trend of simulated power over time matches with actual power. 

Some differences take place due to heterogeneous nature of simulation with real 

phenomena. We marked these differences in Figure 13 and analyzed them as follows:  

 

1) Data fluctuation: Actual power data typically contain fluctuation of data 

distributions during machining because of complex problems, including measurement 

errors, misalignment of a cutting tool, and vibration of a machine itself. This complex 

phenomenon unavoidably makes differences between our virtual machining model and 

real machining. To accommodate this problem, the virtual machining model is designed 

to control and generate random data distribution.  

 

2) Slight time difference: Actual machining occasionally takes more time than the 

time designated by the input of feed rate. The reasons might be that the resistance of 

the cutting tool with the workpiece makes the tool movement slightly slow or the 

operator controls override mode in a CNC slows down the machining due to machine 

tool safety and tool breakage prevention.  

  

3) Real data missing: Missing or erroneous data are unavoidable in the actual data 

recorded by a physical measurement device. In this experiment, real data are missing 

and thus it makes the correctness of simulation result undecidable for a specific period 

of time. Nevertheless, we conjecture that the virtual machining model generates the 

simulation data as good as it appeared in the trends of the previous and next data in the 

same conditions.  

 

Data validation in simulation is challenging due to the difficulties in collecting actual 

data or machine tool specification parameters and the limitation of simulation itself. In 

this experiment, we are able to compare the actual-measured and simulation data in one 
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Figure 12. The machining feature and tool paths of the machined part used for 

data validation 



 

 

simple machining feature: slotting. Machining a slot is not simple but it provides more 

explicit information than other machining features. Data validation on all machining 

features would be a future work for making our virtual machining model more practical. 

 

 

Figure 13. Time-series charts for measured power and simulated power 



In addition to the graphical validation, we numerically validated the power 

simulation data. We computed the Root Mean Square Error (RMSE) of the simulated 

power values compared to actual power values in the two described cases. In case 1, 

RMSE is 99.0 Watts (W). In case 2, RMSE is 67.5 W. 

Energy is another important metric that can be calculated from power values and 

time. Generally, the energy metric is used for energy-efficient machining instead of 

power because energy-efficient machining results in minimizing energy consumption 

(electricity use), and not minimizing power. Using time and power, we calculated the 

measured energy and the simulated energy in Joules for each case. We then compared 

the values by calculating the relative error defines as follow: 

 

Relative error = 100*(Measured energy – Simulated energy) / Measured energy 

 

In case 1, relative error is 0.46%. In case 2, relative error is -0.07%. Thus, the virtual 

model provides accurate data in the two scenarios that have been studied. 

5 Towards a virtual factory model 

In this section, we present how to generate a virtual factory model from a collection 

of machining process models. We also discuss the motivations for and challenges 

involved in generating a virtual factory model. 

5.1 Motivation and related work 

The companies that possess virtual machining models have obvious technological 

and economical advantage. For instance, Procter & Gamble’s simulation models helped 

improve the reliability of their complex production lines (Manyika 2012). Their 

simulations led to a 44 percent increase in plant productivity and savings of $1 billion 

in manufacturing costs globally.   

A virtual factory model should represent the main features and operations of the 

system, i.e., the factory, in order to analyze the system. A virtual factory model’s 

primary objective is to observe the behavior of the factory in response to the changes 

from its subsystems. Virtual factory models can be used to predict the system 

performance, compare alternative solutions for different change options, or generate 

simulation data as if they were real data. As an example, Terkaj, Tolio, and Urgo (2015) 

presented an ontology-based virtual factory for predictive analysis. The ontology can 

be continuously updated to reflect the events of the corresponding real factory. They 

use the ontology to assess the impact of production or maintenance decision on the 

factory. 

A virtual factory model can be developed using a collection of machining models. 

Building a collection of machining models is similar to build a milling machine model, 

as described in Section 3. The approach we propose to build a virtual factory model 

uses the discrete event simulation (DES) technique. The virtual factory model would 

be composed of different, interconnected machining models (that are agent-based 



 

 

models (ABMs) in this case) that represent the real factory. Such a model provides a 

multi-level simulation representing all machining processes, machines, and the layout 

of a shop floor. Schönemann et al. (2016) adopted this approach to propose a multi-

level modeling and simulation of manufacturing systems for lightweight automotive 

components. They used a DES model to represent the process chain and ABMs in order 

to show how the machines execute the processes. The energy consumption of each 

process is computed using a MATLAB program executed by the corresponding ABM. 

Implementing this approach using AnyLogic, energy consumptions for different parts 

in their process chain are then compared. Jain et al. (2015) also discuss the benefits of 

combining different agent-based models in a unique DES model of a virtual factory. 

A multi-level virtual factory model provides capabilities to observe the behavior of 

the factory as a whole or at different levels of granularity such as at the process, 

machine, or shop floor levels. A multi-level model also allows manufacturing engineers 

to observe the impact of system modifications. With a multi-level model, a variety of 

modifications can be easily tested. Examples of modifications include shop floor re-

configuration and machine parameter or process parameter changes. With the milling 

machine model represented as an agent-based model, for example, it allows changing 

machining or process parameters, and also, generating simulation data at the process 

and machine levels.  

A manufacturing engineer can use the data generated at the process and machine 

levels to fill in missing values in a real data set. The simulation data can also be 

compared to the actual data to detect any anomalies. The detection of an anomaly 

should trigger maintenance or inspection operations or an investigation of the issue. 

The data analytics models provide alternatives to systematic executions of 

simulation models. The simulation data could be used to train data analytics models for 

predicting specific outputs such as throughput or energy consumption. Scoring a data 

analytics model (i.e., using a trained data analytics model with new input data to make 

prediction) is not as time consuming as running a complex simulation model; it helps 

manufacturing engineers save time and make decisions more quickly. Running the 

simulation model, however, could provide more detailed information for observing the 

behavior of the system at different levels with unique scenarios. 

In practice, the complexities and high costs of data collection preclude generation of 

real data across an entire factory. Multi-level virtual factory models could address data 

collection gaps by generating simulation data. Such simulation data can also be used to 

train data analytics model, as simulation data are theoretically nearly identical to data 

collected from the real factory. Jain and Shao (2014) proposed a virtual factory, which 

is a high-fidelity simulation of the manufacturing system, to support data analytics. 

Feldkamp, Bergmann, and Strassburger (2015) identified that applying data analytics 

to simulation data enables the identification of causal relationships that are not revealed 

using simulation models alone. 

5.2 Building a virtual factory model 

A library of agent-based models representing machining processes supports the 

generation of virtual factory models. We mentioned that Shin et al. (2016) developed a 

virtual machining model for turning. That machining model could be represented in an 



agent-based model by using the methodology presented in Section 4. Using the same 

methodology, a robust set of machining process models, which include both dynamics 

and kinematics machining processes, could be generated. Eventually, the model set can 

be used to produce a library that is large enough to support the development of basic 

factory models. This proposed library can be extended to include varied types of 

machining process models, enabling the creation of much more complex factory 

models. 

Using the machining process models available in the proposed library, a 

manufacturing engineer could represent a factory in a simulation model by selecting 

the appropriate agents in the library and using them to represent processes involved in 

the actual factory. As described in Section 4, the agent parameters should be easily 

modified to match with the actual machine parameters. 

Figure 14 shows an example virtual factory model that is composed of a milling 

agent-based model (described in Section 4) and a turning agent-based model (including 

the virtual model developed by Shin et al. (2016)). 

The model of Figure 14 demonstrates an assembly line scenario. Batches are held 

in the area called RawMaterialStock until one of the turning machines is available. As 

soon as a turning machine is available, a batch is sent to the machine and the parts of 

the batch are processed as described in Section 4.2. Once the batch has been processed 

in the turning machine, it is sent to another area called WIParea until a milling machine 

is available. The milling machine will process the parts of the batch. Once the entire 

batch has been processed, it reaches the area of FinishedGoods.  

Figure 14. Virtual factory model representing an assembly line 



 

 

A manufacturing engineer can simply build the example virtual model by using the 

agent-based models that are available in the proposed library and connecting them to 

represent the flow of batches as they occur in the real factory. In the given assembly 

line scenario, only turning and milling models are needed from the library. This 

example model represents a very basic assembly scenario but it is sufficient to show 

different levels of details.  

At the factory level, the data collected from each machine can be aggregated to 

evaluate the assembly line’s throughput or the energy consumption used to process all 

batches at the assembly line. The assembly line data, such as throughput and energy 

consumption, do not depend on the machine and process only. For instance, throughput 

varies with the availability of the machines involved in the factory. If machines are 

unavailable frequently, the batches stay longer in the waiting areas (e.g., 

RawMaterialStock or WIP areas). It, therefore, impacts throughput value. 

Collecting actual factory data is often difficult due to the system’s complexity. 

Simulation data, however, could be generated at the process level, at the machine level, 

or at the assembly line level by implementing the virtual machining model or the agent-

based model, or aggregating the data resulted from several agent-based models, 

respectively.  

In the example model, each agent, which represents a machine, could provide 

machine-monitoring data, in the MTConnect format, about energy consumption 

information and the location of the machine tool. A repository of MTConnect 

documents retains the monitoring data collected during the simulation. The agents also 

aggregate the data at the machine level to provide time and power consumed for 

processing a batch. Extending the agents with failure and maintenance states would 

enable the generation of data that better represent an actual machine behavior.  

5.3 Challenges 

Simulation has been identified as a key component towards Industry 4.0 (Hermann, 

Pentek, and Otto 2016). However, building a virtual factory model raises different 

challenges. First, building virtual models for each related machining process is time 

consuming and expensive. We anticipate proposed libraries, described in Section 5.2, 

could be created from 1) companies that have financial resources to and interests in 

building their own machining models, or 2) individuals or organizations who contribute 

their machining models through crowdsourcing.  

Second, dynamics and kinematics are unknown or not easy to model for certain 

manufacturing processes. Since the number of processes that can be represented by 

their kinematics and dynamics is considered sufficient, we recommend focus on those 

processes to create real factory models. If dynamics and kinematics are not available, 

approximation models based on real data can be built in order to replace the physics-

based models. The idea of approximation model is to use machine learning techniques 

to approximate complicated relationships between the inputs and the outputs of a 

process. 

Third, an elaborate factory model with different levels of detail requires high 

computational capabilities. We believe this challenge can be overcome by taking 

advantage of a new breakthrough on cloud computing and parallel computing in 



graphical process units that has unlocked new computational capabilities. A growing 

number of companies has already taken advantage of these capabilities to perform data 

analytics and deep learning towards artificial intelligence. Manufacturing companies 

should also leverage these capabilities to execute more complex simulation models 

efficiently and hence increase sustainability, productivity, flexibility, and competitive 

advantages.  

6 Conclusion 

This paper highlights two capabilities that enable manufacturers to apply data 

analytics for improving their operations: 1) the development of a virtual machining 

model that represents manufacturing processes of the machine, and 2) the integration 

of virtual machining models into agent-based models for simulating shop floor. We 

described an approach to develop virtual machining model, proposed an approach to 

include the virtual machining model in an agent-based model, and introduced how a 

virtual factory model be built based on a proposed library of agent-based models.  

As an example, a virtual machining model for milling operation was developed. The 

virtual machining model supports the generation of machine-monitoring data in the 

MTConnect format from a process plan presented in a STEP-NC file. An agent-based 

model, i.e., a milling machine model, was created to include the virtual machining 

model to simulate the execution of the milling machine in a shop-floor scenario. In the 

same example, the milling machine model and another turning machine model were 

integrated in a simulation environment to demonstrate a simple virtual factory for 

simulating assembly line processes. A manufacturing engineer can simulate the 

execution of the machines and adjust the process plan before executing it in a real 

factory.  

We described how to combine different agent-based models built in a similar 

approach, described in this paper, to create multi-level simulation models representing 

factories. With this proof-of-concept approach, a collection of agents can then be 

created to enable the generation of a virtual shop-floor model with finer levels of 

granularity. With the virtual shop-floor model, simulation data could be generated at 

the process, machine, and shop-floor levels. It offers new capabilities for the application 

of data analytics at the shop-floor level. The simulation data could be used to train data 

analytics models for predicting specific information at the factory level. Manufacturing 

companies could also anticipate potential returns before investing in new sensors for 

data collection or new data analytics software.   

Future work lies in three directions. The first is the integration of maintenance and 

failure into our model. This integration can make data generation more realistic and 

enhance our simulation capabilities. The second is the development of additional virtual 

machining models and agent-based models for different operations with the goal for 

establishing a library for building virtual shop-floor models. The third is studying the 

application of data analytics techniques on data aggregated from virtual shop-floor 

models. These efforts will help manufacturers realize the benefits of multi-level 

modeling that we described in this paper. 
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