
Chapter 14 
Nanoscale electromagnetic measurements for life science applications  
 
 
14.1 High-resolution optical microscopy of nanoscale biological systems  

14.1.1 Far-field techniques  

The number of microscopic imaging applications related to biological systems is large and continues to 

grow. Fig. 14.1 shows the dimensions of selected, biological systems. Depending on the length scale of 

the system, a variety of different microscopy techniques are available. For comparison, Fig. 14.1 also 

illustrates comparable solid state, electronic systems at various length scales. In this chapter, we will 

describe methods for imaging and characterization of biological materials at sub-micrometer length 

scales. The focus will be on electrical scanning probe imaging methods, but by way of introduction we will 

discuss selected optical methods first. Our review of optical methods is but a brief survey of a small subset 

of many available techniques. 

 

Figure 14.1. Length scales of biological and electronic systems. A comparison of length scales of biological 

(left) and electronic (right) systems that can be accessed by near-field scanning microwave microscopy 

and other measurement techniques. 

 

Historically, the most prominent techniques for biomaterial imaging have been optical techniques, 

especially those based on fluorescence imaging. The importance of optical techniques is due in large part 

to the fact that they allow imaging of living cells with minimal invasiveness. Although electron microscopy 

has better spatial resolution, optical microscopy still dominates biological research. The resolution of most 

optical microscopy has historically been diffraction-limited with resolution of approximately 0.6𝜆/𝑁𝐴  

where 𝜆 is the wavelength of the light and NA is the numerical aperture of the microscope objective lens. 

Thus, at the diffraction limit of conventional fluorescent microscopies, resolution is on the order of 200 

nm. This is practical in many cases, but if the molecules are separated by distances on the order of 200 

nm to 350 nm, then it is not possible to tell them apart. As a result, it has been necessary to develop sub-

diffraction-limit techniques in order to image nanoscale biological systems and distinguish the sub-

systems within them. 

One critical breakthrough in the imaging of life science systems was the development of tagging methods 

for proteins and other biological molecules by use of fluorescent probe molecules. Staining techniques for 

inducing contrast in optical images date back to the nineteenth century and played a central role in 

biological imaging of that period, such as the work of 1906 Nobel Prize winner Santiago Ramon y Cajal. 

More recently, the importance of tagging techniques has been acknowledged through two additional 

Nobel prizes. The first was in 2008 and was awarded to Shimomura, Tsien and Chalfie for the discovery 

and development of green, fluorescent protein. The second was in 2014 and was awarded to Betzing, Hell 

and Moerner for the development of super-resolution fluorescence microscopy. Indeed, the unique 



photochemical properties of fluorescent molecules are the foundation for a number of sub-diffraction 

limit microscopies. 

However, overcoming the diffraction limit is not merely about detecting tagged molecules, but also about 

distinguishing one molecule from another when the intermolecular separation is on the order of 100 nm 

or less.  This is accomplished in large part by leveraging stimulated emission, as originally introduced by 

Hell [1]. Hell’s approach was based on keeping a fraction of the molecules in the observation area in a 

dark state while the other, bright-state molecules in the observation area are detected. One strategy to 

keep some molecules in a dark, ground state is the use of stimulated emission. This idea led to stimulated 

emission depletion (STED) microscopy. The STED technique utilizes two lasers: one to excite the 

fluorophores and a second to deplete the excited-state through stimulated-emission before the 

fluorophores emit light through spontaneous fluorescence. In other words, one beam is used to illuminate 

the molecules and excite them into the bright state. The second light beam induces stimulated emission 

and returns the excited molecules into their ground (dark) state. By properly shaping the second beam 

into a ring in the focal plane, all the molecules but the ones at the center will be turned off. The effect of 

this second laser, referred to as a STED beam, is a drastic reduction in the size of the fluorescence spot. 

An image can subsequently be acquired by coordinated, overlapped scanning of the excitation and STED 

laser beams across the sample. At present there are several variants of this approach with 50 nm to 100 

nm resolution. 

Another approach to nanoscale microscopy, known as superlocalization, was pioneered by Moerner [2]. 

This approach built upon the work of Betzing, in which photo-switchable fluorescent proteins were 

employed as an active control mechanism for photoactivated localization microscopy (PALM). 

Experimentally, the technique relies on simultaneously suppressing background signals while maximizing 

emission from the molecules of interest. The fundamental analytical idea introduced by Moerner was 

overlaying the shape of the measured point-spread-function with a Gaussian (Airy) function. This 

innovation, which is at the heart of superlocalization, reduced the Abbe diffraction limit by a factor of √𝑁, 

where N is the number of measurements. Put simply, two conceptually simple ideas are at the heart of 

this technique. The first is to use spectrally distinct tags in order to distinguish molecules in “multicolor” 

images. The second idea is to induce the molecules to emit sequentially such that they are not all emitting 

simultaneously. When combined with the superlocalization technique, these two ideas enable image 

reconstruction in which closely spaced molecules can be distinguished. The experimental technique has a 

number of different acronyms depending on the strategies for controlling emitting concentrations and 

sequential emission. Application of localization microscopies has improved spatial resolution to 20 to 50 

nm scale [3]. 

 

14.1.2 Near-field techniques  

So far, we have limited our discussion to sub-diffraction-limit, optical techniques based on far-field 

observation. In this section, we turn to sub-diffraction-limit optical techniques that are based on near-

field interactions. These near-field methods are topically closer to the preceding chapters and near-field 



scanning microwave microscopy (NSMM), in particular.  One example of a near-field optical technique is 

total internal reflection fluorescent microscopy (TIRF) [4]. TIRF utilizes evanescent waves to selectively 

illuminate and excite fluorophones in a specimen immediately adjacent to a glass-liquid interface. When 

the light is obliquely incident from the glass (substrate) side at an angle equal to or greater than the critical 

angle of refraction given by Snell’s law, the light is totally reflected. During this process, a surface 

evanescent wave is generated at the interface. This effect is well-known and is called total internal 

reflection. Due to exponential decay of the amplitude of this wave from the surface the probed penetrated 

area of the specimen is given by 

𝑑 =
𝜆

4𝜋𝑛2
(

𝑠𝑖𝑛2𝜃

𝑠𝑖𝑛2𝜃𝑐
− 1)

−1/2

 ,      (14.1) 

where 𝜃 is the angle of incidence, 𝜃𝑐 = 𝑠𝑖𝑛−1(
𝑛2

𝑛1
) is the critical angle of incidence,  𝜆 is the free space 

wavelength of the incident light, 𝑛2 is the refractive index of liquid medium, and 𝑛1 is the refractive index 

of the substrate. For a typical system such as a glass-water interface, this represents a penetration depth 

of about 100 nm into the sample. The technique has been used to observe the fluorescence of a single 

molecule with the relative intensity of the molecular fluorescence depending on the distance of the 

molecule from the interface.  

Near-field scanning optical microscopy (NSOM) is another, near-field optical technique the that was 

introduced after the discovery of scanning probe microscopes. It was originally developed by Betzing and 

Trautman [5]. As originally conceived, NSOM relies on optical radiation incident upon a subwavelength 

aperture. Thus, it shares its fundamental ideas with early NSMM. In one early realization of this technique, 

Ash and Nicholls used illumination of a small aperture that was a part of an open resonator to go beyond 

the diffraction limit [6]. Building upon this initial demonstration, Betzing and Trautman designed a 

successful NSOM by use of a glass capillary coated with aluminum. This first, near-field optical microscope 

surpassed the diffraction limit by a factor of two. Significant improvement was achieved when the 

capillary was replaced by a tapered optical fiber, leading to more efficient transmission of the light to the 

NSOM probe and improved coupling to the evanescent optical modes at the probe tip. At present, NSOM 

is used for a variety of applications, including optical data storage, super resolution photolithography and 

nano-spectroscopy. 

 

14.2 Electrical characterization of biological systems 

14.2.1 The measurement problem 

In addition to NSOM, there are a variety of other techniques to image biological objects by use of standard 

or modified scanning tunneling microscopes (STMs) and atomic force microscopes (AFMs). The properties 

of proteins, nucleic acids, membranes and cells have been studied by use of a broad range of AFM- and 

STM-based approaches [7]-[9]. The ultimate objective of this chapter is to describe the application of 

electrical, scanning-probe-based techniques, including NSMM, to life science metrology. However, before 

addressing the specific challenges related to NSMM of biological systems, we must answer several 



broader questions about the electrical characterization of biological systems. How do we model the 

interaction of electromagnetic radiation with biological systems? What are the relevant material 

parameters and measurands of interest? What modifications must be made in order to extend the 

measurements to heterogeneous systems? Are any special considerations required to account for 

measuring in a liquid environment? 

 

14.2.2 Microwave antenna probes 

Interest in the application of microwave techniques to medical diagnostics is driven in part by the fact that 

microwave techniques are noninvasive. In fact, some tissues are transparent to microwaves. Potential 

applications include microwave heating therapy and cancer detection.  The latter application is based on 

the fact that the conductivity of cancerous tissue is about a factor of five higher than that of healthy tissue 

[10]. Thus, the identification of malignant tissue is based on a temperature difference between malignant 

and healthy tissue. The temperature is measured indirectly through the spectral radiance of the 

electromagnetic radiation, which is given by 

 𝐼(𝑓, 𝑇) = 𝜇𝜀
2ℎ𝑓3

𝑒

ℎ𝑓
𝑘𝐵𝑇−1

  ,      (14.2) 

where μ is the permeability of the medium, ε is the permittivity of the medium, h is Plank’s constant, f is 

the radiating frequency, 𝑘𝐵 is the Boltzmann constant, and T is the temperature. Clearly, in order to realize 

such medical applications, one must understand the interaction of electromagnetic radiation with 

biological systems. 

As we have previously noted in this book, accurate probe-sample models are required in order to extract 

material parameters from microwave probe measurements. The first such model that we will consider 

here is an in vivo microwave antenna probe. The operating principle of such a probe is based on the 

antenna modeling theorem, which can be expressed as  

𝑍(𝜔,𝜀∗)

√𝜇0 𝜀∗⁄
=

𝑍(𝑛𝜔,𝜀0)

√𝜇0 𝜀0⁄
        (14.3) 

where Z is the terminal impedance of the antenna probe, 𝜀∗ is the complex permittivity of the medium, 

𝑛 = √𝜀∗ 𝜀0⁄  is the complex index of refraction of the medium, and 𝑍0 = √𝜇0 𝜀0⁄  is the impedance of free 

space. The left hand side of Equation (14.3) corresponds to the probe in the dielectric medium while the 

right hand side corresponds to the probe in free space. Equation (14.3) is derived under the assumption 

that the antenna is entirely contained within the medium and that the surrounding medium is infinite. 

This relationship can be applied to any type of microwave probe, provided that the terminal impedance 

of the probe is known. For a short monopole probe with length /10 or less, as is the case for the NSMM, 

the antenna impedance in free space is given by [11] 

𝑍(𝜔, 𝜀0) = 𝐴𝜔2 +
1

𝑗𝜔𝐶
   ,      (14.4) 



where the constant A and the capacitance constant C are determined from the antenna’s physical 

dimensions. When the antenna is in a lossy medium, it follows from Equations (14.3) and (14.4) that the 

impedance is  

 𝑍(𝜔, 𝜀∗) = 𝑅 + 𝑗𝑋  ,       (14.5) 

where 

𝑅 =
𝑠𝑖𝑛2𝛿

2𝜀′𝜔𝐶
+ 𝐴√𝜀′𝜔2√

𝑠𝑒𝑐𝛿+1

2
  ,     (14.6a) 

𝑋 =
𝑐𝑜𝑠2𝛿

𝜀′𝜔𝐶
+ 𝐴√𝜀′𝜔2√

𝑠𝑒𝑐𝛿−1

2
  .     (14.6b) 

The dielectric constant has the form 𝜀∗ = 𝜀′𝜀0(1 − 𝑗𝑡𝑎𝑛𝛿). These equations can be solved iteratively, 

noting that 𝑡𝑎𝑛𝛿 = 𝑅 𝑋⁄ .   

Equations (14.6) can be simplified for the case of an open-ended coaxial probe [11]-[13]. Generally, small-

diameter coaxial lines are more appropriate for in vivo measurements. To model a coaxial probe, we begin 

by defining the reference capacitance of the open coaxial cable in air as 𝐶0. If evanescent modes are taken 

into account, this capacitance has to be modified to have the form 𝐶0 + 𝐴𝑓2, where A is once again a 

constant dependent on geometry. It is important to note that when the probe is inserted into a material, 

some of the evanescent modes may become propagating modes. The relation of the complex permittivity 

to the measured reflection coefficient from the antenna, S11, comes from the standard definition of the 

reflection coefficient and can be expressed as  

𝜀∗ =
1−𝑆11

𝑗𝜔𝐶0𝑍0(1+𝑆11)
−

𝐶𝑓

𝐶0
  ,      (14.7) 

where 𝐶𝑓 is the fringing capacitance of the open-ended probe. 

The most accurate determination of the permittivity from the reflection coefficient measurement occurs 

when 

𝐶0 =
1

𝜔𝑍0√𝜀′2+𝜀′′2
 ,       (14.8) 

provided that the uncertainties in the amplitude and phase 𝜑 of the reflection coefficient are about the 

same i.e., ∆𝜑 ≈ |∆𝑆11 𝑆11|⁄ . If the 𝐶𝑓 𝐶0⁄  term in Equation (14.7) is neglected, the uncertainties in the 

permittivity and loss tangent are given by [12] 

∆𝜖′

𝜀′ = {(
∆C0

𝐶0
)
2
+ (

∆𝑍0

𝑍0
)
2
+ (

1−|𝑆11|
2

1+2|𝑆11| cos(𝜑)+|𝑆11|
2

|∆𝑆11|

|𝑆11|
)
2

+ (
1−2|𝑆11|𝑐𝑜𝑠𝜑+|𝑆11|

2

1+2|𝑆11|𝑐𝑜𝑠𝜑+|𝑆11|
2

∆𝜑

𝑡𝑎𝑛𝜑
)
2

}
1 2⁄

   

           (14.9a) 



∆𝜀′′

𝜀′′ = {(
∆C0

𝐶0
)
2
+ (

∆𝑍0

𝑍0
)
2
+ (

4|𝑆11|+2𝑐𝑜𝑠𝜑+2|𝑆11|
2𝑐𝑜𝑠𝜑

(1−|𝑆11|
2)(1+2|𝑆11|𝑐𝑜𝑠𝜑+|𝑆11|

2)
∆|𝑆11|)

2

+ (
2|𝑆11|𝑠𝑖𝑛𝜑

1+2|𝑆11|𝑐𝑜𝑠𝜑+|𝑆11|
2 ∆𝜑)

2
}
1 2⁄

  

           (14.9b) 

∆𝑡𝑎𝑛𝛿

𝑡𝑎𝑛𝛿
= {(

∆𝜑

𝑡𝑎𝑛𝜑
)
2
+ (

1+|𝑆11|
2

1−|𝑆11|
2

|∆𝑆11|

|𝑆11|
)
2

}
1 2⁄

 .      (14.9c) 

Here, the uncertainty in the frequency has been neglected. The capacitances 𝐶0 and 𝐶𝑓 can be determined 

from a measurement of the reflection coefficient S11 made while the probe is inserted in a dielectric 

reference sample with known permittivity. If 𝐶𝑓 is equal to zero, 𝐶0 is determined from 

𝐶0 =
−2|𝑆11|𝑠𝑖𝑛𝜑

𝜔𝑍0𝜀
′(1+2|𝑆11|𝑐𝑜𝑠𝜑+|𝑆11|

2)
  .     (14.10) 

Alternatively, for non-zero Cf, 

𝐶0 =
1−2|𝑆11|

𝜔𝑍0𝜀
′′(1+2|𝑆11|𝑐𝑜𝑠𝜑+|𝑆11|

2)
       (14.11) 

and 

𝐶𝑓 =
−2|𝑆11|𝑠𝑖𝑛𝜑

𝜔𝑍0(1±2|𝑆11|𝑐𝑜𝑠𝜑+|𝑆11|
2)

− 𝜀′𝐶0 .     (14.12) 

To maximize the accuracy of C0, the dielectric reference sample should display low loss. Distilled water, 

ethanol, and saline solutions of known molarity are examples of suitable reference materials.  

An alternate approach to in vivo imaging is to keep the probe external to the sample of interest rather 

than insert it directly into the tissue [14]. A schematic of the experimental system and an equivalent probe 

circuit are shown in Fig. 14.2. This external, near-field imaging technique requires a modified description 

of the probe-sample interaction. The external probe is considered to be an electrically small antenna with 

dimension D much smaller than the wavelength: D << . The probe is located at a small distance z <<  

from the sample surface. The sample surface is defined as the interface between the presumably 

homogeneous external space and the heterogeneous interior of the tissue. The inhomogeneous medium 

is represented by a complex permeability * that is a function of the distance z from the interface. To 

increase the sensitivity of the antenna to material properties, a matching resonator circuit can be inserted 

in series with the probe. The matching circuit ensures that the minimum value of the reflection S11 occurs 

at the resonance frequency of the resonator. 

 

Figure 14.2 Model of an external probe. (a) Schematic of the external, radio-frequency probe antenna 

interacting with a sample. The height-dependent complex permittivity of the sample is *(z). (b) The 

corresponding transmission line equivalent probe circuit. The position that is labeled “A” in the schematic 

corresponds to the circuit nodes labeled “A” in the circuit diagram. Adapted from A. N. Reznik and N. V. 

Yurasova, J. Appl. Phys. 98 (2005) art. no. 114701., with permission from AIP Publishing. 



 

As in the case of other near-field probes that we have described throughout the book, the presence of 

this medium will result in a change of the antenna’s input impedance. Thus, the central problem for the 

external near-field probe is to calculate the change of the probe impedance due to perturbation by the 

sample with permittivity profile *(z). As shown in Fig. 14.2, a transmission-line-based approach can be 

used to model the system response. The probe is modeled through a parallel combination of an open 

ended line with length ls that serves as the matching circuit and a line of length l1 that is loaded with the 

input impedance Zp of the probe. The characteristic impedance of these lines is Zl and propagation 

constant l= jkl , where kl is corresponding wave number of the propagating wave. The lines are assumed 

to be lossless. The parallel combination of the probe and the matching circuit is fed by a line with 

characteristic source impedance Z0. The feed line also serves as the detection path. The total input 

impedance of the circuit shown in Fig. 14.2(b) follows from standard transmission line theory and is 

𝑍𝑖𝑛 =
𝑍1𝑍2

𝑍1+𝑍2
 ,        (14.13) 

where 

 𝑍1 = −𝑗𝑍𝑙 cot(𝑘𝑙𝑙𝑠) ,       (14.14a) 

 𝑍2 = 𝑍𝑙
𝑍𝑙−𝑗𝑍𝑝𝑐𝑜𝑡(𝑘𝑙𝑙)

𝑍𝑝−𝑗𝑍𝑙𝑐𝑜𝑡(𝑘𝑙𝑙)
 .       (14.14b) 

If the matching line is lossy, appropriate modifications have to be applied to the model. Note that 

Equations (14.14) depend upon the input impedance of the probe, including the effects of the sample 

properties and the interaction between the probe and the material. Simple forms of this impedance have 

been discussed for a variety of cases in Chapter 9. More complex expressions can be found in Reference 

[14] that take into account depth-dependent permeability and field distributions of the excited modes. As 

in the case of the inserted probe, the external near-field probe requires reference samples with known 

permittivity in order to obtain calibrated, quantitative measurements. 

 

14.2.3 Multilayer systems 

Modeling the probe-sample impedance becomes more challenging for biological samples, most of which 

are hetereogeneous. For example, a more complex model for a two- or three-layer system representing 

the response of mammalian skin was presented in Reference [15]. In the two-layer model, the upper layer 

is a good conductor and represents the combined effects of the epidermis. The underlying second layer 

represents subcutaneous fat, which has a low dielectric constant. In the three-layer model, the epidermis 

is split into the stratum corneum and the dermis. The stratum corneum is about 30 micrometers thick and 

has a low dielectric constant. The dermis is about 1 mm to 2 mm thick and has a high dielectric constant. 

Following this modification, the third layer now represents the subcutaneous fat. The coupling of an 

external probe to this system is considered to be capacitive and may be analytically determined through 

a combination of the propagating TEM mode and evanescent TM modes, as discussed in Chapter 9. As we 



show below, though the two- and three-layer models are conceptually simple, the analysis required to 

extract quantitative information from such a system is complex and challenging. Though the analysis 

below is framed in terms of the specific example of mammalian skin, this multilayer model form can be 

generalized to represent a variety of layered biological structures. 

The problem at hand is to calculate the capacitance of a coaxial probe in contact with the layered 

biological medium. This capacitance is related to the effective permittivity (dielectric constant) through a 

simple relation  𝐶𝑝 = 𝜀𝐶0, where C0 is once again the capacitance of the probe in free space. If the inner 

and outer conductors of the coaxial probe are a and b, respectively, then this model applies only under 

the condition that 2a/<<1. Clearly, this condition limits the frequency range within which this approach 

is valid. If it is assumed that the potential of the inner conductor of the coaxial probe is V0, then the 

potential inside of the cable can be expresses as [15]  

𝑉𝑝(𝑧, 𝜌) = 𝑉0
ln (𝜌 𝑏⁄ )

𝑙𝑛(𝑎 𝑏⁄ )
+ 𝑉0 ∑ 𝑔𝑖𝑇𝑖(𝜌)𝑁

𝑖=1 exp(𝑝𝑖𝑧) ;             𝑎 ≤ 𝜌 ≤ 𝑏  (14.15) 

with 

𝑇𝑖(𝜌) = 𝐴𝑖𝐽0(𝑝𝑖𝜌) + 𝐵𝑖𝑌0(𝑝𝑖𝜌)  .     (14.16) 

𝐽0 and 𝑌0 are Bessel functions of the first and second kind. The coefficients 𝐴𝑖 , 𝐵𝑖, and 𝑝𝑖  are determined 

from the boundary conditions 𝑇𝑖(𝑎) = 𝑇𝑖(𝑏) = 0 and the normalization condition 𝐴𝑖
2 + 𝐵𝑖

2 = 1. Each 

layer, indexed by n = 1, 2, … has potential Vn and permittivity εn. To solve for Vn in each layer for 𝑧 ≥ 0, it 

is necessary to solve a Laplace equation for a functions 𝑓𝑛(𝑧, 𝜌) related to Vn through Hankel 

transformation [15] 

 𝑓𝑛(𝑧, 𝜆) = ∫ 𝑉𝑛(𝑧, 𝜌)𝐽0(
∞

0
𝜆𝜌)𝜌𝑑𝜌 .     (14.17) 

The Laplace equation is then reduced to  

𝜕2𝑓𝑛

𝜕𝑧2 − 𝜆2𝑓𝑛 = 0  .       (14.18) 

Boundary conditions must be applied to ensure the continuity of the potential and the normal component 

of the electric displacement field at the boundaries of layers with thicknesses 𝑑1, 𝑑2 . For the three-layer 

structure, the boundary conditions are 

𝑓1 = 𝑓2             𝜀1
𝜕𝑓1

𝜕𝑧
= 𝜀2

𝜕𝑓2

𝜕𝑧
                𝑎𝑡  𝑧 = 𝑑1  

𝑓2 = 𝑓3             𝜀2
𝜕𝑓2

𝜕𝑧
= 𝜀3

𝜕𝑓3

𝜕𝑧
                𝑎𝑡  𝑧 = 𝑑1 + 𝑑2    (14.19) 

Solving (14.18) with boundary conditions (14.19) leads to [15]  

𝑓1(𝑧, 𝜆) = 𝑓0(𝜆)
𝑒−𝜆𝑧+𝑒𝜆𝑧𝑅𝑡𝑒𝑥𝑝(−2𝜆𝑑1)

𝐷1
        ,    (14.20) 



𝑓2(𝑧, 𝜆) = 𝑓0(𝜆)(1 + 𝑅𝑡)
𝑒−𝜆𝑧+𝑒𝜆𝑧𝑅2𝑒𝑥𝑝(−2𝜆(𝑑1+𝑑2))

𝐷1𝐷2
 ,   (14.21) 

and 

𝑓3(𝑧, 𝜆) = 𝑓0(𝜆)(1 + 𝑅𝑡)(𝑅2 + 1)
𝑒−𝜆𝑧

𝐷1𝐷2
  .    (14.22) 

Here 

𝐷1 = 1 + 𝑅𝑡𝑒𝑥𝑝(−2𝜆𝑑1);               𝐷2 = 1 + 𝑅2𝑒𝑥𝑝(−2𝜆𝑑2)    (14.23) 

and 

𝑅𝑡 =
𝑅1+𝑅2𝑒𝑥𝑝(−2𝜆𝑑2)

1+𝑅1𝑅2𝑒𝑥𝑝(−2𝜆𝑑2)
;       𝑅1 =

𝜀1−𝜀2

𝜀1+𝜀2
;            𝑅2 =

𝜀2−𝜀3

𝜀2+𝜀3
        (14.24) 

Following Reference [15] and references therein, it is possible to derive the relation 

𝑓0(𝜆) = 𝐹0(𝜆) + ∑ 𝑔𝑖𝐹𝑖(𝜆)
𝑁
𝑖=1   ,     (14.25) 

where  

𝐹0(𝜆) =
𝑉0

𝜆2𝑙𝑛(𝑏 𝑎⁄ )
(𝐽0(𝜆𝑏) − 𝐽0(𝜆𝑎))      (14.26) 

and 

𝐹𝑖(𝜆) =
𝑉0𝑝𝑖

𝑝𝑖
2−𝜆2

[𝑏𝐽0(𝜆𝑏)(𝐴𝑖𝐽1(𝑝𝑖𝑏) + 𝐵𝑖𝑌1(𝑝𝑖𝑏) − 𝑎𝐽0(𝜆𝑎)(𝐴𝑖𝐽1(𝑝𝑖𝑎) + 𝐵𝑖𝑌1(𝑝𝑖𝑎))] . (14.27) 

The capacitance of the probe can be expressed through the variation formula 

𝐶𝑝

𝜀0
=

2𝜋𝜀1

𝑉0
2 ∑ 𝑔𝑖

𝑁
𝑖=0 ∑ 𝑔𝑗

𝑁
𝑗=0 𝑃𝑖𝑗 + 2𝜋𝜀𝑡 ∑ 𝑔𝑖

2𝑝𝑖𝑡𝑖
𝑁
𝑖=1   ,    (14.28) 

where 

𝑃𝑖𝑗 = ∫ 𝐹𝑖(𝜆)𝐹𝑗(𝜆)
1−𝑅𝑡(𝜆)𝑒𝑥𝑝(−2𝜆𝑑1)

1+𝑅𝑡(𝜆)𝑒𝑥𝑝(−2𝜆𝑑1)

∞

0
𝜆2𝑑𝜆      (14.29) 

and 

𝑡𝑖 = ∫ 𝑇𝑖
2(𝜌)𝜌𝑑𝜌

𝑏

𝑎
 .        (14.30) 

In the sums in Equation (14.28), g0 =1 and 𝜀𝑡 is the permittivity of the dielectric in the coaxial cable.  

To get the coefficients gi it is necessary to solve (approximately) the second boundary condition  

𝜀1
𝜕𝑉1

𝜕𝑧
= 𝜀𝑡

𝜕𝑉𝑡

𝜕𝑧
     , 𝑧 = 0 𝑎𝑛𝑑 𝑎 ≤ 𝜌 ≤ 𝑏     (14.31) 

For N=3 e.g., this leads to set of equations for g coefficients  



𝑃01 + 𝑔1𝑃11 + 𝑔2𝑃12 + 𝑔3𝑃13 = −𝑉0
2 𝜀𝑡

𝜀1
𝑔1𝑝1𝑡1  ,   (14.32a) 

𝑃02 + 𝑔1𝑃21 + 𝑔2𝑃22 + 𝑔3𝑃23 = −𝑉0
2 𝜀𝑡

𝜀1
𝑔2𝑝2𝑡2  ,   (14.32b) 

𝑃03 + 𝑔1𝑃31 + 𝑔2𝑃32 + 𝑔3𝑃33 = −𝑉0
2 𝜀𝑡

𝜀1
𝑔3𝑝3𝑡3  .   (14.32c)  

Similarly, the capacitance for N=2 can be written as 

𝐶𝑝

𝜀0
=

1

𝑉0
2 2𝜋𝜀1(𝑃00 + 2𝑔1𝑃01 + 2𝑔2𝑃02 + 2𝑔1𝑔2𝑃21 + 𝑔1

2𝑃11 + 𝑔2
2𝑃22) + 2𝜋𝜀𝑡 ∑ 𝑔𝑖

2𝑝𝑖𝑡𝑖
2
𝑖=1  (14.33) 

The solution of these equations requires the numerical evaluation of the integrals in Equation (14.29), 

which is nontrivial. For some simpler cases, approximate formulae can be used. For a bilayer structure the 

permittivity seen by the probe can be approximated as 

𝜀𝑝 = (𝜀1 − 𝜀2)(1 − 𝑒−𝑞𝑑) + 𝜀2       , 𝜀1 > 𝜀2     (14.34) 

or  

1

𝜀𝑝
= (

1

𝜀1
−

1

𝜀2
) (1 − 𝑒−𝑞𝑑) +

1

𝜀2
        , 𝜀1 < 𝜀2   .   (14.35) 

In Equations (14.34) and (14.35), q is a constant that depends on the probe size. These equations can be 

extended for the three-layer skin model with 𝜀1 < 𝜀2 and 𝜀2 > 𝜀3. It is useful for the three-layer case to 

distinguish the adjustable constants for stratum corneum q = qsc and epidermis/dermis q = qed. One can 

then write 

𝜀𝑑+𝑠𝑓 = 𝜀𝑑[1 − exp (−𝑞𝑑𝑑𝑑)] + 𝜀𝑠𝑓exp (−𝑞𝑑𝑑𝑑)    (14.36) 

and 

1

𝜀𝑝
=

1−exp (−𝑞𝑠𝑐𝑑𝑠𝑐)

𝜀𝑠𝑐
+

exp (−𝑞𝑠𝑐𝑑𝑠𝑐)

𝜀𝑑[1−exp (−𝑞𝑑𝑑𝑑)]+𝜀𝑠𝑓exp (−𝑞𝑑𝑑𝑑)
   .  (14.37) 

The indices sc, d and sf correspond to stratum corneum, dermis and fat layers. 

Though the mathematical details of this example are somewhat complex, it is important to stress that the 

objective is conceptually simple. In general, the interaction of the probe with the sample is modeled by 

calculating an impedance. In this particular case, as in most cases where a dielectric sample is being 

characterized at microwave frequencies, the task is further simplified to a calculation of a capacitance, as 

in Equations (14.28) and (14.33) above.  

 

14.2.4 Heterogeneous, liquid systems 

Having established a framework for modeling the electromagnetic probe-sample interaction and having 

applied that framework to the particular case of multilayer systems, we turn to characterization of 



heterogeneous, biological systems in a liquid environment. Quantitative measurement of local 

electromagnetic properties within a liquid environment by use of a coaxial cavity was addressed in 

Reference [16]. As with several other resonant-cavity-based systems discussed throughout this book, the 

measured parameters are the shift of the resonance frequency and the change in the quality factor. Once 

again, these changes are quantitatively related to the presence of the sample material within the near 

field of the probe. In a physiological, liquid environment, further consideration must be given to the 

dielectric description of the biological tissue, including various relaxation phenomena and water binding. 

Reference [16] was among the first to address the fact that the application of higher frequencies enables 

separate extraction of the free water relaxation. In addition, in cases where an inclusion is present in a 

host sample medium, the mixture may be described by an effective permittivity given by the Maxwell-

Garnett mixing formula [17] 

𝜀𝑒𝑓𝑓 = 𝜀ℎ + 𝑓𝑉𝜀ℎ
𝜀𝑖−𝜀ℎ

𝜀ℎ+(1−𝑓)(𝜀𝑖−𝜀ℎ)
  ,    (14.38) 

where 𝜀ℎ is the permittivity of the host, 𝜀𝑖  is the permittivity of the inclusion and 𝑓𝑉 is the fraction of the 

total volume of the inclusion. Many biological media consist of two components: a dry component with 

permittivity 𝜀𝑖  and water with permittivity 𝜀𝑤. In this case, the permittivity of such a mixture satisfies the 

relationship [18] 

𝑉𝑤
𝜀𝑤(𝑓𝑉,𝑇,𝑆)−𝜀𝑒𝑓𝑓

𝜀𝑤(𝑓𝑉,𝑇,𝑆)+2𝜀𝑒𝑓𝑓
+ (1 − 𝑉𝑤)

𝜀𝑖−𝜀𝑒𝑓𝑓

𝜀𝑖+𝜀𝑒𝑓𝑓
= 0  .    (14.39) 

Here, 𝑉𝑤 is the volume of the water. The relative permittivity of the water is a function of the frequency, 

temperature and salinity. It can be calculated from [19] 

𝜀𝑤 = 𝜀∞ +
𝜀𝑠(𝑇,𝑆)−𝜀∞

1+𝑗𝜔𝜏(𝑇,𝑆)
− 𝑗

𝜎(𝑇,𝑆)

𝜔𝜀0
  ,      (14.40) 

where 𝜀0 is the permittivity of vacuum and 𝜀∞ = 4.9 is the relative permittivity of the water at optical 

frequencies. Formulas for the static permittivity 𝜀𝑠, relaxation time 𝜏 and conductivity 𝜎 as a function of 

temperature T and salinity S can be found in the literature [19]. 

Though effective dielectric constants can be important in determining the structure and the 

thermodynamics of electrostatically interacting systems under different electrostatic conditions, it is 

difficult to isolate and estimate the dielectric constant of specific constituent parts of biological 

macromolecules such DNA when they are embedded in a host environment. This estimation is further 

complicated due to the presence of ions in the system. At low ion concentration, the problem can be 

reduced to an analysis of Coulomb forces. At high ion concentration, the interactions can only be 

described numerically by calculations that include correlations. The ions’ influence on the dielectric 

constant in turn influences the resulting forces and the Debye screening length. In this process, one has 

to distinguish between the static dielectric constant of the solution and the static dielectric constant of 

the solvent. 

Thus, when describing the dielectric constant of biological macromolecules in an ionic solution, it may be 

necessary to include the statistical behavior of the system. One reasonable approach is to separate the 



overall dielectric constant into self-terms for individual components (component dielectric constants) and 

cross-terms between components. This approach is well defined mathematically. Reference [20] showed 

that the cross-terms are negligible compared to the self-terms when the components are grouped 

appropriately. Although the dielectric constant of an inhomogeneous system is an aggregate property 

combining the effects of all the constituents of the system, it is possible to separately calculate the 

contributions of a macromolecule and the solvent to the total dielectric constant by use of molecular 

dynamics simulations. Furthermore, such simulations enable the evaluation of any cross-terms, should 

they be non-negligible. The analysis underlying such simulations is as follows. The dielectric constant of a 

system  surrounded by an infinite dielectric medium with a dielectric constant 𝜀𝑒 is related to dipole 

fluctuations by [20] 

(𝜀−1)(2𝜀𝑒+1)

(2𝜀𝑒+𝜀)
=

〈𝑀⃗⃗ 2〉−〈𝑀⃗⃗ 〉2

3𝜀0𝑉𝑘𝐵𝑇
= 𝛼 .      (14.41) 

𝑀⃗⃗ , and V, and T are the total dipole moment, the volume, and the temperature of the system, 

respectively. Two special cases are of interest. First, as 𝜀𝑒 → ∞ then 

𝜀1 = 1 + 𝛼 ,        (14.42)  

where 1 is the dielectric constant of the system.  Second, when   𝜀𝑒 =  𝜀 then 

  𝜀2 =
1

4
(3𝛼 + 1 + √9𝛼2 + 6𝛼 + 9)      (14.43) 

where 2 is dielectric constant of the system. 

The total dipole moment of a system of N particles is defined as  

𝑀⃗⃗ = ∑ 𝑞𝑖𝑟𝑖⃗⃗ 
𝑁
𝑖=1          (14.44) 

where 𝑞𝑖 is the partial charge and 𝑟𝑖⃗⃗  is the position vector of the ith particle. For a system composed of 

particles of m different groups it is possible to decompose 𝑀⃗⃗  into m components  

𝑀⃗⃗ = ∑ 𝑀𝑘
⃗⃗ ⃗⃗  ⃗𝑚

𝑘=1  with   𝑀𝑘
⃗⃗ ⃗⃗  ⃗ = ∑ 𝑞𝑖𝑟𝑖⃗⃗ 

𝑁𝑘−1+𝑛𝑘
𝑖=𝑁𝑘−1+1  .    (14.45) 

Here 𝑛𝑘 is the number of particles in group k and 𝑁𝑘 = ∑ 𝑛𝑙
𝑘
𝑙=1 . Following this decomposition, the mean 

square deviation of dipole moment can be expressed as 

∆(𝑀⃗⃗ ) = 〈𝑀⃗⃗ 2〉 − 〈𝑀⃗⃗ 〉2 = ∑ (〈𝑀⃗⃗ 𝑘
2〉 − 〈𝑀⃗⃗ 𝑘〉

2) + 2∑ ∑ (〈𝑀⃗⃗ 𝑘 ∙ 𝑀⃗⃗ 𝑙〉 − 〈𝑀⃗⃗ 𝑘〉 ∙ 〈𝑀⃗⃗ 𝑙〉)
𝑚
𝑘=1

𝑚
𝑙=𝑘+1

𝑚
𝑘=1  . 

(14.46) 

This formulation can be used to calculate the dielectric constant of many complex systems. For example, 

it was used in [21] to calculate the internal dielectric constant of DNA through molecular dynamic 

calculations. 

 



14.3 Electrical scanning probe microscopy of biological systems 

14.3.1 General considerations 

Ideally, electrical scanning-probe measurements are carried out under experimental conditions that 

match physiological conditions [22]. In order to characterize fragile biological systems such as soft 

membranes and molecular complexes in their native environments, AFMs are often operated in “gentler” 

modes, such as dynamic force microscopy. Dynamic microscopy modes are usually less destructive than 

direct contact mode, but require driven mechanical oscillation of the cantilever or sample. For example, 

an external magnetic field may be used to drive the oscillation of a cantilever in a solution. Dynamic 

microscopy modes provide a rich set of information. Measurements of the phase of the cantilever 

oscillations and measurements of higher order vibrational modes of the cantilever reveal features of the 

investigated material that can’t be obtained from topographic images alone. In many cases, the 

immobilization of objects on a surface is critical to AFM imaging. This requires proper selection of the 

substrate as well as careful attention to electrical charging of the surface. Mica is a commonly used 

substrate for this purpose, as it is smooth and easy to cut. Furthermore, its surface is can be modified to 

be either positively or negatively charged and thus can be used to immobilize both negatively and 

positively charged samples.  

Below, we focus primarily on electrical scanning probe microscopy, but scanning-probe-based, 

mechanical measurement techniques are also important for life sciences metrology. For example, 

monitoring the inter- and intra-molecular forces is an area where the application of AFM has proven to 

be quite useful. Molecular-scale force measurements provide insight about structure dynamics within 

investigates species. The range of these forces is from several femtoNewtons to several nanoNewtons, 

roughly corresponding to the forces necessary to rupture of covalent bonds. 

 

14.3.2 Electrostatic force microscopy 

Numerous electrical, AFM-based metrology tools, such as scanning electrochemical microscopy and 

spreading resistance microscopy, are based on the measurement of electric currents. Others, such as 

electrostatic force microscopy and Kelvin probe microscopy, are based on the measurement of induced 

electrostatic forces. Each of these techniques provides valuable, complementary insight into electronic 

and transport properties of material systems. In the specific application of these techniques to biological 

objects, measurement in a relatively low-frequency regime requires capacitance measurements with sub-

attofarrad sensitivity. In addition, such measurements may be complicated by operation in a liquid 

environment. There are very few experimental techniques that can fulfill these experimental 

requirements. 

One such technique is amplitude-modulated, electrostatic force microscopy (AM-EFM), which is a slight 

modification to conventional EFM that operates at MHz frequencies and allows dielectric imaging in liquid 

media with nanoscale spatial resolution [23]. The critical aspect of this approach is that the application of 

a tip voltage at frequencies above 1 MHz introduces a strong electrostatic force at the apex of the probe, 



which is sensitive to local dielectric properties of the sample under study. At the lower operating 

frequencies typically used in conventional EFM, non-local contributions from the cantilever and other 

supporting structures are sensed in addition to the localized contribution from the probe tip. The 

measured force is exerted by a sinusoidal voltage 𝑣(𝑡) = 𝑉𝑎𝑐cos (𝜔𝑡) between the tip and the bottom of 

the sample and is given by 

𝐹𝑒𝑙𝑠(𝑧, 𝑡) =
1

2

𝑑𝐶

𝑑𝑧
𝑉𝑎𝑐

2 (cos(𝜔𝑡))2 = −
1

4

𝑑𝐶

𝑑𝑧
𝑉𝑎𝑐

2 +
1

4

𝑑𝐶

𝑑𝑧
𝑉𝑎𝑐

2 cos (2𝜔𝑡)  . (14.47) 

For excitation frequencies greater than 1 MHz that are well beyond the resonance frequency of the 

cantilever only the first term on the right-hand side of Equation (14.47) can be detected as a static bending 

of the cantilever, which depends on the excitation amplitude 𝑉𝑎𝑐. To improve detection accuracy, the 

signal amplitude is modulated by 𝑉𝑎𝑐(𝑡) = 𝑉0 cos(𝜔𝑚𝑜𝑑𝑡). By use of a lock-in amplifier, one can measure 

the effective capacitance gradient  

   
𝑑𝐶

𝑑𝑧
= 4|𝐹𝑒𝑙𝑠(𝑧, 𝑡)|𝑓𝑚𝑜𝑑

/𝑉0
2 ,       (14.48) 

where 𝑉0 is the amplitude of the modulation signal, fmod is the frequency of the modulated signal typically 

set to a few kHz, z is the tip-sample distance, and t is time. Importantly, the effective capacitance gradient 

depends on the frequency, solution conductivity and the dielectric properties of the sample.  

 

Figure 14.3. Models of an electrostatic force microscope operating in liquid. (a) Schematic of the tip-

solution-sample system, including the tip apex, electrochemical double layers (EDLs), bulk solution, and 

sample. (b) Equivalent electric circuit model for the system. (c) Simplified electric circuit model [23]. © 

IOP Publishing. Reproduced with permission. All rights reserved. 

 

A qualitative physical understanding of AM-EFM be obtained from an equivalent circuit model in which a 

simple parallel plate model represents the tip-sample system in one dimension [23]. A schematic of this 

model is shown in Fig. 14.3(a) and a corresponding equivalent circuit model is shown in Fig. 14.3(b). The 

model accounts for the capacitance and resistance of the solution, the sample capacitance, Csmpl, and the 

double layer capacitance(s), 𝐶𝑑𝑙, that may form close to the electrodes in the solution. This model can be 

further simplified if the double layer and sample capacitances are combined into an equivalent 

capacitance Ceq, as it is shown in Fig. 14.3(c) (Note, that typically Cdl can be also neglected since it is much 

larger than and in series with Csmpl). The capacitance and resistance values can be calculated from the 

corresponding material properties by 𝐶𝑠𝑚𝑝𝑙 = 𝜀0𝜀𝑟,𝑠𝑚𝑝𝑙 ℎ⁄ , 𝐶𝑠𝑜𝑙 = 𝜀0𝜀𝑟,𝑠𝑜𝑙 𝑧⁄  and 𝑅𝑠𝑜𝑙 =
𝑧

Λc
 where Λ is 

the molar conductivity, c is the salt concentration, 𝜀𝑟,𝑖  are the relative permitivities of the solution and 

the sample, z is the tip-sample distance, h is the sample thickness and 𝜀0 is the permittivity of free space. 

Following the simplified model in Fig. 14.3(c), the electrostatic force can be expressed as [23]: 



[𝐹𝑒𝑙𝑠(𝑧, 𝑓)]𝑓𝑚𝑜𝑑
≈

1

4

𝜀0𝜀𝑟,𝑠𝑜𝑙𝑓
2(

2𝜋𝜀0𝜀𝑟,𝑠𝑚𝑝𝑙

Λ𝑐ℎ
)
2

1+𝑓2(
2𝜋𝜀0𝜀𝑟,𝑠𝑚𝑝𝑙𝑧

Λ𝑐ℎ
+

2𝜋𝜀0𝜀𝑟,𝑠𝑜𝑙
Λ𝑐

)
2 𝑉0

2     .   (14.49) 

The force depends strongly on frequency. The practical implication of this is that the force can only be at 

frequencies above a certain actuation frequency, which is given by [24]:  

𝑓𝑎𝑐𝑡 =
𝑐Λ

2𝜋𝜀0𝜀𝑟,𝑠𝑜𝑙
(
𝜀𝑟,𝑠𝑚𝑝𝑙𝑧

𝜀𝑟,𝑠𝑜𝑙ℎ
+ 1)

−1

  .     (14.50) 

For an ideal case of a pure dielectric solution (c = 0), Equation (14.49) becomes independent of the 

frequency and fact=0. Note that fact is dependent on the tip-sample distance z. Thus, changes in the probe-

sample separation will require a corresponding change in the excitation frequency in order for the the 

local tip apex force to be detected [23]. Another important implication of Equation (14.49) is that 

electrostatic force rises much slower with decreasing z in liquid compared to air. Finally, though the 

parallel-plate model gives valuable qualitative insights, comparison to finite-element modelling is 

required for accurate, quantitative interpretation of measurements and estimation of material 

parameters [25]. 

 

14.3.3 Near field scanning microwave microscopy of biological systems 

Measurements of the electromagnetic properties of single cells at frequencies in the microwave and 

millimeter-wave ranges are important for microwave-frequency-based diagnostics and therapies. 

Furthermore, such measurements provide insight into potentially hazardous influences of microwave 

radiation on biological material. One electromagnetic material parameter that captures many 

characteristics of biological specimens is complex permittivity. From an experimental point of view, there 

is particular interest in the measurement of transmission, reflection and absorption of microwave 

radiation by biological materials, such as tissue, cells, proteins, and bacteria. Up to now, most 

measurements of the complex permittivity of biological materials have been enabled by integrating the 

sample with microelectrodes or microfluidic devices. The resolution of such approaches is inherently 

limited at small length scales and falls short of the subcellular level. NSMM offers an alternative, non-

destructive experimental approach for accessing the electromagnetic properties of biological samples 

with high spatial resolution. One further advantage of NSMM is that the penetration depth of microwaves 

into these materials is significant. Therefore, the technique offers a unique opportunity to simultaneously 

produce high resolution maps of both surface and subsurface electromagnetic properties. 

One area where NSMM is especially useful is the characterization of samples that combine cells or other 

soft matter with artificial nanostructures. One of the first applications of evanescent microwaves as a 

nondestructive, high-resolution imaging technique for biological systems was pioneered by Wei [26]. This 

was followed by the work Tabib-Azar [27], which pushed the spatial resolution from about 5 m to  

/750,000, which corresponds to 0.4 m at 1 GHz and 0.04 m at 10 GHz. This early work clearly 



demonstrated the capability to measure biological and botanical specimens with NSMM. Since this early 

work, the development of NSMM techniques for biological applications has grown significantly.  

 

14.3.4 Topographic artifacts in microwave microscopy 

In addition to addressing the challenges of operation in a heterogeneous, liquid environment, it is 

necessary to address the convolution of topographic effects with material measurements during NSMM 

measurements. This is a general challenge to NSMM image interpretation and is not limited to biological 

materials. As the probe is scanned over nonuniform topography, changes in the probe-sample distance 

and the sample curvature modify the probe-sample capacitance. Thus, overall changes to the probe-

sample capacitance represent the combination of changes due to geometry and changes of the 

electromagnetic properties of the investigated material. As a result, the geometrical contribution can 

mask the local dielectric response. It is an important challenge that has to be met in order for NSMM to 

be an effective technique for the quantitative characterization of materials and devices. Research into this 

problem is ongoing, but there are several approaches that can be used to mitigate this problem, though 

none of them is universal. 

Reference [22] addresses the topography “cross talk” problem for nonplanar, biological samples, namely 

the single E.coli bacterial cells. The objective is to remove the effects of topography in order to measure 

the nanoscale permittivity of a single cell. The first step is to calculate theoretical NSMM capacitance 

images using numerical, three-dimensional methods that account for the tip-sample geometry as well as 

the electromagnetic material properties. The model assumes that the tip possesses a spherical apex and 

that the cell is an ellipsoid with uniform relative permittivity 𝜀𝑟. As a first approximation, this approach 

gives a reasonable estimate of the geometrical contribution to the capacitance. Within such a model, it is 

possible to generate simulated NSMM images through numerically calculated, virtual scans at a constant 

tip-sample distance. Fig. 14.4(a) shows such a virtual scan over a single cell with 𝜀𝑟 =4.0. Fig. 14.4(b) shows 

a calculated line scan for the same bacterial cell. The calculation illustrates that when the tip is moving 

over the bacterial cell there is a significant decrease in the capacitance due to increased distance between 

the tip and the underlying substrate. This example also demonstrates that the contribution of the 

topography-dependent capacitance dominates the contribution of the dielectric response of the sample, 

especially for small tip apex sizes below 100 nm. Such a complication is common in NSMM capacitance 

images of soft, dielectric matter. Special design of the probes and their shielding will mitigate but not 

completely remove this contribution. To obtain the intrinsic dielectric response of the sample, the 

topographic cross-talk contribution has to be subtracted from the measured capacitance image as shown 

in Fig. 14.4(c). At present, this approach represents a practical route to local, topography-free, 

quantitative permittivity characterization. 

 

Figure 14.4. Topographic contribution to an image of a bacteria cell. (a) Virtual scan image of a bacterial 

cell (relative permittivity 𝜀𝑟=4) generated by use of a numerical simulation. (b) Transverse line scan across 

the virtual image in (a), representing the modeled topographic “cross-talk” in the NSMM image. (c) 



Measured NSMM line scan (raw), modeled topographic contribution (cross-talk), and the difference 

between the measured data and the topographic contribution (intrinsic). Adapted with permission from 

M. Ch. Biagi, R. Fabregas, G. Gramse, M. Van Der Hofstadt, A. Juaŕez,F. Kienberger, L. Fumagalli, and G. 

Gomila, ACS Nano 10 (2016) pp.280-288. Copyright 2016, American Chemical Society. 

 

An alternative approach to removal of the topographic cross-talk is based on the use of measured 

experimental data in conjunction with an empirical model. This approach does not require a priori 

numerical modeling based on system geometry. The topography-dependent contribution to the 

measured reflection signal S11 is approximated by selecting a sub-region of an image within which the 

material properties are known not to vary. The difference between the measured and predicted values 

represents an estimate of the contribution due to material property variations alone.  

The empirical model approach is demonstrated with representative NSMM images of a GaN nanowire 

shown in Fig. 14.5. A topographic image and an image of the magnitude of the raw reflection coefficient 

S11 are shown in Figs. 14.5(a) and 14.5(b), respectively. Fig. 14.5(c) shows an S11 image that has been post-

processed to reduce noise and other artifacts. Based on a selected sub-region of the topography and 

processed S11 images, a scatterplot of topography and S11 is generated, as shown in Fig. 14.5(d). The sub-

region of the imaged area that was chosen to generate the scatterplot in Fig. 14.5(d) is expected to have 

little, if any material contrast.  In this case, this sub-region is topographically-smooth, but sample tilt and 

long-range sample curvature lead to variability in the as-measured topography. The black crosses in the 

scatterplot represent the experimental data while the gray circles represent an empirical model that 

relates the topography to the reflection coefficient based on the overall trend in the experimental data. 

Fig. 14.5(e) shows topographic (dashed line) and reflection coefficient (solid line) line cuts through the 

nanowire from the processed image. Fig.14.5(f) compares the processed reflection coefficient 

measurement (solid line) to the extracted reflection coefficient that is based on the empirical model 

derived from the scatterplot. Note that the predicted reflection coefficient displays the same magnitude 

in the areas around the nanowire, which is consistent with material-independent, purely geometrical 

features. The difference between the predicted and measured reflection coefficient is shown in Fig. 

14.5(g).  The displayed difference represents an estimate of the materials-dependent contribution to the 

S11 measurement. A more precise model can be developed by complementing the empirical model with a 

physical description that incorporates the material parameters within the sub-region of the image: 

relative effective permittivity, conductivity and loss. Ideally, these material parameters are constant 

within a well-chosen sub-region and would result only in an offset of the materials-dependent 

contribution to the reflection coefficient. 

 

Figure 14.5 Empirical procedure to de-embed the topography from S11 in near-field scanning microwave 

microscope images. (a) Topographic image, (b) as-measured S11 image, and (c) processed S11 image of a 

GaN nanowire. (d) Scatterplot relating the topographic measurements from (a) to the S11 measurements 

in a sub-section of the image (black plus symbols). The empirically observed trend in the data is shown 



(grey circles). (e) Line cuts of the measured topography (Topo) and the processed S11 image. The position 

of the line cuts is shown by a dashed line in the images. (f) Comparison of the S11 line scan to the predicted 

topographic contribution to the line scan (Pred). The topographic contribution is predicted from the trend 

shown in (d). (g) The difference (Diff) between the measured S11 line scan and the estimated topographic 

contribution. 

As alluded to in the preceding discussion, another important aspect of NSMM data interpretation is 

processing and de-noising of measured data. The overall processing procedure should level the image, 

correct for scan offsets, and reduce noise in the images. One method for such processing is introduced in 

Reference [28], is based on estimating the difference between the ideal, noiseless reflection coefficients 

𝜌(𝑥, 𝑦, 𝑓0) and the measured reflection coefficient Γ(x, y, f0). Both ρ and Γ are functions of the probe 

position and NSMM operating frequency. Moreover, 

 𝜌(𝑥, 𝑦, 𝑓0) = 𝜌(Γ(x, y, f0))  .      (14.51) 

If we assume that the measured reflection coefficient can be expressed as 

Γ(x, y, f) = Γ0(𝑓) + 𝐸𝑟(𝑥, 𝑦, 𝑓);  𝐸𝑟 ≪ Γ0  ,   (14.52) 

then it is possible to expand 𝜌 into Taylor series 

𝜌(Γ) = ρ(Γ0) +
𝜕𝜌

𝜕Γ
|
Γ=Γ0

𝐸𝑟(𝑓) = 𝐺(𝑓)𝐼(𝑥, 𝑦, 𝑓) + 𝜌0(𝑓) .  (14.53) 

Equation (14.53) represents a general case where the I is any image representation, 𝜌0 represents the 

translation of the reflection coefficient, G(f) is a “gain” one needs to adjust the image representation, and 

Er(f) represents the small variations of the reflection coefficient due to small spatial variations of 

essentially the tip-to-sample capacitance. 

Next, for practical measurements, it is reasonable to assume that the measured quantity 𝜌 is affected by 

some noise. Then, Equation (14.53) is modified to  

 𝜌′(𝑥, 𝑦, 𝑓0) ≅ 𝐺(𝑓)𝐼(𝑥, 𝑦, 𝑓) + 𝑛(𝑥, 𝑦, 𝑓0) + 𝜌0(𝑓0) ,   (14.54) 

where 𝑛(𝑥, 𝑦, 𝑓0) represents the noise. This noise can come from many different sources, including the 

random mechanical vibrations of the tip, that in turn cause the variation of the tip-sample capacitance. 

The noise contribution is assumed to have a mean of zero when averaged over all space. To reduce the 

noise contribution, a set of measurements is performed with the NSMM operating frequency in the 

vicinity of the nominal operating frequency 𝑓0:  𝑓 = 𝑓0 + ∆𝑓. Further, it is assumed that there is not a 

significant change in the imaged variable around 𝑓0,  which is a reasonable assumption for most NSMM 

measurements.  Equation (14.54) becomes 

𝜌′(𝑥, 𝑦, 𝑓𝑘) ≅ 𝐺(𝑓𝑘)𝐼(𝑥, 𝑦, 𝑓0) + 𝑛(𝑥, 𝑦, 𝑓𝑘) + 𝜌0(𝑓𝑘) .                 (14.55) 

The set of measurements is indexed by 𝑘 = 1,2…𝑁. For each of these measurements it is possible to 

calculate a spatial average  



𝜌0̅̅ ̅(𝑓𝑘) ≅ 𝐺(𝑓𝑘)(〈𝐼(𝑥, 𝑦, 𝑓0)〉) + 𝜌0(𝑓𝑘)      (14.56) 

and calculate the difference  

𝜌′(𝑥, 𝑦, 𝑓𝑘) − 𝜌0̅̅ ̅(𝑓𝑘) ≅ 𝐺(𝑓𝑘)(𝐼(𝑥, 𝑦, 𝑓0) − 〈𝐼(𝑥, 𝑦, 𝑓0)〉 + 𝑛(𝑥, 𝑦, 𝑓𝑘)) . (14.57) 

To make this quantity independent of gain, it is necessary to divide Equation (14.57) by 𝐺(𝑓𝑘) and average 

over the frequency range to recover 

〈
𝜌′(𝑥,𝑦,𝑓𝑘)−𝜌0̅̅̅̅ (𝑓𝑘)

𝐺(𝑓𝑘)
〉𝑓 ≅ 𝐼(𝑥, 𝑦, 𝑓0) − 〈𝐼(𝑥, 𝑦, 𝑓0)〉      (14.58) 

Thus the measurement average is removed and the noise in the data is reduced.  

Another approach for de-noising and de-trending NSMM images was presented in Reference [29].  This 

approach is based on robust and adaptive implementation of local regression together with local 

likelihood models. The basic idea of this approach is to adaptively select the size of the neighborhood 

about any point of interest and the associated weight in that neighborhood. This method is flexible in that 

it does not require the explicit knowledge of a global parametric model. In place of a global model that 

applies to the entire image, a local model is used fit to a neighborhood about each location of interest. 

The method utilizes the local regression method LOCFIT [30] to smooth and de-trend the images. 

Subsequent de-noising of the images is performed by use of Adaptive Weight Smoothing (AWS). AWS is 

also a local likelihood method in which the local models are fit by a weighted likelihood approach. Because 

the value of the weight can be zero, the method also preserves sharp features while suppressing additive 

noise in the regions where the image is smooth. The down weighting of large residuals is done by 

minimizing a cost function. The scan artifacts are suppressed by subtracting the median measured value 

in the given scan line. The de-noising is then done through suppression of artifacts by AWS where the 

weighted likelihood function at point x is modeled as 

𝐿(𝑊(𝑥), 𝜃) = ∑ 𝑤𝑖(𝑥)log (𝑝(𝑖 𝑌𝑖, 𝜃)) ,     (14.59)      

where 𝑌𝑖  is measured at xi, 𝑤𝑖 is the weight corresponding to the measured at xi and the point of interest 

at x, and p is the likelihood of 𝑌𝑖  given the model parameter factor 𝜃. 

 

14.3.5 Scanning probe microscopy at the cellular level 

We return now to characterization of biological samples with NSMM. As of this writing, some examples 

of NSMM images of biological samples have been reported, but the field remains in its infancy. In some 

cases, the object of interest may be difficult to resolve by raw reflection coefficient measurements. It may 

be more suitable to convert the reflection coefficient into calibrated complex admittance or impedance 

images that represent the sample conductance and capacitance, respectively [31]. Fig. 14.6 shows NSMM 

imaging of an E.coli bacterial cell [22]. Taken together, the results in Fig. 14.6 constitute the quantitative 

characterization of local permittivity of a single bacterial cell and demonstrate that microwave microscopy 

has the potential for nanoscale, label-free imaging of cells with high spatial resolution. 



 

Figure 14.6 Near-field scanning microwave microscopy of a bacterial cell. (a) Topography, (b) calibrated 

capacitance, and (c) estimated topographic cross-talk images for the same bacterial cell in Figure 14.4. (d) 

Change in probe-sample as a function of tip height as the tip approaches a metallic sample. The curve has 

been offset in order to level it with the background substrate capacitance in the image. (d) Inset: 

topographic cross-section profile along the line in (a). (e) Intrinsic capacitance image, as determined by 

the process illustrated in Fig. 14.4. (f) Transverse line cuts referenced to the substrate and taken along the 

dashed lines in (b), (c), and (e). Reprinted with permission from M. Ch. Biagi, R. Fabregas, G. Gramse, M. 

Van Der Hofstadt, A. Juaŕez, F. Kienberger, L. Fumagalli, and G. Gomila, ACS Nano 10 (2016) pp.280-288. 

Copyright 2016, American Chemical Society. 

 

The combination of STM with broadband scanning microwave microscopy for biological applications was 

investigated in References [32] and [33]. STM was chosen as the imaging platform due to its atomic-scale 

spatial resolution. In addition, STM is inherently a noncontact technique, which prevents deterioration of 

the tip. Conventional STM can be used only with conducting substrates, though an STM feedback 

mechanism based on RF signals was demonstrated in Reference [34], offering the possibility to extend 

this approach to non-conducting materials. The STM tip is capacitively coupled with the broadband and 

does not rely on a resonant cavity. As in conventional STM, a feedback loop keeps the probe at a constant 

distance from the sample by adjusting the height to keep the tunneling current constant. The combined 

STM-microwave microscope simultaneously images the topography and the reflection coefficient.  

To calibrate STM-based microwave microscopes, three arbitrary, but known loads are measured [32], [33]. 

The error matrix model is shown in Fig. 14.7(a). It differs from the one-port calibration procedure 

discussed in Chapter 7 in that the unknown error admittance matrix  [𝑌𝑒] is considered to be a two-port 

circuit positioned between the tip and the microwave source. The tip is considered to be a sphere with 

the calibration reference plane crossing the center of the sphere, as shown in Fig. 14.7(b). Note that single 

mode propagation is assumed. In the case of strong sample-tip interactions there could be far field 

contributions and one would have to apply a multimode approach.  Furthermore, due to the chosen 

position of the reference plane, the lower half of the tip sphere also contributes to the measured response 

of the sample. In principle, one could choose the reference plane at the very bottom of the sphere. The 

choice of the reference plane position is arbitrary, but not inconsequential in that it does not influence 

the calibration procedure, but does determine which parts of the test platform are embedded with the 

sample properties in the calibrated, measured images. If it is assumed that the error admittance matrix is 

reciprocal, then only three known loads are required to fully characterize the matrix elements. One way 

to produce three different loads is to perform measurements at three different heights of the tip above 

the sample. An image of an individual sarcomere obtained by use of this calibrated, STM-based 

microscope is shown in Fig. 14.7(c). The actin in I-band and myosin in the A-band possess different 

densities and thicknesses, leading to the banded appearance of features in Fig. 14.7(c) [35] . 

 



Figure 14.7 Radio-frequency scanning tunneling microscopy of a sarcomere. (a) Schematic of the error 

matrix Y(e) positioned between the source and the STM-based, RF probe. (b) Reference plane position (R). 

The tip is assumed to terminate in a sphere and the reference plane crosses the center of the sphere. © 

2011 IEEE. Adapted, with permission from M. Farina, D. Mencarelli, A. Di Donato, G. Venanzoni, and A. 

Morini, IEEE Trans. Microw. Theory Techn. 59 (2011) pp. 2769-2776. (c) RF STM image of a sarcomere. © 

2015 IEEE. Reprinted, with permission from M. Farina, A. Di Donato, D. Mencarelli, G. Venanzoni, A. Morini 

and T. Pietrangelo, Proceedings of the 45th European Microwave Conference (2015) pp. 666-669. 

 

Finally, a recently introduced approach allows NSMM measurements of biological samples and other 

liquids by enclosing the samples within molecularly impermeable, chemically inert enclosures. Such 

enclosures, known as environmental cells, have been used with NSMM [36]. The enclosure is made from 

an 8 nm to 50 nm thick SiN or SiO2 membrane. The thickness of this wall has to be chosen such that it can 

sustain the pressure difference between ambient air pressure and the interior. It must also be able to 

withstand the force due to probe tip contact with the membrane. The imaging depth is on the order of 

few multiples of probe-membrane radii. Though environmental cells have been used with other 

techniques such as scanning electron microscopy, the advantage of the microwave technique is that the 

microwaves represent a low-energy, less-invasive form of penetrating radiation. With the energies in the 

range of tens of micro-electronvolts, microwave radiation does not affect either electronic states or 

chemical bonds, thus eliminating destructive effects that may occur in electron, X-ray or optical 

microscopies. 
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