
Multicomponent adsorption in mesoporous flexible materials with flat-histogram
Monte Carlo methods
Nathan A. Mahynski and Vincent K. Shen 
 
Citation: The Journal of Chemical Physics 145, 174709 (2016); doi: 10.1063/1.4966573 
View online: http://dx.doi.org/10.1063/1.4966573 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/145/17?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Elucidating the effects of adsorbent flexibility on fluid adsorption using simple models and flat-histogram
sampling methods 
J. Chem. Phys. 140, 244106 (2014); 10.1063/1.4884124 
 
Accelerating flat-histogram methods for potential of mean force calculations 
J. Chem. Phys. 131, 054105 (2009); 10.1063/1.3183165 
 
Adsorption∕desorption hysteresis of simple fluids confined in realistic heterogeneous silica mesopores of
micrometric length: A new analysis exploiting a multiscale Monte Carlo approach 
J. Chem. Phys. 127, 154701 (2007); 10.1063/1.2790423 
 
Adsorption of 1-octanol at the free water surface as studied by Monte Carlo simulation 
J. Chem. Phys. 120, 11839 (2004); 10.1063/1.1753255 
 
Transition Matrix Monte Carlo and Flat‐Histogram Algorithm 
AIP Conf. Proc. 690, 344 (2003); 10.1063/1.1632146 
 
 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.6.178.31 On: Mon, 07 Nov

2016 17:00:21

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1829904474/x01/AIP-PT/Goodfellow_JCPArticleDL_110216/Sep_16.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Nathan+A.+Mahynski&option1=author
http://scitation.aip.org/search?value1=Vincent+K.+Shen&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4966573
http://scitation.aip.org/content/aip/journal/jcp/145/17?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/140/24/10.1063/1.4884124?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/140/24/10.1063/1.4884124?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/131/5/10.1063/1.3183165?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/127/15/10.1063/1.2790423?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/127/15/10.1063/1.2790423?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/120/24/10.1063/1.1753255?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1632146?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 145, 174709 (2016)

Multicomponent adsorption in mesoporous flexible materials
with flat-histogram Monte Carlo methods

Nathan A. Mahynskia) and Vincent K. Shen
Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899-8320, USA
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We demonstrate an extensible flat-histogram Monte Carlo simulation methodology for studying the
adsorption of multicomponent fluids in flexible porous solids. This methodology allows us to easily
obtain the complete free energy landscape for the confined fluid-solid system in equilibrium with a
bulk fluid of any arbitrary composition. We use this approach to study the adsorption of a prototypical
coarse-grained binary fluid in “Hookean” solids, where the free energy of the solid may be described
as a simple spring. However, our approach is fully extensible to solids with arbitrarily complex free
energy profiles. We demonstrate that by tuning the fluid-solid interaction ranges, the inhomogeneous
fluid structure inside the pore can give rise to enhanced selective capture of a larger species through
cooperative adsorption with a smaller one. The maximum enhancement in selectivity is observed at
low to intermediate pressures and is especially pronounced when the larger species is very dilute in
the bulk. This suggest a mechanism by which the selective capture of a minor component from a bulk
fluid may be enhanced. [http://dx.doi.org/10.1063/1.4966573]

I. INTRODUCTION

Adsorption of fluids into porous media is a process of
both fundamental interest and practical significance for many
fields including gas storage and sequestration,1,2 catalysis,3

drug delivery,4 and separations.5,6 In particular, adsorption-
based separations of multicomponent fluid mixtures represent
an important alternative to numerous industrial processes
such as distillation, which are significantly more energy
intensive.6,7 Many fundamental studies of adsorption have
been undertaken over the past century in an effort to understand
the details of the corresponding molecular-level processes.
Density functional theories8,9 and molecular simulation have
emerged as some of the primary tools for modeling and
understanding adsorption at the molecular level.10 Mean-field
approaches often struggle to accurately capture the impact of
confinement and solution non-idealities on the structure and
correlations between components and so direct simulation is
traditionally used to benchmark these methods.11–18 Monte
Carlo simulation is particularly well-suited for studying fluid
adsorption, and it is a computationally efficient approach for
determining the thermodynamic properties of these confined
systems.10,19 However, the computational cost involved in
studying multicomponent mixtures often increases greatly
with the number of components present, making simplified
theoretical approaches seem more practical.18,20,21 Unfortu-
nately, these simplifications also make it difficult to accurately
capture a number of system details because of underlying
assumptions.

For instance, the consequences of adsorbent flexibility
are often neglected in many simplified theoretical models
of multicomponent adsorption, such as Ideal Adsorbed

a)Electronic mail: nathan.mahynski@nist.gov

Solution Theory (IAST).20 It is well-known that many
adsorbents including carbons,12,22,23 silicas,24–26 and metal-
organic frameworks (MOFs)2,27–30 exhibit deformation under
adsorption stress. Because the adsorbent itself deforms in
response to stimuli provided by the adsorbing fluid, the
adsorbent must be considered as a part of the system
whose thermodynamic behavior is now a function of N + 1
species, where the fluid contains N components. To remedy
this, an osmotic framework extension of this theory was
developed to account for the stress imposed by the adsorbate
fluid on the adsorbing material, which has recently been
implemented in a number of theoretical treatments and in
some molecular simulations.19,31–35 However, many of these
theoretical implementations rely on the knowledge of an
equation of state for individual components and assume
relatively ideal mixing; non-idealities may be incorporated
in principle, but the resulting accuracy relies on the choice of
a good model which is not always obvious.31

In general, one can divide the types of adsorbent
flexibility into two classes (cf. Fig. 1). First, the strain the
adsorbent experiences due to the fluid-induced adsorption
stress can result in a macroscopic volume change of the
adsorbent, e.g., the swelling of clays or “breathing” of certain
MOFs.27,36–38 Conversely, the adsorption stress can cause the
adsorbent material to undergo conformational changes which
do not change the material’s macroscopic volume but instead
modify its internal structure or accessible volume, such as the
“gate-opening” transition in ZIF-8 or the rotation of surface
functional groups.26,28,30,39,40 The presence of intermediate and
metastable structures in these transitions is a complication that
requires knowledge of the free energy landscape to properly
understand.

Flat-histogram Monte Carlo methods are advantageous
as they can efficiently construct this landscape and provide

0021-9606/2016/145(17)/174709/17/$30.00 145, 174709-1
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FIG. 1. Schematic of the adsorption of a binary fluid mixture in a flexible slit
pore. In the grand canonical pore ensemble, the macroscopic material volume
(Ahp) is fixed while internally the material may deform. In the osmotic pore
ensemble, the macroscopic volume can change and we set hp = h.

a complete thermodynamic description of the adsorption
process, including all information about stable and metastable
states. A principal advantage of the recently developed
framework by Shen and Siderius19 for studying adsorption
in flexible single-component systems using this approach
is the ability to construct different free energy landscapes
after simulations have been completed; this is done by
imposing different free energy profiles for the empty
solid adsorbent in the limit of zero pressure to self-
consistently combine results from different simulations.
This permits the study of multitudes of different realistic
and hypothetical materials to screen for advantageous
properties conferred by the material’s flexibility with minimal
computational effort. However, previous works have focused
on the adsorption of single component fluids in flexible
materials due to the computational cost and complexity of
introducing additional components.19 In this work, we adapt
other previously developed, flat-histogram-based methods
for efficiently obtaining the thermodynamic properties of
bulk multicomponent fluids41,42 to multicomponent fluids
confined in flexible adsorbents. The result is an extensible
framework for obtaining the free energy landscape of multi-
component fluid mixtures adsorbed in materials with arbitrary
flexibilities.

For simplicity, we demonstrate this methodology for
binary supercritical fluids adsorbed in a slit pore whose
flexibility can be described by an effectively Hookean spring.
Future contributions will focus on subcritical temperatures in
which bulk phase transitions and capillary condensations can
occur, as well as more complex materials. We demonstrate this
framework for both classes of flexibilities and systematically
investigate the consequences of tuning the interactions
between the adsorbent and each component in the mixture.
We focus on a simple fluid representative of classes of binary
mixtures which are relatively difficult to separate through
conventional distillation processes. This makes adsorption
an attractive alternative if the adsorbent’s properties can
be appropriately tuned. Coarse-grained interactions between
fluid components and an adsorbent, such as the 10-4-3
Steele potential43 often have their effective interaction range

determined by the molecular size of the adsorbate. However,
with the advent of advanced chemical synthesis techniques,
particularly in MOFs,44,45 and in the interest of better
understanding design principles, it is worth reconsidering
models which have interaction ranges decoupled from their
molecular size. We systematically vary the strength and range
of the fluid-adsorbent interactions to understand the impact
that this has on the heterogeneous fluid structure and resulting
adsorption selectivity.

The remainder of this paper is organized as follows. In
Sec. II, we describe how material flexibility is modeled, the
two thermodynamic ensembles which represent the different
classes of flexible materials, and our simulation approach. We
apply our approach to study binary fluid adsorption in these
flexible materials and discuss the results in Sec. III. Section IV
summarizes our conclusions and provides an outlook for
future work, while Appendices A–E contain a complete
derivation of our methodology and additional details of its
implementation.

II. METHODS

A. Pore flexibility

In this work, we modeled a flexible mesoporous adsorbent
material at the individual pore level. For simplicity, our
simulations employed a slit-pore as described in Fig. 1;
however, our approach is general and applies to more complex
pore geometries as long as their size can be represented with a
scalar variable. For a slit-pore geometry, only the pore width,
h, is deformable, while its cross-sectional area, A, is fixed.
The canonical partition function for a single pore in such a
solid is given by

Qs(h) = 1

Λ
3Ns
s Ns!


V=Ah

drNs exp (−βUs,s(h)) , (1)

where β ≡ 1/kBT (kB is the Boltzmann constant), Λs refers
to the thermal de Broglie wavelength, Ns is the number of
(fictitious) atoms or molecules comprising the pore, and Us,s

is the potential energy resulting from interactions between
the pore’s molecules. The free energy of the material in the
absence of any adsorbate is only a function of h and is simply
related to this partition function by

Fs(h) = −kBT ln Qs(h). (2)

The isothermal bulk modulus is defined as KT = −V
(∂P/∂V )T ,Ns

. Here we take V as referring to the material
volume which changes in response to stress. In breathing
materials, this is simply an adsorbent’s overall macroscopic
volume; whereas in gate-opening materials this refers to
the adsorbent volume inaccessible to the adsorbate. Using
the fundamental equation for this material in the canonical
ensemble, this can be rewritten as a second derivative of the
material’s free energy,

KT = V
(
∂2Fs

∂V 2

)
T ,Ns

. (3)

Throughout this work, we chose Fs(h) to be a parabola
reminiscent of an effectively Hookean spring, whose second
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derivative is well defined with respect to its spring constant,
k, and an equilibrium pore width, h0,

Fs(h) = k(h − h0)2. (4)

Hence, we report the product KT A, which is simply related to
the effective spring constant of the material via

KT A = 2hk . (5)

In our convention, we report KT A at the equilibrium pore
size when no adsorbate is present, h = h0 = 8σ2,2, where
σ2,2 represents the molecular diameter of the second, smaller
species. When the adsorbent is loaded with adsorbate, the
interaction of the material’s fictitious molecules with each
other is assumed to be independent of the adsorbate. This
implies that the total canonical partition function for the
binary adsorbate-adsorbent composite system is given by

Q(h) = Qs(h)Q f (6)
= exp (−βFs(h))Q f , (7)

where Qs(h) is given by Eq. (1) and Q f refers to the partition
function describing all fluid-based interactions including
the adsorbate-adsorbate and adsorbate-adsorbent effects. The
adsorbent-adsorbent interactions are wholly contained within
Qs which is determined by the choice of Fs(h).

B. Thermodynamic ensembles

In this work, we considered the confined fluid under
two ensembles: the “grand canonical pore” and “osmotic
pore” ensembles. The former refers to a system under the
constraints of fixed fluid chemical potentials, adsorbent mass,
temperature, and macroscopic pore volume V = Ahp (cf.
Fig. 1). In this ensemble, changes to the adsorbent’s internal
degrees of freedom change the volume inside the material
accessible to the adsorbate, but not the material’s macroscopic
volume. This is a representative of gate-opening materials
such as ZIF-8, which rearranges its internal structure upon
sufficient adsorbate loading to increase the volume available
to the adsorbate; however, this change has no effect on the
overall dimensions of the MOF. In the grand canonical pore
case, the fundamental equation is given by

d lnΞ = −Udβ + βPdV + N1d(βµ1)
+ N2d(βµ2) − βµsdNs, (8)

where Ξ(β,V, µ1, µ2,Ns) is the grand partition function, U is
the internal energy, P is the net pressure, µi is the chemical
potential of species i, and Ni is the number of molecules
of species i present. The subscript “s” refers to the solid
adsorbent. This can be related to its free energy, Ω, through
the appropriate bridge function

lnΞ(β,V, µ1, µ2,Ns) = βPV − βµsNs = −βΩ. (9)

In this ensemble, we define a macrostate of the system based
on the instantaneous pore size, h, and the total number
of adsorbate molecules present, Ntot. From a statistical
mechanical perspective, the probability of observing a

macrostate is given by

Πgc(h,Ntot) = exp (−βFs(h) + βµ1Ntot)Υ(∆µ2)
Ξ

, (10)

where Υ is the isochoric semigrand partition function (cf.
Appendix A) which is a function of ∆µ2 ≡ µ2 − µ1.

Conversely, in the osmotic pore ensemble, the adsorbent
is assumed to have no internal degrees of freedom. Instead,
the material’s macroscopic volume fluctuates in response to
adsorption stress. This ensemble captures the thermodynamics
of flexible adsorbents such as MIL-53, which deforms upon
adsorbate loading, resulting in a change to the adsorbent’s
macroscopic volume while maintaining its molecular “wine-
rack” motif. In this case, the fundamental equation is given
by

d ln Γ = −Udβ − Vd(βP) + N1d(βµ1)
+ N2d(βµ2) − βµsdNs, (11)

where the osmotic partition function, Γ(β,P, µ1, µ2,Ns), is
similarly related to the free energy in this ensemble via its
bridge function

ln Γ(β,P, µ1, µ2,Ns) = −βµsNs = −βΨ. (12)

For the osmotic pore ensemble, the probability of observing a
given macrostate is

Πos(h,Ntot) = exp (−βFs(h) − βPAh + βµ1Ntot)Υ(∆µ2)
Γ

.

(13)

We refer the interested reader to, e.g., Refs. 31 and 19 for
more detailed discussions of these ensembles.

C. Simulations

To obtain the thermodynamic properties, we em-
ployed computationally efficient flat-histogram Monte Carlo
methods to compute the macrostate probability distribution,
lnΠ(h,Ntot), for confined systems in equilibrium with a
reservoir of adsorbate at a fixed mole fraction (isopleths).
Specifically, we used a combination of Wang-Landau and
Transition Matrix Monte Carlo methods (cf. Appendix B).
One of the key advantages of our approach comes from the
fact that we have expressed macrostate probabilities (Eqs. (10)
and (13)) in terms of Υ(∆µ2). This allows us to treat the
probabilities as a function of a single scalar variable, Ntot,
which is used in our biased Monte Carlo sampling methods.
Previous work has shown this to be an efficient way to compute
the bulk thermodynamic properties of multicomponent fluids
when only concerned with first order transitions, i.e., those
characterized by changes to Ntot.41 Similarly, this approach
generalizes our simulation methodology to an arbitrary
number of adsorbate components, significantly increasing
the computational efficiency of these methods for confined
multicomponent systems. In Appendices A–E, we describe
how we obtained lnΠ(Ntot) from fixed-volume flat-histogram
simulations. In what follows, we assume this is a known
quantity and simply summarize the construction of the joint
distribution, lnΠ(h,Ntot), and subsequent calculations.
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TABLE I. Square-well interaction parameters for both the single component
and binary systems.

i j ϵi, j σi, j λi, j

1 1 1.20 1.50 1.33
1 2 1.10 1.25 1.40
2 2 1.00 1.00 1.50

1. Model interactions

All species interacted with each other through a radially
isotropic square-well potential given by

Ui, j(r) =



∞, r ≤ σi, j

−ϵ i, j, σi, j < r ≤ λi, jσi, j

0, λi, jσi, j < r
. (14)

Parameters for each species are listed in Table I. The
self-interaction parameters of the second component, ϵ2,2
= σ2,2 = 1.00, were used to non-dimensionalize all energy
and length scales, respectively, unless otherwise stated. Each
pure component undergoes a liquid-vapor phase separation
upon cooling. The critical temperature for species 1 is
kBTc,1/ϵ2,2 ≈ 1.1, while for species 2, kBTc,2/ϵ2,2 ≈ 1.2 (cf.
Appendix E). To remain supercritical and avoid any finite-size
effects, all simulations in this work were performed at T∗

≡ kBT/ϵ2,2 = 1.35 > T∗c,2 > T∗c,1. The cross interaction be-
tween different species was determined using the stan-
dard Lorentz-Berthelot mixing rules ϵ i, j =

√
ϵ i, iϵ j, j, σi, j

=
�
σi, i + σ j, j

�
/2. The bulk phase diagram for this mixture is

depicted in Fig. 2.
The relatively narrow phase envelope implies that

attempting to separate such a mixture using distillation would
be somewhat cumbersome, owing to the number of stages
it would require.46 Thus, although this mixture is not based
on any specific fluid, it represents a prototypical mixture
that would be a good candidate for separation by adsorption.
Furthermore, a number of highly miscible binary mixtures
are known to exhibit surprisingly strong spatial segregation
under confinement leading to “microphase separation”;47–49

this process is not yet well understood and we anticipate that
our investigation may shed light on this phenomenon.

FIG. 2. Bulk phase diagram for the binary fluid investigated here. Reduced
pressure, P∗, is plotted against the mole fraction of species 1, x1 (cf. Eq. (16)).
No phase equilibrium was found for T ∗= 1.25 or higher.

In our simulations, there were two structureless walls
fixed in the x-y plane of the simulation box at z = ±h/2.
The simulation box was large enough in the z-direction to
prevent interactions with periodic images in this direction.
For −h/2 ≤ z ≤ h/2, the interaction of a fluid particle with a
wall was also treated via a square well potential

Ui,w(z) =



∞, |z − hz | ≤ σi, i/2
−ϵ i,w, σi, i/2 < |z − hz | ≤ λi,wσi, i

0, λ i,wσi, i < |z − hz |
, (15)

where hz indicates the wall bounds, one at z = h/2 and another
at z = −h/2. Beyond these bounds (|z | > h/2) the energy was
also infinite.

2. Parameterizing bulk isopleths

Here we wish to consider the adsorption behavior of a
bulk fluid with a fixed composition as its pressure is increased.
To do so, we obtained the macrostate distribution from a
series of different grand canonical Monte Carlo simulations.
This was then used to construct a parameterized curve of
(µ1, µ2) defining fixed bulk composition as a function of
pressure. For many multicomponent simulation approaches,
this is often difficult to obtain and simple assumptions are
made to estimate this curve. For example, one can simply
fix the difference in chemical potentials while increasing the
chemical potential of a single species; however, this only
yields a true isopleth in the limit of an ideal gas. In fact, the
true isopleths are directly available with our approach which
represents another principal advantage. First, we computed
the macrostate distribution, Π(Ntot; µ1,∆µ2), for a bulk fluid at
different ∆µ2 values by performing a series of grand canonical
simulations at µ0

1 = 0, such that µ2 = ∆µ2. Once the macrostate
probability distribution has been obtained at a given ∆µ2, it
can be reweighted to any desired µ1 (cf. Appendix A). At each
µ1, the mole fraction may be obtained

x1 =
⟨N1⟩
⟨Ntot⟩ =


Ntot N1(Ntot)Π(Ntot)

Ntot NtotΠ(Ntot) , (16)

where N1(Ntot) was collected as a histogram during the
simulations at µ1 = µ0

1. By collecting the results for all points
in the grid of ∆µ2 values, one can interpolate to construct a
surface of x1(µ1,∆µ2) as shown in Fig. 3, where dashed black
lines indicate lines of constant∆µ2. Isopleths may be extracted
as the contours along which x1 is equal to our desired target,
shown in the inset of Fig. 3. We refer the interested reader to
Appendices C and D for more details. Thus, we were able to
accurately parameterize arbitrary isopleths at discrete (µ1, µ2)
values. This allowed us to quickly and easily investigate the
adsorption behavior of a fluid at any arbitrary composition,
beyond archetypal “equimolar” mixtures.

3. Constructing the confined fluid’s
macrostate distribution

Next, we consider the behavior of the confined system in
equilibrium with a bulk fluid at these conditions. A series of
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FIG. 3. The surface x1(µ1, µ2), or equivalently x1(µ1,∆µ2), we constructed
at T ∗= 1.35 for the bulk fluid. The estimated mole fraction of species 1 over
the range of chemical potentials is shown in color, while contours (isopleths)
at x1= 0.05,0.25,0.50, and 0.75 are shown in the inset where the mixtures
deviate strongly from ideal gas behavior. Dashed black lines indicate the lines
of constant ∆µ2 which were simulated to construct this surface.

“rigid pore” grand canonical Monte Carlo simulations were
performed at the same grid of ∆µ2 values for µ1 = µ0

1 in a
slit-pore channel at different fixed h values (cf. Appendix D).
From this composite grid, the lnΠ(h,Ntot) distribution may
be “stitched” together after the simulations are complete.
For a given (µt1, µ

t
2) along some isopleth, the interpolation of

macrostate distributions obtained at neighboring ∆µ2 which
bracket ∆µt2 yields lnΠ(Ntot; h, µ0

1,∆µ
t
2), which can then be

reweighted to µt1. This was subsequently repeated for all
h values. For a given Fs(h), the composite distribution,
lnΠ(h,Ntot), may be found by imposing self-consistency
in the Ntot = 0 limit (cf. Eqs. (D7) and (D8)). Typical
results for both the grand canonical pore and osmotic pore
ensembles are depicted in Fig. 4. With lnΠ(h,Ntot) known at
a given externally imposed condition (β, µt1, µ

t
2), all properties

may be subsequently calculated. As in the previously
demonstrated pure component simulation methodology,19 this
permits the construction of the free energy landscape of this
multicomponent fluid-adsorbent system for any adsorbent free
energy profile without requiring additional simulations.

The extensive properties at a given macrostate (h, Ntot) are
independent of the probability of observing that macrostate.
Therefore, when the grids mentioned above were constructed
via rigid pore (or bulk) simulations, we collected histograms
of properties including the average potential energy, U, and
particle numbers, N1 and N2, as a function of Ntot. The average
property at a given imposed set of chemical potentials can
be calculated by using the reweighted macrostate distribution.
This distribution was first normalized such that

h


Ntot

Π̃(h,Ntot) = 1. (17)

Ensemble-averaged extensive properties, ⟨X⟩, are simply a
weighted average based on the probability of observing a
given macrostate

⟨X⟩ =

h


Ntot

Π̃(h,Ntot)X(h,Ntot). (18)

FIG. 4. Representative examples of the normalized macrostate distribution,
lnΠ̃(h,Ntot), in the (a) grand canonical pore and (b) osmotic pore ensembles.
Both distributions were obtained for ϵ1,w = ϵ2,w = 2.50 for the fluid mixture
in Fig. 2 at T ∗= 1.35 along the x1= 0.05 isopleth after reweighting to
conditions corresponding to a bulk pressure of P∗= 0.50.

This calculation was repeated for each (µt1, µ
t
2) point in the bulk

isopleth. We emphasize that under the conditions we report
here, there exists only one maximum in Π̃(h,Ntot) indicating
there was only a single stable phase present (cf. Fig. 4).

For progressively smaller pores, the maximum number
of adsorbed species is reduced. Hence, Π̃(h,Ntot) terminates
at smaller Ntot values for narrower pores than for wider ones.
The edges at low h are visible in Fig. 4. When macrostate
distributions were reweighted and combined, these edges were
checked such that the difference between the maximum in the
macrostate probability and the largest value along the edge
of the distribution (“ridge”) was sufficiently large to prevent
the edge, or those states beyond the edge, from significantly
contributing. Thus, we always ensured that

max
�
ln Π̃(h,Ntot)� −max

�
ln Π̃(h,Ntot)ridge

�
> 10. (19)

A similar metric was used to determine the terminus of
the bulk isopleths in (µ1, µ2) space and in all pure component
simulations as well. This is especially important when
computing the bulk pressure to be used in the construction
of the osmotic pore ensemble macrostate distributions. At
a given condition, pressure was directly computed from the
corresponding bulk macrostate distribution as follows:

Pbulk =
lnΞ
βV
=

ln


NtotΠ(Ntot)/Π(0)
βV

. (20)
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Since the bulk phase and confined phase are in mechan-
ical equilibrium, Pbulk = Ppore = P. Throughout this paper,
we report pressure in non-dimensional units where P∗

≡ Pσ3
2,2/ϵ2,2.

III. DISCUSSION

As a demonstration of this methodology, here we consider
the adsorption of a binary supercritical fluid in a flexible slit
pore as we systematically vary the wall interaction energies
and ranges with each component and the material’s flexibility
to assess the impact of the mesoporous adsorbent’s chemical
and mechanical properties on its selectivity. We emphasize
that in our approach, no assumptions have been made to
approximate the isopleths as pressure is increased; they are
fully parameterized in terms of the chemical potentials of
each species for a bulk fluid at each composition we consider.
Representative results are discussed here while the rest have
been relegated to the supplementary material (SM). Additional
information on the effects of fluid-fluid interactions may also
be found therein.

A. Weak fluid-wall interactions
with asymmetric ranges

First, we consider the adsorption of the binary mixture
in a slit pore that has relatively weak interactions with both
components such that ϵ1,w = ϵ2,w = 2.50. For this pore we
set λ1,w = λ2,w = 1.50. Figure 5 depicts the total number of
molecules adsorbed in this pore and the pore’s selectivity,
when KT A = 500, for various representative isopleths as
the pressure of the bulk fluid is progressively increased.
Here, and throughout this manuscript unless otherwise stated,
solid lines correspond to results obtained in the grand
canonical pore ensemble, whereas dashed lines refer to
the osmotic pore ensemble. Although the two species have
an identical interaction energy with the walls, the larger
species has a longer overall interaction range, λ1,wσ1,1 = 2.25,

FIG. 5. (Top) Total number of molecules adsorbed in the slit pore for ϵ1,w
= ϵ2,w = 2.50, λ1,w = λ2,w = 1.50 when KT A= 500 along representative iso-
pleths. (Bottom) The corresponding selectivity for species 1 (large) relative
to 2 (small). Solid lines correspond to the grand canonical pore ensemble,
whereas dashed lines refer to the osmotic pore ensemble. Spheres and stars
indicate the pressures at which rigid pore simulations were used to examine
the fluid structure within the pore (cf. Fig. 7).

compared to that of the smaller component, λ2,wσ2,2 = 1.50.
As a result, species 1 has a slightly larger Henry’s law
coefficient, KH . In the limit that P∗ → 0, the selectivity,
S1,2 = (x1,ads/x1,bulk)/(x2,ads/x2,bulk), is simply a ratio of the
two KH values12 which is approximately 1.30 for this mixture.
As pressure increases and the pore begins to fill, one expects
that packing effects will entropically favor the smaller species,
reducing S1,2. Indeed, for the bulk isopleths x1 & 0.25, Fig. 5
shows precisely this trend. However, for bulk mixtures where
species 1 is even more dilute, an intriguing initial non-
monotonicity is observed for P∗ . 0.2. A representative curve
for x1 = 0.05 is shown in Fig. 5 which depicts an initial rise
in S1,2 which goes through a local maximum before decaying
with increasing pressure, as do the rest of the isopleths, in
both pore ensembles.

To understand this non-monotonic behavior, we analyzed
the structure of the pore and the adsorbed fluid. Figure 6
shows the deformation of the pore in both the grand canonical
and osmotic pore ensembles for materials with different bulk
moduli. In the former ensemble, when the material is very
rigid, KT A = 1000, the material expands linearly by up to
approximately 5% over the range of pressures investigated
here, regardless of the composition of the bulk adsorbate.
Careful inspection reveals that larger x1 mixtures deform
the material marginally less at low pressure and marginally
more at higher ones. This trend becomes accentuated as the
material’s bulk modulus decreases, and begins to show weak
oscillations. These pores universally expand under increasing
pressure, up to around 10% of their size when empty, h0.

FIG. 6. Pore deformation relative to its equilibrium width when no adsorbate
is present (h0) for the (a) grand canonical pore and (b) osmotic pore ensemble
at different flexibilities when ϵ1,w = ϵ2,w = 2.50, λ1,w = λ2,w = 1.50. Only
two representative isopleths are shown in (a) for visual clarity.
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Conversely, in the osmotic pore ensemble, the pores show
a weak contraction of the order of 1% or less for P∗ . 0.2
followed by a weak expansion as the pore fills. The more
rigid the material, the less the deformation, as in the grand
canonical pore ensemble. It is important to note that the
pressures at which the local minima occur in the osmotic pore
widths correspond to the troughs in the oscillations that occur
in the grand canonical pore ensemble. However, unlike the
latter, the former do not display continued oscillations, but
rather expand weakly for x1 ≥ 0.5 over the pressures depicted
in Fig. 6(b).

We then employed grand canonical simulations in rigid
pores to evaluate the structure of the adsorbed fluid at various
points along the adsorption isotherm, which also traverse the
local maximum in S1,2. Here the pore width was held fixed
at h = h0 = 8σ2,2; however, the fact that the adsorption and
selectivity curves in Fig. 5 are largely independent of the two
pore ensembles, which as indicated by Fig. 6 have different
average pore widths, suggests this is not a critical factor. The
pore width was divided into one hundred equally sized bins, in
which the normalized ensemble-averaged density distribution,
⟨ρi(z)⟩/⟨ρpore⟩ = ⟨xi⟩ads(z), was measured over the course of
each simulation; results are depicted in Fig. 7.

The distributions of the two components in the pore
when in equilibrium with a bulk fluid at x1 = 0.05 are given in
Fig. 7(a). At the lowest pressure, the smaller component (lower

FIG. 7. Normalized ensemble-averaged density distribution, ⟨xi⟩ads
= ⟨ρi(z)⟩/⟨ρpore⟩, of each species for ϵ1,w = ϵ2,w = 2.50, λ1,w = λ2,w = 1.50.
The pore width is fixed at h = h0= 8σ2,2 and the pressures depicted corre-
spond to those indicated in Fig. 5. Arrows indicate increasing pressure. (a)
Distribution throughout the pore for the isopleth x1= 0.05 for (top) species 1
and (bottom) species 2. (b) Distribution throughout the pore for the isopleth
x1= 0.75 for (top) species 1 and (bottom) species 2.

panel) is approximately evenly distributed throughout the
region over which it interacts with the wall, while it is relatively
dilute in the central region of the pore. The same is true for the
larger component (upper panel), although the normalized
density decreases marginally very close to the walls as
it competes for space with the smaller component, which
suffers a smaller entropic penalty than the larger component
for existing at the interface. A second layer consisting of
the smaller species forms in the interstices of the first
(z/h ≈ 0.19, 0.81) such that it can just interact with the
wall, as well as with the first monolayer. Because of entropic
considerations owing to its larger size, the larger species
tends to be excluded from these layers in favor of forming a
third layer atop the bilayer of the smaller component. This is
energetically favorable as molecules of the larger component
can interact both with the adjacent layer of the smaller species
and with the wall since its interaction range is sufficient to
extend across these layers.

As the pressure increases further, these effects become
more pronounced, and the larger species is gradually expelled
from the immediate vicinity of the wall to form increasingly
well-defined layers at z/h ≈ 0.25,0.75. Closer inspection of
the fluid in the inner channel reveals that for P∗ < 0.05
there is essentially no heterogeneous structure to the fluid in
the center of the pore. However, for P∗ ≈ 0.10 oscillations
indicate the onset of weakly defined layers, which are
especially pronounced for the major component (cf. lower
panel of Fig. 7(a)). When P∗ ≥ 0.15, the fluid has formed a
well-defined structure which does not change significantly as
pressure continues to increase. In fact, P∗ ≈ 0.10 corresponds
to the normalized density distribution ⟨x1⟩ads exhibiting the
largest maximum in the layer of the larger species (green curve,
upper panel). In contrast, when the pore is in equilibrium with
a bulk fluid where x1 = 0.75 this behavior does not manifest.
The larger species is now in excess and forms layers at the
walls in a similar fashion as the smaller species does when it
is in excess.

Taken collectively, this reveals the underlying cause of
the rise in selectivity of the larger species at an intermediate
pressure when the bulk fluid is very dilute in this species
(x1 = 0.05). At low pressure, the mixture adsorbs in the pores
and is concentrated at the interfaces, where the species in
excess tends to form a pair of layers. As pressure increases
further, the fluid begins to fill the center of the pore forming
a fluid “bridge” between the walls. Just before this bridge is
formed, the larger species exhibits a maximum in its local
concentration in its principal layer which forms adjacent
to the bilayer of the smaller component. Up to this point,
the continued adsorption of the smaller species at the walls
increasingly provides an energetic benefit to the larger species
which adsorbs on top of it. The larger component can interact
both with the wall as well as with the smaller component in the
layer immediately adjacent to it. Because it is smaller, species
2 can pack more densely in its layer which thus provides
a region of high (favorable) energy density for the larger
component to adsorb on. This cooperative adsorption behavior
is possible primarily because of the range of interactions in the
system, rather than the strength of any individual one. Once the
bridge has begun to form, the propensity of the larger species
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to adsorb primarily in a layer adjacent to the bilayer of smaller
species is reduced. This is because the increasing density in
the pore’s interior increases (decreases) the average number
of neighbors (potential energy) of a particle located there.
It is clear from Fig. 7 that once P∗ ≈ 0.15 a well-defined
heterogeneous structure has emerged and changes little as
pressure is increased further. For P∗ & 0.10 entropic (packing)
considerations begin to impact the adsorption of the larger
species, and indeed, lead to a reduction of S1,2 as pressure
increases further. In the osmotic pore ensemble, the formation
of the fluid bridge imposes a correlation between the walls
leading to a contraction of the material. At this temperature
(T∗ = 1.35), this is not due to capillary condensation, but is
expected to be a precursor to it. In the grand canonical pore,
the material expands even at low pressure, but the formation
of the bridge reduces the rate of expansion. Subsequent
oscillations in ⟨h⟩ correspond to the additional layer formation
and structural heterogeneity in the pore’s interior (cf. Fig. 6).
In contrast, for a bulk fluid with a greater concentration of the
larger component, e.g., x1 = 0.75, the larger species forms a
bilayer at the walls. Any additional layers of the larger species
can only interact with the layer immediately adjacent to it,
but not additionally with the wall due to its molecular size.
The minor component, the smaller species 2, still adsorbs
at the wall, but the second layer of the larger species also
prevents a third layer of the larger component from interacting
with this interior layer of smaller species for the same
reason.

Thus, when the larger component is sufficiently dilute
so as to allow the smaller component to primarily interact
with the walls, the system maximizes its contacts (minimizes
energy) by forming a sequence of layers which, before the
interior of the pore has any significant concentration, provides
a region of high favorable interaction energy leading to a
rise in the selective capture of the dilute, large component.
It is worth pointing out that similar local maxima in S1,2
have been previously reported in mesoporous rigid materials
adsorbing supercritical binary mixtures of, for instance,
methane and ethane.12 However, this is often attributed to
favorable self-interactions between the same species in which
the adsorption of a molecule at the interface enhances further
adsorption of the same component, eventually covering the
wall and screening its interaction with additional layers. As
a result, in those cases the maximum in selectivity of the
larger (more strongly interacting) component decreases as
its concentration in the bulk decreases. In this system, the
cooperative adsorption between different species produces the
opposite trend.

B. Weak fluid-wall interactions with symmetric ranges

To further assess this, we consider the consequences of
reducing the interaction range of the larger species, such
that λ1,w = 1.00 (λ2,w = 1.50), making the total range of
interaction with the boundaries identical for both species,
λ1,wσ1,1 = λ2,wσ2,2 = 1.50. Thus, both species must directly
compete in the same region next to the walls for adsorption
“sites.” The adsorption and selectivity curves are shown in
Fig. 8. The adsorption isotherms are very similar to the

FIG. 8. (Top) Total number of molecules adsorbed in the slit pore for ϵ1,w
= ϵ2,w = 2.50, λ1,w = 1.00, λ2,w = 1.50 when KT A= 500 along representa-
tive isopleths. (Bottom) The corresponding selectivity for species 1 (large)
relative to 2 (small). Solid lines correspond to the grand canonical pore
ensemble, whereas dashed lines refer to the osmotic pore ensemble. Spheres
and stars indicate the pressures at which rigid pore simulations were used to
examine the fluid structure within the pore (cf. Fig. 9).

case where λ1,w = 1.50. However, the previously observed
maximum in S1,2 for the bulk isopleth x1 = 0.05 has been
reduced to a simple “shoulder” around P∗ = 0.10. In the
limit of zero pressure (empty adsorbent), the selectivities also
all begin from S1,2 ≈ 0.81 < 1; this is a result of the fact
that, with identical wall interaction energies, the identical
interaction ranges entropically penalize the larger species
more during adsorption. As pressure is increased, this effect
continues to reduce the amount of the species 1 present in the
pore. Figure 9 shows the structure of the two components in a
rigid pore as the pressure increases. Both components adsorb
primarily at the interface at low pressures before forming
a more heterogeneous structure in the center of the pore at
higher pressures. Along the x1 = 0.05 isopleth, we observe
that the larger species adsorbs primarily along the walls at
low pressures, but as the pore is loaded it is progressively
expelled to the interior owing to competition with the smaller
species at the walls. When the larger species is in excess in the
bulk, x1 = 0.75, the structure of the two components changes
qualitatively very little as the bulk pressure is increased. Once
again, the fluid bridge forms after the “shoulder” in S1,2 (cf.
SM) leading to a contraction of the material which is relaxed
once the pore has filled.

C. Weak/strong fluid-wall interactions
with asymmetric ranges

Next we consider the consequences of increasing
the interaction strength of each species with the walls
independently, without changing the interaction ranges.
Figure 10 depicts the adsorption and selectivity curves
when ϵ2,w has been increased from 2.50 to 5.00 (λ1,w
= λ2,w = 1.50). In this “strong binding” limit, we observe
the Langmuirian adsorption of the bulk fluid when x1 ≥ 0.25
(upper panel). However, for x1 = 0.05, a weak jump occurs
around P∗ ≈ 0.10. The jump is much weaker when the bulk
fluid has a larger mole fraction of the larger species and
is most noticeable when the large species is more dilute.
This is associated with the change in the composition of
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FIG. 9. Normalized ensemble-averaged density distribution of each species
for ϵ1,w = ϵ2,w = 2.50, λ1,w = 1.00, λ2,w = 1.50. (a) Distribution throughout
the pore for the isopleth x1= 0.05 for (top) species 1 and (bottom) species
2 at various pressures. (b) Distribution throughout the pore for the isopleth
x1= 0.75 for (top) species 1 and (bottom) species 2 at various pressures. The
pore width is fixed at h = h0= 8σ2,2 and the pressures depicted correspond to
those indicated in Fig. 8.

the pore, as evidenced by the selectivity curve (lower panel)
simply because the larger species is being disproportionately
displaced by the smaller one, allowing a larger number
of molecules into the pore. Because of the strong wall
interactions, the smaller species is much more prevalent in
the pore at low pressure where S1,2 ≈ 0.27. Once again,
as the mole fraction of the larger species is decreased, the

FIG. 10. (Top) Total number of molecules adsorbed in the slit pore for ϵ1,w
= 2.50, ϵ2,w = 5.00, λ1,w = λ2,w = 1.50 when KT A= 500 along representa-
tive isopleths. (Bottom) The corresponding selectivity for species 1 (large)
relative to 2 (small). Solid lines correspond to the grand canonical pore
ensemble, whereas dashed lines refer to the osmotic pore ensemble. Spheres
and stars indicate the pressures at which rigid pore simulations were used to
examine the fluid structure within the pore (cf. Fig. 11).

FIG. 11. Normalized ensemble-averaged density distribution of each species
for ϵ1,w = 2.50, ϵ2,w = 5.00, λ1,w = λ2,w = 1.50. (a) Distribution throughout
the pore for the isopleth x1= 0.05 for (top) species 1 and (bottom) species
2 at various pressures. (b) Distribution throughout the pore for the isopleth
x1= 0.75 for (top) species 1 and (bottom) species 2 at various pressures. The
pore width is fixed at h = h0= 8σ2,2 and the pressures depicted correspond to
those indicated in Fig. 10.

selectivity of the pore increases, adsorbing progressively more
of the larger species up to P∗ ≈ 0.10. Figure 11 shows the
structure of the two components inside the pore at the pressures
indicated in Fig. 10. Again, for x1 = 0.05 we observe that the
smaller component adsorbs strongly at the wall forming a
bilayer, creating a strongly adsorbing interface for the larger
species. As for the case of ϵ2,w = 2.50, the larger species
adsorbs atop this layer in a fashion which is non-monotonic
in pressure, going through a maximum around P∗ ≈ 0.10.
This corresponds to the point where S1,2 reaches its local
maximum and begins to decay as pore filling (entropic)
effects displace the larger species in favor of the smaller
one, thereby reducing S1,2. When x1 = 0.75, the strong wall
interaction with the smaller species implies that this species
still forms a bilayer even when it is not in great excess, unlike
when its interaction was weaker, in which case composition
controls which species adsorbs at the boundary. As a result,
the larger species still forms an additional layer atop this
bilayer of the smaller component even though its normalized
density (height of the peak in the upper panel of Fig. 11(b))
is essentially invariant to increases in pressure. The fluid-
fluid interactions in this case are insufficient to draw the
adsorbed layer of larger species into the pore’s interior as
the fluid bridge forms because this fluid, largely similar to the
bulk composition, is also primarily composed of this species.
Therefore, the average number of contacts a molecule of the
larger species can make in the interior of the channel is less
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than that made at the interface of the bilayer, implying the
latter remains a very stable adsorption location. Again, the
formation of a fluid bridge marks the end of the non-monotonic
behavior of S1,2, which results in pore contraction at low to
intermediate pressures. As pressure increases further, changes
in the average pore width commensurate with the trends
in Fig. 6 again manifest themselves. In the osmotic pore
ensemble, pore filling leads to uniform expansion at pressures
well above the point where S1,2 goes through its maximum,
whereas in the grand canonical pore ensemble, the oscillations
in ⟨h⟩/h0 associated with the formation of layers have a
larger amplitude than those observed when ϵ2,w is smaller
(cf. SM).

D. Strong/weak fluid-wall interactions
with asymmetric ranges

Finally, we consider the instance where the larger species
is more strongly interacting with the wall (ϵ1,w = 5.00)
than the smaller species (ϵ2,w = 2.50) for the same set of
interaction ranges. The corresponding adsorption isotherms
and structures are shown in Figs. 12 and 13, respectively. The
larger species is favored, S1,2 > 1, for all isopleths although
the magnitude of this preference quickly decays as the pore
fills owing to packing considerations. Although weak, for
bulk fluids where the larger species is the minor component
(x1 = 0.05), the selectivity again exhibits an initial rise before
decaying. Figure 13 depicts the structure of the fluid along
the x1 = 0.05,0.75 isopleths as pressure is increased, at the
points indicated in Fig. 12. Although the larger species is
energetically more favored at the wall, when it is dilute
(x1 = 0.05) the smaller species is entropically favored at the
wall and again forms a bilayer, despite its weaker energetic
interaction. Once more, the larger species primarily adsorbs
in an adjacent layer, where the amount in the layer is a
non-monotonic function of pressure. Even in this case, there
is a corresponding weak non-monotonic behavior of S1,2
as pressure increases. For a bulk fluid where x1 = 0.75
the large species dominates at the interface with the wall,

FIG. 12. (Top) Total number of molecules adsorbed in the slit pore for ϵ1,w
= 5.00, ϵ2,w = 2.50, λ1,w = λ2,w = 1.50 when KT A= 500 along representa-
tive isopleths. (Bottom) The corresponding selectivity for species 1 (large)
relative to 2 (small). Solid lines correspond to the grand canonical pore
ensemble, whereas dashed lines refer to the osmotic pore ensemble. Spheres
and stars indicate the pressures at which rigid pore simulations were used to
examine the fluid structure within the pore (cf. Fig. 13).

FIG. 13. Normalized ensemble-averaged density distribution of each species
for ϵ1,w = 5.00, ϵ2,w = 2.50, λ1,w = λ2,w = 1.50. (a) Distribution throughout
the pore for the isopleth x1= 0.05 for (top) species 1 and (bottom) species
2 at various pressures. (b) Distribution throughout the pore for the isopleth
x1= 0.75 for (top) species 1 and (bottom) species 2 at various pressures. The
pore width is fixed at h = h0= 8σ2,2 and the pressures depicted correspond to
those indicated in Fig. 12.

forming bilayers as in the case where ϵ1,w = ϵ2,w = 2.50.
The smaller species still invades these layers, although it
principally adsorbs directly at the wall as an additional layer
competes with the second layer of the larger component for
space.

IV. CONCLUSIONS AND OUTLOOK

We demonstrated a new simulation methodology for
studying the adsorption of multicomponent fluids in flexible
materials using flat-histogram Monte Carlo methods. This
methodology produces the complete free energy landscape
of the multicomponent mixture and permits us to easily
investigate the behavior of the adsorbed fluid at arbitrary
overall bulk compositions. Although we employed a simplified
slit-pore model here, this methodology is fully extensible to
realistic materials. The only requirement is that the free
energy of the adsorbent be specified as a scalar function of
pore size. We systematically investigated the consequences
of changing the strength and interaction range of the
adsorbent with each component, which are size asymmetric.
The range, rather than the strength of any individual
interaction, controls whether competitive or cooperative
adsorption occurs at the walls of the slit pore. When the
interaction ranges are symmetric, the species compete for
adsorption sites at the walls and we recover conventional
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competitive adsorption behavior between large and small
species.

In all cases, where the interaction ranges between the
walls and species are asymmetric, even after the pore has
filled, the pore’s selectivity for the larger species increases
as its bulk mole fraction decreases. We attribute this to
the inhomogeneous structure of the fluid in the pore. The
non-monotonic behavior in S1,2 for intermediate pressures
at very low bulk x1 is attributed to a balance between
the cooperative adsorption enhancement the smaller species
provides the larger one in adjacent layers, and the interactions
the larger species has with the fluid in the interior of the
pore. The latter becomes dominant as a fluid bridge forms
between the opposite walls, reducing but not eliminating, the
propensity of the larger species to adsorb on the bilayer of
smaller species both energetically and entropically. This non-
monotonicity terminates as the pore becomes filled, which is
accompanied by a strain signature present in both flexible pore
ensembles.

In the osmotic pore ensemble, the Hookean materials we
studied here contract as the fluid bridge forms. In the grand
canonical pore ensemble, the rate of the material’s (internal)
expansion with increasing bulk pressure is decreased. The
subsequent expansion is a result of pore filling and further
oscillations are the result of layers forming in the pore. We
point out that the observed changes in the pore width are
not related to capillary condensation since the temperature is
supercritical for both species. However, we do expect this to
play an important role at subcritical conditions, which will
be subject of future contributions. This initial strain signature
was still observed when such enhancement does not occur
(cf. SM), as in the case when the total interaction ranges of
the fluid’s components with the walls are commensurate with
each other (λ1,wσ1,1 = λ2,wσ2,2). However, the termination
of this initial mechanical strain provides a convenient
macroscopic signature for the pressure at which non-
monotonic selectivity enhancement is no longer even
possible.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional adsorption
isotherms, a description of adsorbed fluid layering, and effects
of different fluid-fluid interaction parameters.
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APPENDIX A: HISTOGRAM REWEIGHTING

Here we consider the partition functions in each of
the relevant thermodynamic ensembles in order to obtain
expressions for the probability of observing these systems in
certain macrostates. We first consider the confined ternary
system (binary adsorbate plus adsorbent) in a rigid pore
at fixed h and hp, adsorbate chemical potentials, µ1 and
µ2, temperature, 1/β, and number of adsorbent atoms or
molecules, Ns. The partition function describing the rigid
pore can be written as

Z(β, Ah, µ1, µ2,Ns; hp) =

N1


N2

exp (βµ1N1 + βµ2N2)

×Q(β, Ah,N1,N2,Ns), (A1)

where Q is the canonical partition function given by Eq. (7).
Note that at fixed h, Qs(h) is just a constant which may be
neglected such that Q = Q f . In practice, we also neglect the
momentum degrees of freedom (kinetic energy contribution)
from the fluid in Q f for simplicity, as they do not affect the
extensive thermodynamic properties of the system. A change
of variables where ∆µ2 ≡ µ2 − µ1 allows this to be expressed
as a sum over the total number of adsorbate molecules in the
system, Ntot = N1 + N2.

Z(β, Ah, µ1, µ2,Ns; hp) =

Ntot

exp (βµ1Ntot)

N2

exp (β∆µ2N2)Q f (β, Ah,N1,N2,Ns), (A2)

Z(β, Ah, µ1, µ2,Ns; hp) =

Ntot

exp (βµ1Ntot)Υ(β, Ah,Ntot,∆µ2,Ns), (A3)

where Υ(β, Ah,Ntot,∆µ2,Ns) is the isochoric semigrand
partition function.50,51 Note that this generalizes to any
k-component system such that Υ(β, Ah,Ntot,{∆µ2,∆µ3, . . . ,
∆µk},Ns). Therefore, the probability, Π, of observing a
macrostate of the system with Ntot molecules at fixed β,
Ah, µ1, µ2, and Ns is

Π(Ntot; µ1) = exp (βµ1Ntot)Υ(β, Ah,Ntot,∆µ2,Ns)
Z(β, Ah, µ1, µ2,Ns) . (A4)

Thus, the probability of observing such a macrostate under
any imposed µ1 can be calculated from a single probability
distribution obtained at a reference µ0

1 at the same β, V , ∆µ2,
and Ns using standard histogram reweighting techniques52

lnΠ(Ntot; µ1) = lnΠ(Ntot; µ0
1) + β(µ1 − µ0

1)Ntot + C. (A5)

Here C = ln
�
Z(µ0

1)/Z(µ1)�, which in principle can be
neglected as it is a constant and does not affect the
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thermodynamic properties of the system. One of the
principal advantages of this formalism is that the total
number of molecules, Ntot, can be used as the lone order
parameter in flat-histogram Monte Carlo simulations (cf.
Appendix B).

In the grand canonical pore ensemble, h is allowed to
fluctuate at fixed hp (cf. Fig. 1). From Eq. (7), we can
rewrite the canonical partition function for a pore with a
fixed overall volume (hp) as a sum over all possible values
of h,

Q(β, Ahp,N1,N2,Ns) =

h≤hp

Qs(h)Q f

=

h≤hp

exp (−βFs(h))Q f . (A6)

As a result, the probability of observing a macrostate of the
system is now a function of the free energy profile of the solid,
Fs(h). Again, without loss of generality we have neglected the
momentum degrees of freedom from Q f . The grand canonical
pore partition function can be expressed as

Ξ(β, Ahp, µ1, µ2,Ns) =

h≤hp

exp (−βFs(h))

Ntot

exp (βµ1Ntot)

N2

exp (β∆µ2N2)Q f (β, Ah,N1,N2,Ns) (A7)

=

h≤hp

exp (−βFs(h))

Ntot

exp (βµ1Ntot)Υ(β, Ah,Ntot,∆µ2,Ns) (A8)

=

h≤hp

exp (−βFs(h)) Z(β, Ah, µ1, µ2,Ns; hp). (A9)

In a similar fashion, the probability of observing a macrostate with a given h and Ntot is simply

Πgc(h,Ntot) = exp (−βFs(h) + βµ1Ntot)Υ(β, Ah,Ntot,∆µ2,Ns)
Ξ(β, Ahp, µ1, µ2,Ns) , (A10)

which implies that this can be calculated at any imposed µ1 from any other known probability distribution obtained at the same
β, A, h, hp, ∆µ2, and Ns,

lnΠgc(h,Ntot; µ1) = lnΠgc(h,Ntot; µ0
1) + β(µ1 − µ0

1)Ntot + C, (A11)

where C = ln
�
Ξ(µ0

1)/Ξ(µ1)�, which once again may be neglected.
If we consider the osmotic pore ensemble, the results are very similar; only one additional Legendre transform is necessary

to account for the fact that hp can fluctuate. Since we take h = hp when working in this ensemble, the osmotic pore partition
function may be simplified to

Γ(β,P, µ1, µ2,Ns) =

hp

exp
�
−βPAhp

� 
h≤hp

exp (−βFs(h))

Ntot

exp (βµ1Ntot) (A12)

×



N2

exp (β∆µ2N2)Q f (β, Ah,N1,N2,Ns)


(A13)

=

h

exp (−βPAh − βFs(h))

Ntot

exp (βµ1Ntot)

N2

exp (β∆µ2N2)Q f (β, Ah,N1,N2,Ns) (A14)

=

h

exp (−βPAh − βFs(h))

Ntot

exp (βµ1Ntot)Υ(β, Ah,Ntot,∆µ2,Ns) (A15)

=

h

exp (−βPAh − βFs(h)) Z(β, Ah, µ1, µ2,Ns; hp). (A16)

Therefore the probability of observing a macrostate with a given h and Ntot in the osmotic pore ensemble is given by

Πos(h,Ntot) = exp (−βFs(h) − βPAh + βµ1Ntot)Υ(β, Ah,Ntot,∆µ2,Ns)
Γ(β,P, µ1, µ2,Ns) . (A17)

As in the grand canonical pore ensemble, the probability of observing a macrostate with a given h and Ntot at any imposed µ1
can be found once the probability distribution has been calculated for some µ0

1,

lnΠos(h,Ntot; µ1) = lnΠos(h,Ntot; µ0
1) + β(µ1 − µ0

1)Ntot − βAh(P − P0) + C. (A18)
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Once more, the additive constant is a ratio of partition
functions, C = ln

�
Γ(µ0

1)/Γ(µ1)�, which is constant and is
neglected in practice.

APPENDIX B: SIMULATION METHODOLOGY

We employed a computationally efficient flat-histogram
Monte Carlo method known as Wang-Landau Transition
Matrix Monte Carlo (WL-TMMC) to construct the macrostate
probability distribution of our system composed of two species
and a coarse-grained flexible adsorbent. This method has
been described in more detail elsewhere,10,19,42,53,54 but we
summarize our implementation here. Both the Wang-Landau
and transition matrix methods are flat histogram methods,
which seek to construct a biasing function with which the
acceptance criteria of Monte Carlo moves are modified. We
employed three types of moves: insertion and deletion of
individual species, displacement of an individual species, and
an identity swap which transmuted a molecule of species
1 into 2 or vice versa. These were attempted with a 2:1:1
ratio, respectively. All simulations were performed in a
rectilinear 10σ2,2 × 10σ2,2 × hp cell. For bulk simulations,
the cell was periodic in all dimensions and hp = 10σ2,2.
For confined fluids, hp = 13σ2,2 and the slit-pore walls were
placed symmetrically in the box a distance of h apart. These
walls conferred non-periodicity in the z-direction.

The lnΠ(h,Ntot) surface for both pore ensembles was
constructed by performing a series of rigid pore simulations
which were exposed to a reservoir of adsorbate at fixed
chemical potentials and temperature, i.e., the grand canonical
ensemble (not to be confused with the grand canonical pore
ensemble). For a rigid pore (fixed hp and h), the unbiased move
acceptance criteria are related to the ratio of the probabilities
of observing the final and initial microstates. The probability
of observing a configurational microstate, s, in this ensemble
is given by

π(s) = exp (−βU(s))
Z

2
i=1

V Ni(s) exp (βµiNi(s))
Ni(s)! , (B1)

where Z is given by Eq. (A1) and U(s) is the potential energy
of the microstate. Thus, the unbiased Metropolis acceptance
criteria of moving from microstate “a” to “b” is

pu = min

1,

π(b)
π(a)


. (B2)

A proposed move was accepted with a probability that was
biased by some function, η(Ntot), which depended on the order
parameter we selected, Ntot = N1 + N2,

pbias = min

1,

exp (η [Ntot(b)])
exp (η [Ntot(a)])

π(b)
π(a)


. (B3)

Our objective was to sample the Ntot space evenly in order
to leverage histogram reweighting techniques as described in
Appendix A, and thus, the ideal biasing function is given by

η(Ntot) = − lnΠ(Ntot). (B4)

For each rigid pore, we iteratively constructed η using
Wang-Landau simulations initially, which were then refined

by transition matrix methods. Once η had sufficiently
converged, Eq. (B4) provided lnΠ(Ntot). An empty system was
initialized at the beginning of a simulation and Monte Carlo
moves were continuously performed. The biasing function’s
estimate of the macrostate probability distribution, lnΠ(Ntot),
was initialized to zero for all Ntot permissible. After a
trial move was proposed, this estimate was continuously
updated

lnΠ(Ntot) = lnΠ(Ntot) + ln f , (B5)

where ln f is the update factor and Ntot refers to the total
number of molecules in the system after the move has
been attempted, regardless of its success. Initially ln f = 1,
but was progressively reduced as the simulation converged.
Convergence was estimated by recording a histogram, H(Ntot),
of the frequency at which each macrostate was visited

H(Ntot) = H(Ntot) + 1, (B6)

where again Ntot refers to the total number of molecules in
the system after a move was attempted. Since the biasing
function should be the inverse of the probability of observing
a state during unbiased sampling, all states should be visited
with equal probability when the ideal biasing function has
been applied. The degree to which Eq. (B4) approximates
this ideal function is captured by the flatness of the visited-
states histogram. We employed the common criterion where
the minimum of H(Ntot) must be within 80% of the mean
value

min [H(Ntot)] = 0.8⟨H(Ntot)⟩. (B7)

This condition was checked periodically and once satisfied,
H(Ntot) was reset to zero and ln f was reduced by a factor
of 2. This was repeated until ln f became appreciably
small, usually around 27 times (ln f < 10−8) or more. The
Wang-Landau algorithm builds a reasonable estimate of lnΠ
through Eq. (B5) quickly but tends to converge slowly as the
update factor becomes smaller and smaller. To overcome this,
Transition Matrix Monte Carlo (TMMC) was employed after
this initial Wang-Landau stage.

A TMMC simulation also provides an estimate of lnΠ
for Eq. (B4) but does so by considering the transition
rates between neighboring macrostates. This is stored in the
collection matrix, C, which accumulates statistics about the
unbiased probability of moving between two macrostates “a”
and “b,” i.e., Ntot(a) → Ntot(b). Such a simulation proceeds
by using the biased acceptance criterion in Eq. (B3) but
accumulates the unbiased probability (cf. Eq. (B2)) measured
for an attempted move

C [Ntot(a) → Ntot(b)] = C [Ntot(a) → Ntot(b)] + pu, (B8)
C [Ntot(a) → Ntot(a)] = C [Ntot(a) → Ntot(a)] + 1 − pu. (B9)

This scheme updates entries in the collection matrix associated
with acceptance and rejection of the move, regardless of
whether the move is actually accepted or not. Note that
when a move is performed which does not change the order
parameter Ntot, such as a displacement or identity swap,
Ntot(a) = Ntot(b), which results in C [Ntot(a)] being updated
by unity. The transition probability, P [a → b], of going
from macrostate “a” to “b” is computed by normalizing
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the accumulated unbiased probabilities of this transition over
all possible transitions which begin in macrostate “a,”

P [a → b] = C [Ntot(a) → Ntot(b)]
k C [Ntot(a) → Ntot(k)] . (B10)

Because we only proposed Monte Carlo moves which
changed the order parameter Ntot at most by unity, C and P
were triple-banded sparse matrices. Microscopic reversibility
(detailed balance condition) implies that the macrostate
distribution can be directly computed from the probability
matrix

lnΠ(Ntot + 1) = lnΠ(Ntot) + P [Ntot → Ntot + 1]
P [Ntot + 1 → Ntot] . (B11)

The value for lnΠ(0) was set to zero to allow the rest
of the distribution to be calculated incrementally; however,
this value is irrelevant since the distribution was later
normalized. The bias function which was constructed from
the initial Wang-Landau portion of the simulation was still
used for a period while the collection matrix was initially
being constructed. After which the simulation discarded this
information and used the collection matrix to compute its bias
function.

During the TMMC portion of the simulation, sweeps of
moves were performed after which the biasing function was
recomputed before the next cycle. A sweep was defined
to be the number of steps required for a simulation to
sample each position in the collection matrix at least 5 times
when pu was finite. Thus, the number of steps required
depends on the interactions in the system, the mix of Monte
Carlo moves employed, and the system density. However,
requiring a minimum number of passes in the collection
matrix balances this across different scenarios and improved
convergence. Because the collection matrix is updated with
pu, which is always less than or equal to unity, the matrix
builds up very slowly if started from a poor initial guess,
but converges quickly once it becomes more accurate. The
Wang-Landau portion provides this initial guess which greatly
accelerates the convergence of the collection matrix. Once a
sufficient number of sweeps were performed, the converged
bias function provided the macrostate probability distribution
via Eq. (B4). Typically 103 sweeps during the TMMC portion
of the simulation were required to converge simulations, which
amounted to roughly 109 Monte Carlo steps depending on the
factors mentioned above.

APPENDIX C: ISOPLETH REFINEMENT

The initial estimate of the isopleth (µ1, µ2) parameteriza-
tion for a bulk fluid described in Sec. II C 2 can be refined
by performing a local optimization at discrete points along
the estimated isopleth as follows. For each point (µt1,∆µ

t
2)

along the isopleth, the macrostate probability distribution
function at ∆µt2 may be estimated by linearly interpolating
the distribution from its neighbors at ∆µa2 and ∆µb2 , where
∆µa2 < ∆µt2 < ∆µ

b
2 . This distribution at (µ0

1, ∆µ
t
2) may be

subsequently reweighted to (µt1, ∆µ
t
2) and Eq. (16) used to

assess the accuracy of this initial parameterization. Usually
we found that this initial estimate deviated at most 5% from

the desired x1; however, locally optimizing µ1 easily improved
this error to 0.1% or less. The optimized parameterization was
employed throughout this study.

APPENDIX D: GENERATING THE PROBABILITY
SURFACE

The objective of flat histogram simulation methods is
to obtain a bias which permits the simulation to walk in an
effectively random fashion throughout the phase space set
by the order parameter of the bias. Even in the case when
the ideal bias function has been obtained, traversing large
distances can take a great deal of time since the number of
steps required to traverse the distance between two macrostates
should scale as the square of distance between them. Therefore
it is often much more efficient to divide the phase space
into “windows” where each window, k, has some predefined
bounds N k

tot,min ≤ N k
tot ≤ N k

tot,max.
All calculations began with a series of rigid pore grand

canonical simulations. Each set in the series was composed of
approximately 15 windows with varying ranges of Ntot they
each sampled, all at the same fixed ∆µ2 and µ0

1 = 0, though
the exact value of µ0

1 is irrelevant. Windows at low density
typically had a width of approximately 100 total molecules,
which was scaled by a power law down to as little as 12 total
molecules at the highest densities sampled. Each window
shared at least 4 common Ntot with its nearest neighboring
windows whose widths were chosen to prevent any overlap
between three or more such windows. The endpoints of each
distribution were excluded from this overlap. A composite
lnΠ(Ntot) was constructed by taking one window initially
as a reference state, then minimizing the error between the
estimates of lnΠ(Ntot) in the overlapping region between
windows “a” and “b,”

χ2 =


Ntot∈a∩b
(lnΠa(Ntot) − (lnΠb(Ntot) + C))2. (D1)

Minimization of χ2 for each overlap yields a constant shift C
for, in this case, distribution “b.” In all cases, only overlapping
windows with a χ2 corresponding to less than a 1% systematic
error in Π(Ntot) were accepted as valid. The entire window
distribution lnΠb(Ntot) was then shifted by C, then the two
windows were merged. At each Ntot, properties such as U,
N1, and N2 were measured. In the overlapping region, the
values for the composite histogram were estimated from
their contributing windows by a weighted average of the
two contributing histograms to smooth the overlap. However,
simulations were run long enough to ensure that overlapping
windows produced estimates of the extensive properties at the
same Ntot within a few percent so this smoothing was relatively
inconsequential. On an Intel Xeon 2.4 GHz processor, a
window typically reached this level of convergence in less
than 48 wallclock hours. This process was iteratively repeated
to construct the complete lnΠ(Ntot) distribution over all k
windows.

Additional sets of simulations were performed at intervals
of ∆µ2 (typically δ(∆µ2) = 0.5), all with the same µ1, to build
a grid as shown in Fig. 3 which spans a range of mole fractions
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as desired. During rigid pore grand canonical simulations in
which the move acceptance criteria are given by Eq. (B2),
the ideal gas reference state is obtained as µi → −∞. From
Eq. (B1), it is clear that one indeed recovers, βµi = ln(Ni/V ).
The construction of the (µ1, µ2) surface requires knowledge
of the range of ∆µ2 = µ2 − µ1, over which to sample. Given
a target set of mole fractions (isopleths) we would like to
investigate, an initial guess on the bounds to sample may be
obtained from simple algebra

exp (βµ1) = N1/V, (D2)
exp (βµ2) = exp (β(µ1 + ∆µ2)) = N2/V. (D3)

It follows that the mole fraction of species 1 in the dilute limit
may be expressed as

x1 =
exp (βµ1)

exp (βµ1) + exp (β(µ1 + ∆µ2)) , (D4)

which may be rearranged to

ln (1/x1 − 1) = β∆µ2. (D5)

Therefore, given a bounded range of target isopleths (x1,min
≤ x1 ≤ x1,max), a range of ∆µ2,min ≤ ∆µ2 ≤ ∆µ2,max can also
be estimated. As density increases out of the ideal gas limit
(µ1 at a given ∆µ2), the isopleths will begin to deviate from a
line of constant ∆µ2 and potentially move outside the initially
estimated range. Thus, this initial range of ∆µ2’s can be
simulated to observe the behavior of the gas as the density
begins to increase, then progressively expanded as necessary
(cf. Fig. 3).

Once a sufficiently wide grid has been constructed, an
arbitrary macrostate distribution at a given (µ0

1, ∆µ2) may
be estimated by linearly interpolating between neighboring
distributions. First, for a target set of conditions (µt1, µt2),
we ensured ∆µt2 = µt2 − µt1 was within the bounds of the
grid simulated. Then, we obtained lnΠ(Ntot) at (µ0

1, ∆µ
t
2) by

linearly interpolating from its nearest bounding neighbors in
the grid, ∆µa2 < ∆µt2 < ∆µ

b
2 ,

ln Π̂(Ntot;∆µt2) = ξ (lnΠb(Ntot) − lnΠa(Ntot))
+ lnΠa(Ntot), (D6)

where ξ = (∆µt2 − ∆µa2)/(∆µb2 − ∆µa2). This distribution was
subsequently reweighted from µ0

1 to µt1 using Eq. (A5) to
obtain lnΠ(Ntot; µt1, µ

t
2). This linear interpolation scheme

was also used to estimate the ensemble-averaged extensive
properties at each Ntot. For calculations involving bulk
systems, such as to obtain the isopleths in Fig. 3, this is
sufficient. However, for confined systems, this same series
containing a grid of ∆µ2 values must be repeated for each
value of h. Thus, for each h value we obtained a grid such
as depicted in Fig. 3 from which we interpolated lnΠ(h,Ntot)
over the desired range of chemical potentials (µ1, µ2) defined
along the isopleths obtained from bulk simulations. We
simulated a set of h values such that 6σ2,2 ≤ h ≤ 10σ2,2
at intervals of δh = 0.5σ2,2. This grid was also refined via
linear interpolation down to δh = 0.025σ2,2 by interpolating
the macrostate distributions at each ∆µ2 in the grid between
neighboring values of h, i.e., Eq. (D6) was repeated using
ξ = (ht − ha)/(hb − ha).

At a given (µ1, µ2), the rigid pore simulations must be
combined in order to produce a probability distribution for a
flexible material in either the grand canonical pore or osmotic
pore ensemble. By examining the thermodynamic expressions
derived in Appendix A, it is clear how this may be achieved
in the limit of Ntot = 0. In this pure adsorbent limit Eqs. (A10)
and (A17) become, respectively,

lnΠgc(h,0) = −βFs(h) + Cgc, (D7)

lnΠos(h,0) = −βFs(h) − βP(β, µ1, µ2)Ah + Cos, (D8)

where Cgc and Cos are constants related to the partition
functions of each ensemble. We chose to set them to zero
and shift the entire rigid pore macrostate distributions at each
h, for a given (µ1, µ2), such that these expressions correctly
describe lnΠ(h,Ntot) in the pure adsorbent limit. Here we
have written the pressure for the osmotic pore ensemble
as a function of the temperature and chemical potentials
to emphasize that this is a function of the bulk adsorbate
reservoir conditions at each state point considered. The result
is a three dimensional surface of lnΠ(h,Ntot) as depicted in
Fig. 4.

APPENDIX E: BULK FLUID PHASE BEHAVIOR

The fluid phase behavior of each pure component, i,
was obtained in a periodic cubic simulation box with each
box dimension L = 9σi, i (V = L3), at various subcritical
temperatures using these flat-histogram methods. By analogy
to Eqs. (A4) and (A5) for a pure component system, we
have

Π(Ni; µi) = exp (βµiNi)Qpure(β,V,Ni)
Ξ(β,V, µi) , (E1)

lnΠ(Ni; µi) = lnΠ(Ni; µ0
i) + β

�
µi − µ0

i

�
Ni. (E2)

For each temperature, the macrostate distribution was
reweighted to different µi values in an attempt to locate a
bimodal distribution of lnΠ(Ntot) (cf. Fig. 14(b)). This curve
was segmented into two regions based on the local minima
between peaks, which defines the liquid and vapor phases. A
Maxwell construction was then used to compute the binodal
curve. Equilibrium is defined by the chemical potential where
the (logarithm of the) sum of the probabilities of observing
each macrostate belonging to each phase is equal. Results are
depicted in Fig. 14,

ln *.
,


Ntot∈vap

Π(Ntot)+/
-
= ln *.

,


Ntot∈liq

Π(Ntot)+/
-
. (E3)

The law of rectilinear diameters was used to estimate
the critical conditions for each component. For component 1,
we found the critical point at kBTc,1/ϵ2,2 = 1.096 ± 0.003
and Ncσ

3
1,1/V = 0.360 ± 0.001, where the uncertainty is the

standard error from fitting the rectilinear scaling laws to the
data55

ρliq + ρvap

2
= ρc + Â(Tc − T), (E4)

ρliq − ρvap ∼ (Tc − T)β̂, (E5)
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FIG. 14. (a) Pure component vapor-liquid binodals for both components used
in this work. The density is reported in reduced units where the volume
has been normalized by the diameter of each species; for component 1,
σ1,1= 1.50, and for component 2, σ2,2= 1.0. Binodal points are shown in
blue, the estimated critical point is shown in red, while the black lines are the
fitted results from the law of rectilinear diameters. (b) Equilibrium macrostate
probability distribution for component 2 along its binodal at each temperature
indicated.

where β̂ = 0.3258 in three dimensions and Â is some
fitting constant. For component 2, we obtained kBTc,2/ϵ2,2
= 1.219 ± 0.001 and Ncσ

3
2,2/V = 0.308 ± 0.001.

The phase behavior of a bulk binary mixture can be
calculated in a similar way. Grand canonical Monte Carlo
simulations were used to produce a macrostate distribution
following Eq. (A4) at a fixed ∆µ2, where the volume was
defined by the simulation box in the absence of any walls.
For each ∆µ2, the macrostate distribution was reweighted via
Eq. (A5) to different µ1 and a similar process was repeated to
produce Fig. 2.
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