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ABSTRACT 

Machine tools degrade during operations, yet knowledge of 

degradation is elusive; accurately detecting degradation of 

machines’ components such as linear axes is typically a 

manual and time-consuming process.  Thus, manufacturers 

need automated, efficient, and robust methods to diagnose the 

condition of their machine tool linear axes with minimal 

disruptions to production. Towards this end, a method was 

developed to use data from an inertial measurement unit 

(IMU) for identification of changes in the translational and 

angular errors due to axis degradation. The IMU-based 

method uses data from accelerometers and rate gyroscopes to 

identify changes in linear and angular errors due to axis 

degradation. A linear axis testbed, established for the purpose 

of verification and validation, revealed that the IMU-based 

method was capable of measuring geometric errors with 

acceptable test uncertainty ratios. Specifically, comparison of 

the IMU-based and laser-based results demonstrate that the 

IMU-based method is capable of detecting micrometer-level 

and microradian-level degradation of linear axes. 

Consequently, an IMU was created for application of the 

IMU-based method on a machine tool as a proof of concept 

for detection of linear axis error motions. If the data 

collection and analysis are integrated within a machine 

controller, the process may be streamlined for the 

optimization of maintenance activities and scheduling, 

supporting more intelligent decision-making by 

manufacturing personnel and the development of self-

diagnosing smart machine tools. 

1. INTRODUCTION 

Machine tool linear axes move the cutting tool and workpiece 

to their desired positions for parts production (Altintas, Verl, 

Brecher, Uriarte & Pritschow, 2011). A typical machine tool 

has multiple linear axes, and their accuracies directly impact 

the quality of manufactured parts. However, over a machine 

tool’s lifetime, various faults lead to performance 

degradation, lowering accuracy and repeatability (Li, Wang, 

Lin & Shi, 2014). Typical sources of errors within linear axes 

are due to pitting, wear, corrosion, and cracks of the system 

components such as guideways and recirculating balls (Zhou, 

Mei, Zhang, Jiang & Sun, 2009). As degradation increases, 

tool-to-workpiece errors increase that eventually may result 

in a failure and/or a loss of production quality (Uhlmann, 

Geisert & Hohwieler, 2008). Yet knowledge of degradation 

is illusive; proper assessment of axis degradation is often a 

manual, time-consuming, and potentially cost-prohibitive 

process. 

While direct methods for machine tool performance 

evaluation are well-established (International Organization 

for Standardization, 2012) and reliable for position-

dependent error quantification, such measurements typically 

interrupt production (Khan & Chen, 2009). An online 

condition monitoring system for linear axes is needed to help 

reduce machine downtime, increase productivity and product 

quality, and improve knowledge about manufacturing 

processes (Teti, Jemielniak, O’Donnell & Dornfeld, 2010). 

Efforts to monitor the condition of linear axes components 

have utilized various sensors, e.g., built-in rotary encoders 

(Verl, Heisel, Walther & Maier, 2009), current sensors 

(Uhlmann et al., 2008), and accelerometers (Liao & Lee, 

2009; Spiewak, Zaiss & Ludwick, 2013). These attempts at 

condition monitoring of linear axes had limited success, 

partly because of the lack of robustness and defined 
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relationships of signals to axis degradation composed of a 

wide range of spatial frequencies. 

Consequently, efficient quantitative measures are needed to 

monitor the degradation of linear axes. Recently, 

accelerometers have been used for dynamic metrology of 

machine tools (Sato, Nagaoka & Sato, 2015; Smith & 

Hocken, 2013) and six-degree-of-freedom motion sensors 

exist within integrated circuit (IC) components (InvenSense 

Incorporated, 2016). Thus, the use of an inertial measurement 

unit (IMU) is attractive for on-machine condition monitoring. 

One potential solution for online monitoring of linear axis 

degradation is the use of an IMU (Vogl, Weiss & Donmez, 

2015). As seen in the schematic of Figure 1, an IMU is 

mounted to a moving machine tool component. To diagnose 

axis degradation, the axis is moved back and forth at various 

speeds to capture data for different frequency bandwidths. 

This data is then integrated, filtered, and ‘fused’ to estimate 

the changes in the 6-degree-of-freedom (DOF) geometric 

errors of the axis. Because the linear axes are stacked, 

coordinate transformations may be used with all 6-DOF 

errors to estimate the errors at the functional point 

(International Organization for Standardization, 2012). 

Ideally, data would be collected periodically to track axis 

degradation with minimal disruptions to production. With 

robust diagnostics and prognostics algorithms, incipient 

faults may be detected and future failures may be avoided. In 

essence, IMU data can be used to help optimize maintenance, 

production planning, flexibility, and ultimately part quality. 

 
Figure 1. IMU-based method for diagnostics of machine tool 

performance degradation. 

2. IMU AND ERROR MOTIONS FOR DIAGNOSTICS 

A testbed was designed for evaluation of the IMU-based 

method. As seen in Figure 2(a), the testbed includes a 

translation stage, the IMU, a commercial laser-based system 

for measuring the geometric errors of the axis, and a direct 

current (DC) motor with encoder for motion control. While 

the metrology system measures the motion of the carriage 

with respect to the base of the linear axis, the carriage-

mounted IMU measures the changes in the inertial motion of 

the carriage.  The commercial metrology system measures 

straightness and angular error motions over the travel length 

of 0.32 m with standard uncertainties of 0.7 µm and 3.0 µrad, 

respectively. The laser-based system is used for verification 

and validation (V&V) of the IMU-based results. 

 

Figure 2. (a) Linear axis testbed and (b) top view of IMU 

without its lid. 

 

For the detection of both translational and rotational motions, 

the IMU contains three accelerometers and one triaxial rate 

gyroscope, as seen in Figure 2(b). Table 1 outlines key 

specifications of the IMU sensors. Individual sensors were 

used to obtain sufficiently low noise, despite the larger sensor 

volume compared to a single 6-DOF IC sensor. 

Table 1. Specified properties of sensors used in the IMU 

Sensor Bandwidthᵃ Noise 

Accelerometer 0 Hz to 1800 Hz 4.0 (μm/s2)/√Hz 

from 0 Hz to 100 Hz 

Rate Gyroscope 0 Hz to 200 Hz 35 (μrad/s)/√Hz 

ᵃ frequencies correspond to half-power points, also known as 3 dB 

points 

Consequently, these sensors enable the estimation of 6-DOF 

motion. A typical machine tool has three linear axes, which 

means that a total of 18 (= 6 × 3) translational and angular 

motion errors exist. These errors are major contributors to the 

position-dependent tool-to-workpiece errors. Figure 3 shows 

these six errors that change with axis degradation. As the 
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carriage is positioned along the X axis, it experiences three 

translational errors from its nominal path: one linear 

displacement error (𝐸XX ) in the X-axis direction and two 

straightness errors ( 𝐸YX  and 𝐸ZX ) in the Y- and Z-axis 

directions. The carriage also experiences three angular errors 

(𝐸AX, 𝐸BX, and 𝐸CX) about the X-, Y-, and Z-axes. 

 

Figure 3. Translational and angular errors of a component 

commanded to move along a (nominal) straight-line 

trajectory parallel to the X-axis. 

Small levels of degradation of linear axes are expected and 

allowed, but there are limits specified for axis errors. ISO 

10791-2 (International Organization for Standardization, 

2001) specifies the tolerances for linear axis errors of vertical 

machining centers. As shown in Table 2, the acceptable 

straightness error is limited to 20 μm and the acceptable 

angular error is limited to 60 μrad. A test uncertainty ratio 

(TUR) of at least 4:1 is deemed to be acceptable, which 

means that straightness and angular error measurement 

uncertainties of 5 μm and 15 μrad, respectively, are 

acceptable based on the tolerances outlined in Table 2. 

Table 2. Tolerances for linear axis errors of vertical 

machining centers. 

Error Tolerance* 

Straightness 20 μm 

Angular (Pitch, Yaw, or Roll) 60 μrad 

* for axes capable of 1 meter of travel, according to ISO 10791-2 

(International Organization for Standardization, 2001) 

3. IMU-BASED METHOD AND GENERAL RESULTS 

As outlined in Figure 1, the IMU-based method relies on 

fusion of data collected at three programmed speeds of the 

carriage: Fast speed ( 1  0.5 m/s), Moderate speed ( 2  
0.1 m/s), and Slow speed ( 3  0.02 m/s). The different 

speeds allow for sensing of repeatable error motions, 

composed of low to high spatial frequencies, within different 

temporal bandwidths. Such a process takes advantage of the 

enhanced signal-to-noise and lower sensor drift at faster 

speeds, while taking advantage of the detection of higher 

spatial frequencies at slower speeds without violating sensor 

bandwidths. As seen in Figure 1, matching the spatial cutoff 

frequencies enables the data fusion, while filtering allows for 

the attenuation of significant modal excitations, especially 

resulting from the initial and final accelerations during the 

Fast speed cycle (Vogl, Donmez & Archenti, 2016). 

Figure 4 shows the typical convergence of an estimated 

straightness error motion and an estimated angular error 

motion with increasing number of runs for averaging. As seen 

in Figure 4, 10 runs is usually sufficient for convergence 

within 5 μm or 15 μrad, which means the IMU-based method 

has the potential to estimate geometric motion errors with a 

test uncertainty ratio (TUR) of at least 4:1. 

 
Figure 4. Typical convergence of (a) an estimated 

straightness error motion (via accelerometer data) and (b) an 

estimated angular error motion (via rate gyroscope data) with 

increasing number of runs for averaging (from 5 to 50). 

 
Figure 5. Example of converged (a) linear positioning error 

motion, (b) straightness error motion, and (c) angular error 

motion for various sensing methods. 
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Figure 5 compares the laser-based measurement and IMU-

based results; the standard deviations of the differences are 

11 µm, 2.3 µm, and 13 µrad for the linear positioning, 

straightness, and angular error motions, respectively. 

4. TESTBED EXPERIMENTATION 

Figure 6(a) shows how a linear axis rail was deformed with 

shims to simulate low spatial frequency degradations of a 

machine tool axis. The entire rail was raised with shims so 

that the center shims could be changed without loosening 

more than one screw (the center rail screw). Measurements 

for each case were taken with the reference- and IMU-based 

systems, resulting in the Y-axis straightness error motions 

seen in Figure 6(b) and Figure 6(c), respectively. The IMU-

based method is able to detect the approximately 5 µm 

change in straightness from Case 0 to Case 4, as verified by 

the reference measurements. 

 
Figure 6. (a) Experimental setup to represent low-frequency 

degradations of a guideway rail, resulting in changes in 

straightness error motion (𝐸  ) observed by the (b) laser-

based reference system and the (c) IMU (data averaged for 

50 runs). 

One approach for investigating degradation of linear axes is 

to use filtering to focus on certain sources of errors, such as 

surface pitting of the rails. Specifically, low-frequency 

components can be neglected through high-pass filtering. 

Towards this end, Figure 7(a) shows data smoothed via use 

of a linear Savitzky-Golay smoothing filter (The MathWorks 

Incorporated, 2015). The frame size for the Savitzky-Golay 

filter was chosen to be 2 cm, which is large compared to 

millimeter-sized defects. Thus, the high-pass filtered data is 

representative of many defects caused by wear. In Figure 

7(a), the error motion (‘No filter’) is filtered via the Savitzky-

Golay filter to produce low-pass filtered data (‘Low-pass’), 

and the high-pass filtered data (‘High-pass’) is the 

complement of the low-pass filtered data; the low-pass and 

high-pass filtered data sum to yield the unfiltered error 

motion. 

This filtering process can be applied to any linear axis error 

motion. Figure 7(b) shows typical high-pass filtered data for 

𝐸CX for various numbers of runs for averaging (from 5 to 50), 

where hp(𝐸CX) is the high-pass filtered data of 𝐸CX. As seen 

in Figure 7(b), convergence for hp(𝐸CX) is achieved to within 

5 µm (TUR = 4) in less than 10 runs for averaging. 

Furthermore, the high-pass filtered error motion reveals 

influences from the ball bearings in the trucks. Each ball has 

a diameter of about 4 mm, which means that each ball rolls 

on its rail with a ball-passing distance of 12.5 mm (the ball 

circumference). Figure 7(b) shows how the combined 

influence of these balls creates a net error motion with 

significant components dependent upon the ball-passing 

distance. 

 
Figure 7. (a) Yaw error motion (𝐸CX) separated into low- and 

high-pass components, and (b) the high-pass component of 

𝐸CX for various number of runs for averaging (from 5 to 50). 

5. IMU FOR INDUSTRIAL APPLICATION 

The IMU seen in Figure 2 was created for testing of the 

method within the linear axis testbed. For industrial 

application, the IMU should be physically smaller and more 

economical while still satisfying the measurement needs. 

Consequently, for application on machine tools, an 

‘industrial IMU’ was created that is about 73% smaller than 

the ‘testbed IMU’. As seen in Figure 8, the industrial IMU is 

about 9 cm long and contains a triaxial accelerometer and a 

triaxial rate gyroscope. The bandwidths and noise properties 

of these sensors are seen in Table 3. The rate gyroscope in the 

industrial IMU is identical to the one used in the testbed IMU. 

In contrast, the three uniaxial accelerometers seen in Figure 
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2(b) have been replaced with a triaxial accelerometer seen in 

Figure 8(b). This change had many advantages: the reduction 

of space required for acceleration sensors, the elimination of 

the L-bracket for accelerometer mounting, and a significant 

reduction of sensor cost. However, the change also had some 

disadvantages, specifically the reduction of accelerometer 

bandwidth from 1800 Hz to 500 Hz and the 5-fold increase 

of accelerometer noise from 4.0 (μm/s2)/√Hz to 20 

(μm/s2)/√Hz. 

 

Figure 8. (a) Isometric view of industrial IMU and (b) top 

view of industrial IMU without its lid. 

 

Table 3. Properties of sensors in industrial IMU 

Sensor Bandwidthᵃ Noise 

Accelerometer 0 Hz to 500 Hz 20 (μm/s2)/√Hz 

Rate Gyroscope 0 Hz to 200 Hz 35 (μrad/s)/√Hz 

ᵃ frequencies correspond to half-power points, also known as 3 dB 

points 

According to simulations of the data fusion process, the 

accelerometer used in the industrial IMU will result in 

approximately twice as much uncertainty in straightness 

errors as that for the testbed IMU. As seen in Figure 9, the 5-

fold increase of accelerometer noise from 4.0 (μm/s2)/√Hz 

(for the testbed IMU) to 20 (μm/s2)/√Hz (for the industrial 

IMU) should result in an approximate 2-fold increase in 

straightness uncertainty. Figure 9 shows that as the 

accelerometer noise decreases, the uncertainty decreases to a 

limit caused by noise of the data acquisition (DAQ) 

equipment. Experimental data will be collected to confirm the 

slower rate of convergence for the industrial IMU. 

 
Figure 9. Simulated uncertainty for straightness error motions 

due to data fusion process with accelerometer noise and data 

acquisition noise. 

6. CONCLUSIONS 

Manufacturers need efficient and robust methods for 

diagnosis of machine tool linear axes with minimal 

disruptions to production. Towards this end, a new IMU-

based method was developed for linear axis diagnostics. 

Measurements from accelerometers and rate gyroscopes are 

used to identify changes in translational and angular error 

motions due to axis degradation. Data is fused in the spatial 

frequency domain via filtering in order to include both low- 

and high-frequency error motions while excluding significant 

modal excitations. 

A linear testbed was used to verify and validate the IMU-

based method through use of a laser-based system for 

measurement of the geometric axis performance. The IMU-

based results typically converge within 5 μm or 15 μrad when 

using 10 runs for averaging, needed for the estimation of 

changes in geometric motion errors with test uncertainty 

ratios of at least 4:1. 

Future tests will reveal the effectiveness of the new IMU-

based method for on-machine application through use of an 

‘industrial IMU’. The IMU and the laser-based system (for 

V&V) will be utilized on various machine tools within the 

National Institute of Standards and Technology (NIST) 

Fabrication Technology machine shops. Metrics will be 

defined based on the collected data to quantify machine tool 

linear axis degradation, to inform the user of the magnitude 

and location of wear and any violations of performance 

tolerances. If the data collection and analysis are integrated 

within a machine controller, the process may be streamlined 

for the optimization of maintenance, supporting the 

development of self-diagnosing smart machine tools. When 

coupled with existing data exchange and formatting 

standards, verified and validated data from an ‘industrial 

IMU’ could provide manufacturers and machine tool 

operators with near-real-time equipment health, diagnostic, 

and prognostic intelligence to significantly enhance asset 

availability and minimize unscheduled maintenance. 
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A by-product of this research is that IMU-related 

experimentation across multiple machines is likely to 

highlight differences in equipment health between different 

machine tools. This information can be coupled with 

equipment performance metrics and quality data (resultant 

from part inspection) to enable the prediction of future 

machine performance and part quality based upon current and 

projected equipment health. Ultimately, this research has the 

potential to have substantial impact within the manufacturing 

community. 
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