
The purpose of a registration procedure is to determine 
the transformation between two coordinate frames: the 
working frame (from which 3D data are transformed) 

and the destination frame (to which the data are transformed). 
In point-based, rigid-body registration, the transformation is 
calculated from measurements of the same physical points 
acquired in both frames. These two sets of corresponding 
points are called fiducials, and the quality of registration is 
frequently gauged by the root mean square (RMS) of distances 
between the fiducials measured in the destination frame and 
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corresponding fiducials transformed from the working frame. 
However, in practical applications another metric is more 
useful: RMS of distances between targets measured in the des-
tination frame and the corresponding targets transformed from 
the working frame. Targets are points to which registration 
transformation is applied, but they are not used to calculate 
the parameters of the transformation. Thus, smaller target’s 
RMS would correspond to a more accurate registration. Noisy 
measurements of fiducials in both frames yield noisy registra-
tion parameters, and they cause the uncertainty of the target 

Precision vs. Accuracy Dilemma in Point-Based  
Rigid-Body Registration
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 (Equation 3)

where {TX}K is a set of K target points in the working frame 
and {TY}K is a set of corresponding targets in the destination 
frame. Also, it has been demonstrated (and experimental 
results presented in this article support the finding) that RMSF 
increases with the number of fiducials N used in the registra-
tion.1,2 This is a rather surprising finding as a better fit of the 
model is expected for a larger number of experimental points 
for most least-squared minimization problems. Because of 
this counterintuitive finding, the use of RMSF as the metric 
for the quality of registration may be misleading. In contrast, 
RMST decreases with the number of fiducials N for a given 
set of K targets.
 In many practical applications where the targets {TY}K in 
the destination frame are not measured, RMST in equation 
3 cannot be calculated (i.e., if the targets in the destination 
frame could be measured, then there would be no need to 
perform a registration). Without a reliable gauge of registra-
tion performance, it is impossible to answer questions such 
as, “How many fiducials should be used for registration, and 
where should they be placed in the work volume?”3–8

 To address these questions, there has been much effort made 
to create an analytical formula that could express the target 
registration error as a function of measurable features, such 
as fiducial locations {X}N, {Y}N, target locations {TX}K in the 
working frame, and their corresponding noise characteristics 
(covariance matrixes). Depending on the complexity of the 
noise models for the fiducials, different analytical formulas 
have been developed.9–13 The first,2 based on a zero-mean 
Gaussian noise distribution with fixed variance s2 (the same 
covariance matrix at each fiducial location equal to s2I3×3) 
yielded the following prediction for the mean registration 
error of a single target TRE(TX): 

              (Equation 4)

where dj is the distance of the target TX from the j-th  principal 
axis and fj is the RMS distance of the N fiducials from the j-th  
principal axis (the axes are determined from the singular value 
decomposition (SVD) of the covariance matrix of the fiducial 
locations). TRE in equation 4 has two components. The first 
component (independent of target location TX) is associated with 
the uncertainty of the translation τ; the second term depends on 
the target’s location relative to the fiducials, and it has anisotropic 
dependence. The second component is associated with uncer-
tainty of rotation R. Subsequent, more advanced models of noise 
led to more complex versions of equation 4, but the existence of 
bias in the measured fiducial and target locations have not been 
properly addressed thus far.14

 The above considerations led to the following idea: Instead 
of relying on the usually unavailable errors of the six registra-
tion parameters, it would be more useful to gauge the perfor-
mance of registration in an operational sense by asking, “How 
good is the outcome of transformation of target points?”
 Based on this concept, three versions of RMST as defined 
in equation 3 are calculated. In this study, repeated measure-

point transformed to the destination frame to be larger than 
the uncertainty of the target measured in the working frame. 
The increased uncertainty of transformed targets can be used 
as a measure of registration precision: Smaller increases cor-
respond to more precise registrations.
 In this article, we show that the precision and accuracy of 
the registration depend on the location of the fiducials for the 
general case where the noise is nonhomogeneous, anisotropic, 
and the 3D data contain a bias. The obtained experimental 
results indicate that the configuration of fiducials that yields 
a more accurate registration does not necessarily yield a reg-
istration that has a small uncertainty, and vice versa: The con-
figuration that yields small uncertainties of the transformed 
targets does not necessarily result in accurate registration. 

INTRODUCTION

 Registration is required when some 3D points are acquired 
in one coordinate frame but need to be accessed in another 
frame. Then, the rigid-body transformation (rotation R and 
translation τ) is needed to transform points measured in the 
working frame to the destination frame. The sought transfor-
mation minimizes the following error function RMSF: 

   (Equation 1)

where {X}N is a set of N fiducial points measured in the 
working frame and {Y}N is the set of corresponding fiducials 
measured in the destination frame. The definition of such error 
function is based on the rigid-body assumption: The distance 
between any two points measured in the working frame should 
be equal to the distance between the same two points measured 
in the destination frame: 

|| Xn – Xm || = ||Yn–Ym ||           (Equation 2)

 Due to noise and bias of the measured 3D points, equation 
2 does not hold, and the least-square fitting procedure is used 
to solve the minimization problem seen in equation 1. It seems 
natural to interpret the residual value of the error function as 
a metric for the quality of registration. However, there are 
two types of problems that put in doubt the usefulness of 
this metric. The first type of problem is associated with the 
fundamental characteristics of each measurement: accuracy 
and uncertainty. Quantification of accuracy is based on the 
difference between the measurand and ground truth. However, 
the ground-truth measurements (three angles of rotation R and 
three components of translation vector τ) are generally not 
available: Even if a better instrument is used to measure the 
locations of fiducials, in most cases it cannot be placed in the 
exact same location as the instrument under test. 
 The second type of problem is associated with the actual 
use of registration transformation. Once the registration is 
performed, the transformation is applied to the target points, 
i.e., points that were not used in the registration procedure 
but which are points of interest to the user. Then, the target 
registration error RMST is defined as:



ments of fiducial and target locations in the same experi-
mental conditions were obtained, and targets were measured 
in both frames: working and destination. For each i-th repeat 
measurement of the fiducials {X}N,i and {Y}N,i, the cor-
responding registration transformation {Ri,τi } is found by 
minimizing equation 1 and calculating the corresponding 
residual value of the error function RMSF,i. Then, for each i-th 
registration, the following metrics based on target locations 
are calculated:

(Equation 5) 

(Equation 6)

(Equation 7)

where T̃X,k,i is the i-th instance of the k-th target transformed 
from the working to the destination frame by i-th transforma-
tion {Ri,τi} as follows:

T̃X,k,i  =  Ri TX,k,i +τi           (Equation 8)

and

TREi (Tk)= || T̃X,k,i – TY,k,i ||         (Equation 9)

is the error of the individual k-th target transformed by the 
i-th transformation. 
 The averaged target locations {〈T〉X}K and {〈T〉Y}K are used 
in equation 5; instantaneous, i-th target locations {TX}K,i and  
{TY}K,i measured in both frames are used in equation 6; and only  
{TX}K,i measured in the working frame are used in equation 7. 
Thus, RMSC,i gauges the error of registration caused by pos-
sible bias (in fiducials and targets locations) and noise of the 
fiducials only while RMSG,i is more general as it depends on 
bias and noise in both fiducials and targets; therefore, RMSG,i  
is expected to have larger variation than RMSC,i  Then, the 
mean 〈RMSC〉, 〈RMSG〉, and 〈RMSU〉 are calculated together 
with the corresponding standard deviations σC, σG, and σU. 
 For comparison, the mean of residual values of the error 
function 〈RMSF〉 is also evaluated. The accuracy of registra-
tion as gauged by 〈RMSC〉 or 〈RMSG〉 cannot be determined 
in most practical applications as it requires  the measurement 
of targets in the destination frame. Calculation of 〈RMSU〉 
is possible in most applications as it does not require meas-
urement of targets in the destination frame, and it is a measure 
of registration uncertainty. 〈RMSC〉, 〈RMSG〉, and 〈RMSU〉 
depend on the location of fiducials in the work volume. We 
show that the configuration of fiducials that yields small 
〈RMSU〉 does not necessarily yield small 〈RMSC〉 or 〈RMSG〉. 
The set of fiducials yielding the optimum accuracy may not 
yield optimum precision and vice versa.
 In the next section, a brief description of the experimental 
setup and data collection is provided. Then, data post- 
processing is outlined followed by presentation of the results. 
The final section contains a discussion and conclusions. 
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EXPERIMENT
 The data (locations of 3D points) were acquired using three 
different instruments: System A (a motion-capture system 
based on a network of 2D cameras), System B (a large-scale 
metrology indoor positioning system), and a laser tracker. 
System A had low noise and large bias, System B had higher 
noise relative to System A and very small bias, and the laser 
tracker had very low noise and no bias. In the work volume (3 
m × 3 m × 1.8 m), 125 points were distributed on a semi-regular 
5 × 5 × 5 grid. In addition to these points, a set of 16 points, 
randomly distributed in the work volume, was acquired by the 
three instruments. Different configurations of N points were 
selected from the 125 grid points as fiducials for registrations, 
and the 16 irregularly scattered points were used as targets to 
which registration transformations were applied. Each fiducial 
and target point was measured 200 times by Systems A and 
B (no repeats were acquired by the laser tracker because this 
instrument was considered noise and bias-free for the purposes 
of this study). The acquired data enabled registration between 
three pairs of instruments (A to B, A to the laser tracker, and 
B to the laser tracker). Calibration of Systems A and B, as 
described in the user’s manuals, was performed before the data 
collection had started. However, individual cameras in System 
A were not calibrated, and filtering of streamed data in System 
B was turned off during data collection.

DATA POST-PROCESSING AND RESULTS
 From 200 repeated measurements, the mean location and the 
covariance matrix for each fiducial and target point were cal-
culated. The mean locations were used to check the rigid-body 
assumption for registering the working frame to the destina-

Figure 1. a) Parameter g(j) and b) the mean 〈RMSF (N)〉 
for data acquired by System B and the laser tracker; also, 
the selection of N = j fiducials seen in b) is based on the 

list of ordered g(j) as seen in a) 



tion frame. For that purpose, the distance between two points 
(〈Y〉n,〈Y〉m) measured in the destination frame was compared 
with the distance between the same two points measured in 
the working frame (〈X〉n ,〈X〉m). The difference between the 
distances is:
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Figure 2. a) Mean 〈RMSC (N)〉; b) σC for data acquired 
with System A and laser tracker

Ln,m = ||〈X〉n–〈X〉m || – || 〈Y〉n – 〈Y〉m ||     (Equation 10)

 A large absolute value |Ln,m| indicates that the rigid-body 
assumption is poorly satisfied. For all three pairs of instru-
ments (Systems A and B, A and the laser tracker, B and the 
laser tracker), the smallest | Ln0,m0 | was found out of all pos-
sible | Ln,m | determined for fiducials, and the parameter g(j) 
was calculated as:

g(j) =  (|Lj,n0) | + | Lj,m0 |) ⁄2      (Equation 11)

where j ≠ n0, m0. By sorting g(j) in ascending order, points with 
large g(j) could be identified, and these points would be bad can-
didates for registration. A series of registrations for a decreasing 
number of N fiducials was performed. The first iteration started 
with the full set of M = 125 grid points selected as N fiducials, 
and for 200 repeat measurements of fiducials {X}N,i and {Y}N,i 

(i ≤ 200), the corresponding registration transformations  
{Ri,τi } were determined. For each registration, fiducial registra-
tion error RMSF,i and targets error RMSC,i were calculated. From 
the 200 values, the mean values 〈RMSF〉 , 〈RMSC〉 and the standard 
deviation σC were then calculated. The next iteration used N – 1 
fiducials, after removing the point with the largest parameter 
g(j), to perform the new registration, and 〈RMSF 〉, 〈RMSC〉, 
and σC were recalculated. The iterative process was continued 
until the minimum number of fiducials N = 3 was reached. This 
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last triplet of fiducials contains fiducials (n0, m0) for which  
| L(n0,m0) | is the smallest, and the third fiducial k0 for which g(k0) 
is the smallest. Figure 1 shows example results for data acquired 
with System B and the laser tracker. Figure 1a shows g(j), and 
figure 1b shows the mean 〈RMSF (N)〉 where N is the number of 
fiducials used for registration and is based on g(j). 
 For example, for N = 3, the fiducials used are n0 and m0, and the 
point corresponding to the smallest g(j); for N = 4, the same fidu-
cials as for N = 3 and the point corresponding to the next smallest 
g(j) are used. The plots for System A to the laser tracker and System 
A to System B yield similar characteristics and are not shown.
 Figure 2 shows the results for registering System A to the laser 
tracker. Figure 2a shows the mean 〈RMSC (N)〉, and figure 2b 
shows standard deviation  σC(N). Registration of System B to the 
laser tracker and System A to System B yield similar plots.
 Registrations using all possible triplets of fiducials selected from 
a limited pool of grid points were also performed. The pool was 
limited to the first 60 grid points ordered according to an increasing 
value of parameter g(j). For 60 points, the total possible number of 
triplets is equal to ( 60

3 ) = 34,220. For each triplet, the mean values 
〈RMSF〉, 〈RMSC〉, 〈RMSG〉, 〈RMSU〉, and the standard deviations of 
these values, were determined. The histograms of these values were 
then plotted and can be seen in figure 3.
 From the 34,220 values calculated for each metric, fiducials  
(N = 3) corresponding to the smallest and the median values (rank 
= 1 and 34,220/2 on an ascending list of values) were identified. 
Figure 4 shows values of 〈RMSU〉 determined for the six different 
N = 3 configurations where the first three bars correspond to the 
configuration yielding the smallest values of 〈RMSU〉, 〈RMSC〉, 
and 〈RMSF〉, and the last three correspond to the configuration 
yielding median values of 〈RMSU〉, 〈RMSC〉, and 〈RMSF〉. Similar 
plots for 〈RMSU〉, 〈RMSC〉 can be seen in figure 5.

Figure 3. Histograms of four mean characteristics for registrations using all possible triplets of fiducials from a limited 
pool of grid points; plots in column: a) for registering System A to B; b) System A to laser tracker; c) System B to laser 

tracker; upper row: 〈RMSF〉,  〈RMSC〉, and 〈RMSG〉; lower row: 〈RMSU〉

Figure 4. Mean 〈RMSU〉 for registrations based on six  
different N = 3 fiducials, yielding the: 1) smallest 〈RMSU〉 ; 
2) smallest 〈RMSC〉; 3) smallest 〈RMSF〉; 4) median 〈RMSU〉; 
5) median 〈RMSC〉; 6) median 〈RMSF〉; registrations were 

for: a) System A to B; b) System A to laser tracker; c) 
System B to laser tracker; for m = 3 in a), 〈RMSU〉 is much 

larger, and its numerical value is provided instead
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 From the repeated measurements of fiducials {X}N,i and {Y}N,i, 
the corresponding noisy registration transformations {Ri,τi } were 
determined. Then, a regular grid of M × L points (ϑm,ϕl ) on a unit 
sphere was created (– π ⁄ (2 ≤ ϑm ≤ π ⁄ 2, 0 ≤ ϕl ≤ 2π) and for each 
pair of angles, a corresponding unit vector vm,l was determined as: 

vm,l = [cos ϑm cosϕl , cosϑm sin ϕl ,sinϕl ]       (Equation 12)

 Then, all 200 noisy rotations were applied to vm,l, yielding 200 
noisy vectors wm,l,i = Rivm,l, for which the average unit vector  
〈wm,l〉 was calculated. Once the average vector was known, 
the angles αm,l,i between the i-th and the average vectors were 
calculated as: 

αm,l,i = acos (wm,l,i) • 〈wm,l,i 〉        (Equation 13)

where • is the dot product of two vectors, and the resulting median 
angle σm,l was determined. The procedure was repeated for all 
(ϑm,ϕl) points, m ≤ M = 180, and l ≤ L = 360. Thus, σm,l can be 
viewed as a measure of the angular uncertainty of the transformed 
target point T̃

X (ϑm,ϕl ) = Ri TX (ϑm,ϕl )+τi.
 Then, the average rotation Ravg was calculated15 and the i-th 
rotation was expressed as a composition of  Ravg and a small 
random perturbation ΔRi, which can be evaluated as: 

ΔRi = RT
avg Ri           (Equation 14)

where RT
avg is the transposed matrix of the average rota-

tion. In the axis and angle representation, the smallness of  
ΔRi (ai,ρi ) is gauged by the smallness of the rotation angle ρi 
and ΔRi in a linear approximation as: 
    

       (Equation 15)

 Then, the 3 × 3 covariance matrix of rotations cov(q) was 
calculated as:

                   (Equation 16) 

where demeaned q̅i = qii -qavg, eigenvectors {u1, u2, u3 } and 
eigenvalues {Λ1,Λ2,Λ3} of cov(q) were determined.
 Figures 6a and 7a show the distributions of the angular uncertainty 
(expressed as the median angle σ) on a unit sphere together with the 
directions of the eigenvectors {u1, u2, u3 }. For each unit vector vm,l 
(ϑm,ϕl ), the dimensionless coefficient γm,l was calculated as: 

γ2
m,l (ϑm,ϕl ) = vT

m,l  Γ (〈X〉N,〈Y〉N ) vvm,l       (Equation 17)

where Γ is a 3 × 3 moment of inertia matrix11 calculated from 
the mean locations of N fiducials 〈X〉N and 〈Y〉N acquired in the 
working and destination frame. γ2

m,l is proportional to the rota-
tional part of the squared target error seen in equation 4. Figures 
6b and 7b show the distribution of γ on a unit sphere.
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DISCUSSION AND CONCLUSIONS

 Figure 1 confirms earlier findings1,2 that an increasing 
number N of fiducials used in registration yields larger 
values of 〈RMSF〉. This observation seems to be counterintui-
tive, but we should recall that fiducials were sorted in order 

of increasing value of g(j). Thus, consecutive registrations 
were performed on more and more fiducials of consistently 
worsening quality. However, for mean target errors 〈RMSC〉, 
a reverse trend is observed as 〈RMSC〉, and σC decreases with 
increasing N, as seen in figure 2. Thus, the use of readily avail-
able 〈RMSF〉 as a metric for registration quality as gauged by 
usually unavailable 〈RMSC〉 may be misleading. This conclu-
sion is also supported by the histograms seen in figure 3: The 
histograms of 〈RMSC〉 are shifted right (larger values) when 
compared with the histograms of 〈RMSF〉. Further evidence 
is provided in figures 4 and 5: The configurations of N = 3 
fiducials that yielded the smallest 〈RMSF〉 (configuration m = 
3), yielded very large 〈RMSC〉 and 〈RMSU〉.
 In figures 4 and 5, the triplet of fiducials that yielded 
the smallest 〈RMSC〉 (configuration m = 2 in figure 4) does 
not necessarily lead to the smallest 〈RMSU〉. Similarly, the 
triplet of fiducials that generates the smallest 〈RMSU〉 (con-
figuration m = 2 in figure 5) does not generate the smallest 
〈RMSC〉. For m = 1 and m = 2, the differences between 
〈RMSU〉 in figures 4c and 〈RMSC〉 in figure 5c are smaller 
than the corresponding differences in figures 4 (a,b) and 
5 (a,b). These differences may be caused by the different 
characteristics of Systems A and B: Average noise for A is 
almost three times smaller than for B (0.059 mm vs 0.163 
mm).16 The bias (gauged by the average error Ln,m in equa-
tion 10 for all possible pairs of grid points (n,m)) is 5.5 mm 
for System A-to-laser tracker instruments and 0.07 mm for 
System B-to-laser tracker instruments. (Note that the laser 
tracker is considered noise- and bias-free in this study). The 
same difference in characteristics of System A and System 
B is responsible for the overlapping histograms of 〈RMSC〉 
and 〈RMSG〉 in figure 3 (a1, b1) and histogram of 〈RMSG〉 
shifted right in figure 3c1).
 When the triplets of fiducials corresponding to the median 
values of 〈RMSC〉, 〈RMSU〉, and 〈RMSF〉 were used, the best 
results, in terms of RMSU and RMSC, are obtained for the 
triplet corresponding to the median of 〈RMSF〉 for all three 
pairs of instruments, System A to System B, System A to laser 
tracker, and System B to laser tracker (figures 4 and 5 for a–c, 
and configuration m = 6). This observation is surprising, but it 

reinforces the finding that the selection 
of fiducials depends on the choice of 
performance metric. It is interesting 
that the configuration, m = 6, yielding 
median 〈RMSF〉, results in 〈RMSC〉 and 
〈RMSU〉, which are only slightly larger 
than their smallest values obtained for 
configuration m = 1, as seen in figures 
4 and 5.
 For a given bias, the distribution 
of target uncertainty caused by the 
rotational component of registra-
tion transformation is different for 
different noise levels. In figure 6, 
the pattern of σm,l distribution cal-
culated from noisy rotations Rj (j ≤ 
200) agree with the pattern of γm,l 
derived from theoretical prediction, 

Figure 5. Mean 〈RMSC〉 for registrations based on six dif-
ferent N = 3 fiducials, yielding the: 1) smallest 〈RMSC〉; 2) 
smallest 〈RMSU〉; 3) smallest 〈RMSF〉; 4) median 〈RMSC〉; 5) 
median 〈RMSU〉; 6) median 〈RMSF〉; registrations were for: 
a) System A to B; b) System A to laser tracker; c) System 
B to laser tracker; for m = 3 in a), 〈RMSC〉 is much larger, 

and its numerical value is provided instead

Figure 6. Angular distribution of the median angle σ in a) and coefficient γ in 
b) calculated for registration of System A to B using a set of N = 5 fiducials; 

directions of the three eigenvectors corresponding to the eigenvalues Λ1 ≤ Λ2 ≤ 
Λ3 of the matrix cov(q) are displayed on both graphs from the same view angle; 

color scale is in [mrad] in a) and dimensionless in b)



as seen in equation 17, based on the average fiducial locations  
〈X〉N and 〈Y〉N. In addition, the eigenvectors of the covariance 
matrix of the rotational component cov(q) are well aligned 
for both distributions (for example, polar caps of small σm,l 
and γm,l are centered around the eigenvector corresponding to 
the largest eigenvalue Λ3). Data obtained by System A (large 
bias, small noise) registered to System B (small bias, large 
noise) were used to create the plots seen in figure 6. Registra-
tion of System B to the laser tracker results in distributions 
very similar to that seen in figure 6. Figure 7 shows the distri-
butions obtained for data acquired by System A and registered 
to the laser tracker. This time, the pattern of σm,l distribution 
differs from the pattern of γm,l. In addition, the directions of 
eigenvectors {u1,u2,u3 } are not aligned with both patterns 
(polar caps of small σm,l and γm,l are not centered around the 
poles defined by the eigenvector u3).
 In conclusion, it seems that the uncertainty of trans-
formed target points 〈RMSU〉 is the best choice for a metric 
gauging the performance of registration. The metric does 
not require measurement of targets in the destination frame. 
The configuration of N fiducials that yields small 〈RMSU〉 
also yields small target error 〈RMSC〉 and 〈RMSG〉. However, 
for measurements with large bias, different configurations 
of fiducials may have to be selected to minimize either the 
uncertainty metric 〈RMSU〉 or the accuracy metrics 〈RMSC〉 
〈RMSG〉.
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Figure 7. Angular distribution of the median angle σ in a) and coefficient γ in b) 
calculated for registration of System A to laser tracker using a set of N = 5 fidu-
cials; directions of the three eigenvectors corresponding to the eigenvalues Λ1 ≤ 
Λ2 ≤ Λ3 of the matrix cov(q) are displayed on both graphs from the same view 

angle; color scale is in [mrad] in a) and dimensionless in b)
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