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Classification of biodegradable materials using QSAR modeling with 

uncertainty estimation 

The ability to determine the biodegradability of chemicals without resorting to 

expensive tests is ecologically and economically desirable. Models based on 

quantitative structure-activity relations (QSAR) provide some promise in this 

direction. However, QSAR models in the literature rarely provide uncertainty 

estimates in more detail than aggregated statistics such as the sensitivity and 

specificity of the model’s predictions. Almost never is there a means of assessing 

the uncertainty in an individual prediction. Without an uncertainty estimate, it is 

impossible to assess the trustworthiness of any particular prediction, which leaves 

the model with a low utility for regulatory purposes. In the present work, a QSAR 

model with uncertainty estimates is used to predict biodegradability for a set of 

substances from a publicly available data set. Separation was performed using a 

partial least squares discriminant analysis model, and the uncertainty was 

estimated using bootstrapping. The uncertainty prediction allows for confidence 

intervals to be assigned to any of the model’s predictions, allowing for a more 

complete assessment of the model that would be possible through a traditional 

statistical analysis. The results presented here are broadly applicable to other 

areas of modeling as well, because the calculation of the uncertainty will clearly 

demonstrate where additional tests are needed. 

Keywords: partial least squares discriminant analysis; uncertainty estimation; 

bootstrap; machine learning; biodegradable materials; QSAR 

1 Introduction 

In recent years, several countries around the world have recognized the need to reduce 

the amount of non-biodegradable materials used to intensify measures for the 

environment and encourage the recycling of materials. An example was the signing of 

the Treaty of Paris by 175 countries in April 2016 for the reduction of carbon dioxide 

emissions and other greenhouse gases. By this initiative, countries compromise to 

establish their own targets for the reduction of greenhouse gases which implies 

indirectly the reduction of the consumption of non-biodegradable materials. This is 

because the decrease provides a smaller amount of material sent to landfills, which 
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reduces the production of greenhouse gases [1-5]. Another factor that contributes to it is 

the increasing use of biodegradable materials due to the results of research related to 

discovery and production of new materials [1, 6-11], as well as the use of alternative 

non-toxic and biodegradable source of energy as biodiesel [12-15].  

Several countries in the world have agencies and regulations responsible for the 

use of chemical substances and evaluation of their potential impacts on both human 

health and the environment, including the Environmental Protection Agency (EPA), 

National Health Surveillance Agency (ANVISA), and the Registration, Evaluation, 

Authorisation and Restriction of Chemicals (REACH). REACH, a regulation of the 

European Chemicals Agency of the European Union, is particularly notable because it 

promotes alternative methods for the hazard assessment of substances in order to reduce 

the number of tests on animals. Such alternative methods include the biodegradability 

predictions of chemicals from quantitative structure-activity relationship (QSAR) 

models. 

Biodegradability is fundamental to the assessment of environmental exposure 

and risk from chemical products. QSAR models can be used to pursue both regulatory 

and chemical design goals. In the literature, various QSAR models have been 

investigated that are intended to predict the ready biodegradability of different 

substances [16-22]. Other authors have examined different methods of selecting 

molecular descriptors [23, 24] and the use of different machine learning algorithms [22, 

25]. In all cases, the model’s performance was quantified using aggregate statistics such 

as sensitivity, specificity, and correlation coefficients [26]. However, it is rarely 

reported by what method, if indeed at all, uncertainty in an individual model output is 

quantified.  Uncertainty in this context means the range of values that can be reasonably 

attributed to an analytical result, considering the level of confidence [27-30]. Without an 
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estimate of the individual prediction uncertainty, the results of these models are not 

complete.  

The objective of this work is to calculate the uncertainty of the predictions of the 

classification of a QSAR model using the residual bootstrap method to predict the ready 

biodegradability of chemicals using literature data [31]. The uncertainty then provides 

an estimate of the reliability of the PLS model’s predictions. 

2 Theoretical Background 

2.1 Partial least squares discriminant analysis estimation of a QSAR model 

Partial least squares regression discriminant (PLS-DA) is a classification method in 

multivariate analyses that combines the properties of partial least squares regression 

with the discrimination power of classification techniques [32]. This method searches 

for latent variables that are a linear combination of the independent variables X which 

have the maximum covariance with the dependent variables Y [33-37]. 

The general underlying PLS-DA model is given by 

 T X TP E , (1) 

and 

 
T Y = UQ F , (2)  

where X is the matrix of independent variables, in this case the molecular descriptors; Y 

is the matrix of dependent variables, which has values of either 0 or 1 to indicate to 

which class the corresponding sample belongs. T and U are orthogonal score matrices 

of X and Y respectively. P and Q are the corresponding loadings matrices that describe 

the latent variables, and E and F are the residual terms. 
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The T scores are orthogonal and estimated as a linear combination of the X 

variables [38, 39] with weighting coefficients W* which are obtained by successive 

optimizations. Then, the T matrix can be determined using  

 *
T = XW . (3) 

The T scores are then a set of latent variables within X that are good predictors of Y, 

assuming that Y and X are well-described by the same latent variables. Using Equation 

(3), Equation (2) can be rewritten as 

 
* T   Y XW Q F Xβ F . (4) 

A full description of the PLS-DA regression is given by Wold et al. [39]. 

      The classification values obtained by the PLS-DA model are real numbers given by 

Eq. 4, not reading exactly 0 or 1. The results are scattered in a range of values for each 

class. Thus, it is necessary to establish a threshold value, ybound, to define the class 

limits. There are several ways to set the threshold, for example, such as Bayes’ theorem 

[40], receiver-operating characteristic (ROC) curves [41], threshold-based classification 

rule [42, 43] or by establishing confidence limits for each sample classified. These 

confidence intervals can be calculated by re-sampling techniques, such as bootstrap. 

2.2 Bootstrap-based uncertainty estimation 

Bootstrap is a test based random sampling with replacement [44, 45] which allows 

confidence intervals to be placed on a model’s predictions based on uncertainties in the 

input data. In this case, it provides confidence interval of the classification results of 

substances in a given class. 
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In this paper, residual bootstrap was used to calculate the uncertainties in the 

biodegradability prediction of the PLS-DA model. The procedure was originally 

presented by Almeida et al. [33] and will be briefly described. 

According to Almeida et al., [33] it is necessary to calculate the residuals of the 

PLS-DA model using 

 

*

1 fD N




F
F

, (5) 

where F* is the weighted residual of the model, F is the residual term from Equation (2) 

given by  F Y Xβ , Df is the number of pseudo degrees of freedom (see [46]), and N 

is the number of calibration samples (substances, in this case).  

Once the residual calculations are complete, the bootstrapping procedure is as 

follows. First, the substance a whose uncertainty is being calculated is removed from 

the model. A new dependent variable matrix Y* is then generated by replacing the 

remaining Y values with the model predicted PLSDA Y Xβ  values. The residuals are 

assumed to be representative of the uncertainty in the model, and so a new random 

residual vector *

bootF   is generated by bootstrapping. The YPLSDA values are perturbed by 

adding the bootstrapped residual F*,  

 
* *

PLSDA boot Y Y F
 . (6) 

Then, a new PLS-DA model can be calculated from Y*, with a new corresponding 

regression coefficient (β*) and new predictions * *ˆ Y Xβ . The confidence interval for 

substance a is estimated based on the difference between the bootstrap predicted values 

for substance a, 
*ˆ

a aY  X β , and the PLS predicted value ,PLSDAaY , according to 
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 *

,PLSDA
ˆ ˆ
a a aF Y Y   . (7) 

In the case of a 95% confidence interval, the lower bound, denoted lowc
, is the 2.5 

percentile of 
*ˆ

aF
 and the upper bound, upc

, is the 97.5 percentile. More details about 

bootstrap can be found in the literature [47]. 

2.3 Uncertainty application and misclassification probability 

Calculating the misclassification probability proceeds as follows. First, the 

classifications Ya,pred are treated as being normally distributed random variables with 

mean equal to Ya,PLSDA and standard deviation  1
4 low upa c c   . The confidence 

intervals here are not symmetric but they are close enough for this to be a reasonable 

approximation. As stated earlier, a given sample a is identified as class 0 if its Ya,PLSDA 

value is less than the threshold value ybound. The probability that sample a is class 0, 

denoted P0, is equivalent to the probability that Ya,pred is less than ybound. That probability 

is then given by the cumulative distribution function for the normal distribution, that is, 

 
  bound ,PLSDA

0 ,pred bound

1
1 erf

2 2

a

a

a

y Y
P P Y y



  
      

    . (8) 

Likewise, the probability that sample a is class 1, denoted P1, is equal to 1 – P0. The 

probability of a misclassification, Pmisclass, can then be determined based on the actual 

classification of the sample, Ya,, using 

 misclass 1 aYP P . (9) 

The misclassification probabilities can then be used to assess the trustworthiness of the 

model. If a model has large Pmisclass for the misidentified samples, then using the model 
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would mean that we would likely make incorrect claims with a high degree of false 

assurance. Such a model would not be very useful in a regulatory context. Likewise, if 

the model has large Pmisclass for the correctly-identified samples, our correct claims 

would be assigned a low degree of assurance, which is also undesirable for regulation. 

3 Implementation 

3.1 Data Sets 

In the present work, QSAR models with estimation of uncertainty were explored to 

discriminate chemicals into two classes: RB (readily biodegradable) and NRB (not 

readily biodegradable). The data used in this study can be obtained from the publicly-

available QSAR biodegradation data set described by Mansouri, et al. [31]. A version of 

the data set is included in the supplementary information.   

The data are of three sets of substances: 837 substances used for the calibration 

stage (284 RB and 553 NRB), 218 substances for the validation stage (72 RB and 146 

NRB) and 670 substances for the external validation stage (479 RB and 191 NRB). All 

the data have 41 molecular descriptors. According to Mansouri, et al. [31], using only 

23 descriptors among the 41 descriptors it is possible to improve the performance of the 

model. Thus, only these 23 recommended molecular descriptors were used to generate 

the model (Table 1). 

3.2 Procedure and Software 

The PLS-DA models from PLS Toolbox 8.0 and from scikit-learn 0.17 were used to 

analyze the data. Uncertainty in the PLS model predictions was estimated by the 

residual bootstrap technique. 104 bootstrap evaluations were used and the analysis was 

repeated 15 times to ensure the reliability of the bootstrap results.  
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A dummy matrix Y was created with 0 for readily biodegradable and 1 for not 

readily biodegradable substances. The optimal number of latent variables for the PLS-

DA model was determined by cross-validation using the leave-one-out criterion [40] in 

order to avoid overfitting or lack of fit. The threshold for the class was calculated using 

the plsthres function from PLS Toolbox [40] and a similar function in Python. The 

confidence interval estimations for each sample were obtained with residual bootstrap, 

according Almeida et al. [33] and as described in Section 2. 

The structural data were preprocessed through autoscaling [40], because the 

units on each descriptor are different and have different ranges of variation. 

Calculations were performed in Anaconda Python 4.0.0 and in Matlab R2015b. The 

results presented here are from Anaconda, but the Matlab results were largely similar. 

The Python code to conduct the analysis and generate the figures has been included in 

the supplementary information. 

4 Results and Discussion 

The performance of the PLS-DA model was rated using the following standard 

statistical parameters (Table 2): root mean squared error (RMSE), Pearson's correlation 

coefficient, sensitivity (percentage of true positives, i.e., samples were correctly 

assigned to the RB class), specificity (percentage of true negatives, i.e., samples that 

were correctly assigned to the NRB class) and misclassification error, ME, defined as 

 
,PLSDAa a

a

Y Y
ME

Y




.  (10) 

where Ya,PLSDA represents the PLS-DA predicted class observed, and Ya denotes the 

reference class. 
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The model developed can be said that to be accurate, based on the aggregate 

statistics (Table 2). In particular, it has Pearson's correlation coefficient values 

considered high for this dataset (near 0.65) and low error values (represented by RMSE 

and ME (%) values). The model presented specificity and sensitivity close to 0.8, 

meaning that the majority of substances were classified according to their correct class.  

In addition to the global statistics of the model, we examine the scores and 

loadings of the PLS-DA model developed (Figure 1). The scores for the first two latent 

variables of the PLS-DA model show how the calibration and validation sets are 

separated by the model (Figure 1a) and the loadings shows the influence of each 

descriptor in the separation of substances (Figure 1b). Most RB substances are in the 

region of the scores plot where the first and second latent variable are both negative 

(Figure 1a), while the majority of NRB substances are in other regions. Through the 

analysis of the graph of loadings plot in Figure 1b, it is possible to explain this 

separation. 

 The molecular descriptors related to the presence of oxygen (nO, F03 [C-O], 

and SDO), LOC, and TI2_L have negative loadings with respect to the second latent 

variable (Figure 1b), which corresponds to the scores of the RB substances (Figure 1a). 

These descriptors are therefore likely responsible for the separation of RB substances. 

Descriptors involving cycles, halogens, and nitrogen have positive loadings with respect 

to the second latent variable, and the molecular matrix-based descriptors have loadings 

above a value of about 0.2 with respect to the first latent variable. These descriptors are 

therefore likely responsible for the separation of the NRB substances, as the NRB 

substances have scores similar to these descriptors’ loadings. The results shown here are 

consistent with the literature [48, 49], where it has been shown that materials which 
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have functional groups with oxygen atoms increase biodegradation. On the other hand, 

the presence of atoms such as nitrogen and halogens decrease biodegradation. 

The scores of the external validation set follow the same trend as the separation 

found for the set of calibration and validation substances (Figure 2), i.e. the RB 

substances are mainly located on the negative region of the first and second latent 

variable. 

Through analysis of the detailed results of the PLS-DA model (Figure 1 and 

Figure 2), it is possible to have a general vision of the performance of the model 

developed according to Mansouri [31]; however it is not possible to estimate the 

uncertainty of the classification of each sample individually. That is, most substances 

were classified according to their respective class and some substances were 

misclassified, but the reliability of that classification is not known. This is the 

motivation behind the use of residual bootstrapping to calculate the individual 

classification uncertainties.  

The bootstrapping process allows us to attach classification uncertainties and 

misclassification probabilities to the PLS-DA model results. The PLS-DA-predicted 

classifications, YPLSDA, can be plotted along with the corresponding confidence intervals 

and compared the threshold value, ybound, (Figure 3). In particular, the samples are 

ordered by the probability of classification as NRB, P0, (Equation 8). This information 

is used to calculate the misclassification probabilities Pmisclass (Equation 9), plotted with 

respect to the YPLSDA values and also including ybound (Figure 4). Substances with 

confidence intervals above ybound were classified as RB, which corresponds to P0 << 1. 

Those substances with confidence intervals below ybound were classified as NRB, 

corresponding to 1 – P0 << 1. Likewise, these are the substances that have Pmisclass close 

to either 0 or 1, because the model allows us to make confident assertions about how 
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these substances should be classified. Those substances with confidence intervals that 

include ybound could not be confidently classified in either group. Such substances have a 

P0 and therefore a Pmisclass approaching 0.5. In these cases, the model does not permit a 

confident assertion about the classification of the substance. Here we have a new type of 

results caused by the uncertainty of calculation, that is, substances that are not possible 

to classify into any of the two classes. 

Through the uncertainty calculation, it is possible to question the classification 

of a particular substance. An example of this is the classification of the substance 200 

belonging to the validation set in the NRB class (Figure 3b). If the prediction the 

uncertainty had not been calculated, this substance would be considered to belong to the 

NRB class, however due to the greater rigor imposed by the uncertainty calculation, this 

substance cannot be classified in any of the two classes, because of its uncertainty 

intersects with limit between the classes 

Similar results can also be seen, for example, with the validation substance 190 

(Figure 3b) and the external validation substances 287, 288, 444, and 451 (Figure 3c), 

which likewise cannot be classified in either of the two classes. This type of result 

provides a more rigorous classification of substances. Indeed, when the uncertainty of 

the result of classification is not calculated, there are only two types of classifications 

possible: correctly classified substances and incorrectly classified substances. 

5 Conclusions 

 

A partial least squares discriminant analysis (PLS-DA) model was used to determine the 

biodegradability of substances based on quantitative structure-activity relations 

(QSAR). In addition, the classification uncertainty for this model was estimated using 

bootstrapping. Traditional modeling allows the substances to be distinguished into two 



13 

 

classes (readily and not readily biodegradable). Considering the uncertainty in 

classification allows for a third classification, those substances about which no 

confident statement can be made. 

The uncertainty analysis methodology used here permits a more in-depth 

evaluation of the QSAR model that would be possible using the standard statistical 

parameters. A standard analysis would allow some conclusion about the accuracy of the 

model as a whole, but it would not allow any statement about the reliability of any 

particular prediction. The uncertainty analysis, by contrast, allows for an evaluation of 

the precision of the model’s predictions, thereby allowing us to say that the model 

cannot confidently classify certain substances. Estimating the uncertainty makes it 

possible to obtain a conclusion that is more reliable and complete. These results 

highlight the challenges associated with developing reliable and easily applied 

acceptability criteria for the regulatory use of QSAR models, and it is hoped that a more 

widespread adoption of uncertainty analysis in these models will help to address some 

of these challenges. 

Disclaimer 

Certain commercial equipment, instruments, or materials are identified in this paper in 

order to specify the experimental procedure adequately. Such identification is not 

intended to imply recommendation or endorsement by the National Institute of 

Standards and Technology, nor is it intended to imply that the materials or equipment 

identified are necessarily the best available for the purpose.  



14 

 

References: 

[1] A.V. Colling, L.B. Oliveira, M.M. Reis, N.T. da Cruz, and J.D. Hunt, Brazilian 

recycling potential: Energy consumption and green house hases reduction, 

Renew. Sust. Energ. Rev. 59 (2016), pp. 544-549. 

[2] D. Allinson, K.N. Irvine, J.L. Edmondson, A. Tiwary, G. Hill, J. Morris, M. 

Bell, Z.G. Davies, S.K. Firth, J. Fisher, K.J. Gaston, J.R. Leake, N. McHugh, A. 

Namdeo, M. Rylatt, and K. Lomas, Measurement and analysis of household 

carbon: The case of a UK city, Appl. Energy 164 (2016), pp. 871-881. 

[3] G. Lazzerini, S. Lucchetti, and F.P. Nicese, Green House Gases(GHG) 

emissions from the ornamental plant nursery industry: a Life Cycle 

Assessment(LCA) approach in a nursery district in central Italy, J. Clean Prod. 

112 (2016), pp. 4022-4030. 

[4] A.D. Adam, and G. Apaydin, Grid connected solar photovoltaic system as a tool 

for green house gas emission reduction in Turkey, Renew. Sust. Energ. Rev. 53 

(2016), pp. 1086-1091. 

[5] S.W. Goh, J.S. Zhang, Y. Liu, and A.G. Fane, Membrane Distillation Bioreactor 

(MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater 

reclamation, Chemosphere 140 (2015), pp. 129-142. 

[6] L.H. Meng, C.C. Gao, L. Yu, G.P. Simon, H.S. Liu, and L. Chen, Biodegradable 

composites of poly(butylene succinate-co-butylene adipate) reinforced by 

poly(lactic acid) fibers, J. Appl. Polym. Sci. 133 (2016), p. 6. 

[7] R.G. Wang, T.G. Ren, Y.X. Bai, Y.Z. Wang, J.F. Chen, L.Q. Zhang, and X.Y. 

Zhao, One-pot synthesis of biodegradable and linear poly(ester amide)s based 

on renewable resources, J. Appl. Polym. Sci. 133 (2016), p. 6. 

[8] X.Y. Peng, Y.X. Zhang, Y. Chen, S. Li, and B. He, Synthesis and crystallization 

of well-defined biodegradable miktoarm star PEG-PCL-PLLA copolymer, 

Mater. Lett. 171 (2016), pp. 83-86. 

[9] F.C. Ma, S. Chen, P. Liu, F. Geng, W. Li, X.K. Liu, D.H. He, and D. Pan, 

Improvement of beta-TCP/PLLA biodegradable material by surface 

modification with stearic acid, Mater. Sci. Eng. C-Mater. Biol. Appl. 62 (2016), 

pp. 407-413. 

[10] Y.H. Wu, X.G. Luo, W. Li, R. Song, J. Li, Y. Li, B. Li, and S.L. Liu, Green and 

biodegradable composite films with novel antimicrobial performance based on 

cellulose, Food Chem. 197 (2016), pp. 250-256. 

[11] P.K. Qi, Y. Yang, S. Zhao, J. Wang, X.Y. Li, Q.F. Tu, Z.L. Yang, and N. 

Huang, Improvement of corrosion resistance and biocompatibility of 

biodegradable metallic vascular stent via plasma allylamine polymerized 

coating, Mater. Des. 96 (2016), pp. 341-349. 

[12] S. Soltani, U. Rashid, R. Yunus, and Y.H. Taufiq-Yap, Biodiesel production in 

the presence of sulfonated mesoporous ZnAl2O4 catalyst via esterification of 

palm fatty acid distillate (PFAD), Fuel 178 (2016), pp. 253-262. 

[13] J. Ahmad, S. Yusup, A. Bokhari, and R.N.M. Kamil, Biodiesel Production from 

the High Free Fatty Acid "Hevea brasiliensis" and Fuel Properties 

Characterization, in Process and Advanced Materials Engineering, I. Ahmed 

ed., Trans Tech Publications Ltd, Stafa-Zurich, 2014, pp. 897-900. 

[14] S. Chattopadhyay, and R. Sen, Fuel properties, engine performance and 

environmental benefits of biodiesel produced by a green process, Appl. Energy 

105 (2013), pp. 319-326. 



15 

 

[15] L.V. Rasmussen, K. Rasmussen, and T.B. Bruun, Impacts of Jatropha-based 

biodiesel production on above and below-ground carbon stocks: A case study 

from Mozambique, Energ. Policy 51 (2012), pp. 728-736. 

[16] A. Fernandez, R. Rallo, and F. Giralt, Prioritization of in silico models and 

molecular descriptors for the assessment of ready biodegradability, Environ. 

Res. 142 (2015), pp. 161-168. 

[17] L. Ceriani, E. Papa, S. Kovarich, R. Boethling, and P. Gramatica, Modeling 

ready biodegradability of fragrance materials, Environ. Toxicol. Chem. 34 

(2015), pp. 1224-1231. 

[18] P. Xu, W.C. Ma, H.J. Han, S.Y. Jia, and B.L. Hou, Quantitative structure-

biodegradability relationships for biokinetic parameter of polycyclic aromatic 

hydrocarbons, J. Environ. Sci. 30 (2015), pp. 180-185. 

[19] R. Boethling, Comparison of ready biodegradation estimation methods for 

fragrance materials, Sci. Total Environ. 497 (2014), pp. 60-67. 

[20] A. Lombardo, F. Pizzo, E. Benfenati, A. Manganaro, T. Ferrari, and G. Gini, A 

new in silico classification model for ready biodegradability, based on 

molecular fragments, Chemosphere 108 (2014), pp. 10-16. 

[21] A. Sabljic, and Y. Nakagawa, Biodegradation and Quantitative Structure-

Activity Relationship (QSAR), in Non-First Order Degradation and Time-

Dependent Sorption of Organic Chemicals in Soil, W. L. Chen, A. Sabljic, S. A. 

Cryer and R. S. Kookana eds., American Chemical Society, Washington, 2014, 

pp. 57-84. 

[22] S. Vorberg, and I.V. Tetko, Modeling the biodegradability of chemical 

compounds using the Online CHEmical Modeling Environment (OCHEM), Mol. 

Inf. 33 (2014), pp. 73-85. 

[23] M.P. Gonzalez, C. Teran, L. Saiz-Urra, and M. Teijeira, Variable selection 

methods in QSAR: an overview, Current topics in medicinal chemistry 8 (2008), 

pp. 1606-27. 

[24] A. Yasri, and D. Hartsough, Toward an optimal procedure for variable selection 

and QSAR model building, J. Chem. Inf. Model. 41 (2001), pp. 1218-27. 

[25] S. Gupta, and J. Aires-De-Sousa, Comparing the chemical spaces of metabolites 

and available chemicals: models of metabolite-likeness, Mol. Divers. 11 (2007), 

pp. 23-36. 

[26] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: 

Data Mining, Inference, and Prediction, Second ed., Springer-Verlag, 2009. 

[27] W. Bich, Error, uncertainty and probability, in Metrology and Physical 

Constants, E. Bava, M. Kuhne and A. M. Rossi eds., 2013, pp. 47-73. 

[28] W. Bich, Revision of the 'Guide to the Expression of Uncertainty in 

Measurement'. Why and how, Metrologia 51 (2014), pp. S155-S158. 

[29] W. Bich, M.G. Cox, R. Dybkaer, C. Elster, W.T. Estler, B. Hibbert, H. Imai, W. 

Kool, C. Michotte, L. Nielsen, L. Pendrill, S. Sidney, A.M.H. van der Veen, and 

W. Woger, Revision of the 'Guide to the Expression of Uncertainty in 

Measurement', Metrologia 49 (2012), pp. 702-705. 

[30] W. Bich, M.G. Cox, and P.M. Harris, Evolution of the 'Guide to the Expression 

of Uncertainty in Measurement', Metrologia 43 (2006), pp. S161-S166. 

[31] K. Mansouri, T. Ringsted, D. Ballabio, R. Todeschini, and V. Consonni, 

Quantitative Structure–Activity Relationship Models for Ready Biodegradability 

of Chemicals, J. Chem. Inf. Model. 53 (2013), pp. 867-878. 

[32] D. Ballabio, and V. Consonni, Classification tools in chemistry. Part 1: linear 

models. PLS-DA, Anal. Method. 5 (2013), pp. 3790-3798. 



16 

 

[33] M.R. de Almeida, D.N. Correa, W.F.C. Rocha, F.J.O. Scafi, and R.J. Poppi, 

Discrimination between authentic and counterfeit banknotes using Raman 

spectroscopy and PLS-DA with uncertainty estimation, Microchemical Journal 

109 (2013), pp. 170-177. 

[34] B. Worley, S. Halouska, and R. Powers, Utilities for quantifying separation in 

PCA/PLS-DA scores plots, Anal. Biochem. 433 (2013), pp. 102-104. 

[35] J. Xia, and D.S. Wishart, Web-based inference of biological patterns, functions 

and pathways from metabolomic data using MetaboAnalyst, Nat. Protoc. 6 

(2011), pp. 743-760. 

[36] F.B. Gonzaga, W.F.d.C. Rocha, and D.N. Correa, Discrimination between 

authentic and false tax stamps from liquor bottles using laser-induced 

breakdown spectroscopy and chemometrics, Spectrochim. Acta B 109 (2015), 

pp. 24-30. 

[37] A.S. Luna, I.C.A. Lima, W.F.C. Rocha, J.R. Araujo, A. Kuznetsov, E.H.M. 

Ferreira, R. Boque, and J. Ferre, Classification of soil samples based on Raman 

spectroscopy and X-ray fluorescence spectrometry combined with chemometric 

methods and variable selection, Anal. Method. 6 (2014), pp. 8930-8939. 

[38] H. Chun, and S. Keleş, Sparse partial least squares regression for simultaneous 

dimension reduction and variable selection, Journal of the Royal Statistical 

Society: Series B (Statistical Methodology) 72 (2010). 

[39] S. Wold, M. Sjöström, and L. Eriksson, PLS-regression: a basic tool of 

chemometrics, Chemometr. Intell. Lab. 58 (2001), pp. 109-130. 

[40] Eigenvector, PLS Toolbox 4.0, 2006. 

[41] M.X. Rodriguez-Alvarez, L. Meira-Machado, E. Abu-Assi, and S. Raposeiras-

Roubin, Nonparametric estimation of time-dependent ROC curves conditional 

on a continuous covariate, Stat. Med. 35 (2016), pp. 1090-1102. 

[42] W. Aziz, M. Rafique, I. Ahmad, M. Arif, N. Habib, and M.S.A. Nadeem, 

Classification of heart rate signals of healthy and pathological subjects using 

threshold based symbolic entropy, Acta Biol. Hung. 65 (2014), pp. 252-264. 

[43] M. Leila, and S. van de Geer, On threshold-based classification rules, Lecture 

Notes-Monograph Series 42 (2003), pp. 261-280. 

[44] R. Beran, Refining Bootstrap Simultaneous Confidence Sets, J. Am. Stat. Assoc. 

85 (1990), pp. 417-426. 

[45] D. Burr, A comparison of certain bootstrap confidence intervals in the Cox 

model, J. Am. Stat. Assoc. 89 (1994), pp. 1290-1302. 

[46] H. van der Voet, Pseudo-degrees of freedom for complex predictive models: the 

example of partial least squares, J. Chemometr. 13 (1999), pp. 195-208. 

[47] R. Wehrens, H. Putter, and L.M.C. Buydens, The bootstrap: a tutorial, 

Chemometr. Intell. Lab. 54 (2000), pp. 35-52. 

[48] R.S. Boethling, Designing biodegradable chemicals, in Designing Safer 

Chemicals, American Chemical Society, 1996, pp. 156-171. 

[49] S.C. DeVito, and R.L. Garrett, Designing Safer Chemicals, Vol. 640, ACS 

Symposium Series, American Chemical Society, 1996. 

 

  



17 

 

Table 1. List of molecular descriptors used for the QSAR PLS-DA Model 

Symbol Description DRAGON block 

B01[C-Br] presence/absence of C−Br at topological 

distance 1 

2D atom pairs 

B03[C-Cl] presence/absence of C−Cl at topological 

distance 3 

2D atom pairs 

B04[C-Br] presence/absence of C−Br at topological 

distance 4 

2D atom pairs 

C% percentage of C atoms constitutional indices 

F03[C-O] frequency of C−O at topological distance 3 2D atom pairs 

F04[C-N] frequency of C−N at topological distance 4 2D atom pairs 

HyWi_B(m) hyper-Wiener-like index (log function) from 

Burden matrix weighted by mass 

2D matrix-based 

LOC lopping centric index topological indices 

Me mean atomic Sanderson electronegativity 

(scaled on Carbon atom) 

constitutional indices 

Mi mean first ionization potential (scaled on 

carbon atom) 

constitutional indices 

N-073 Ar2NH/Ar3N/Ar2N−Al/R···N···R atom centered 

fragments 

nArNO2 number of nitro groups (aromatic) functional group 

counts 

nCIR number of circuits ring descriptors 

nCRX3 number of CRX3 functional group 

counts 

nN-N number of N hydrazines functional group 

counts 

nO number of oxygen atoms constitutional indices 

Psi_i_1d intrinsic state pseudoconnectivity index−type 

1d 

topological indices 

SdO sum of dO E-states atom-type E-state 

indices 

SM6_L spectral moment of order 6 from Laplace 

matrix 

2D matrix-based 

SpMax_A leading eigenvalue from adjacency matrix 

(Lovasz−Pelikan index) 

2D matrix-based 

SpMax_L leading eigenvalue from Laplace matrix 2D matrix-based 

SpPosA_B(p) normalized spectral positive sum from Burden 

matrix weighted by polarizability 

2D matrix-based 

TI2_L second Mohar index from Laplace matrix 2D matrix-based 
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Table 2. Statistical metrics for the QSAR PLS-DA model 

 CALIBRATION VALIDATION EXTERNAL 

VALIDATION 

CLASS RB NRB RB NRB RB NRB 

N 284 553 72 146 479 191 

NMISCLASS
 34 93 12 19 69 38 

ME (%) 11.97 16.81 16.67 13.01 14.405 19.89 

TP 0.88028 0.83183 0.8333 0.86986 0.80105 0.85595 

FP 0.16817 0.11972 0.13014 0.16667 0.14405 0.19895 

TN 0.83183 0.88028 0.86986 0.83333 0.85595 0.80105 

FN 0.11972 0.16817 0.16667 0.13014 0.19895 0.14405 

SENS 0.880 0.832 0.833 0.870 0.801 0.856 

SPEC 0.832 0.880 0.870 0.833 0.856 0.801 

R 0.6457 0.6530 0.6063 

RMSE 0.361516 0.356293 0.3676 
N: number of substances in each class. 

Nmisclass: number of misclassifed substances. 

ME (%): misclassification error; 

TP: true positive;  

FP: false positive; 

TN: true negative; 

FN: false negative; 

Sens: sensitivity; 

Spec: specificity. 

R: Pearson's correlation coefficient for calibration, validation, and external validation.   

RMSE: root mean square error for calibration, validation, and external validation.   
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Figure 1. Scores plot (A) and loadings plot (B) with respect to the first and second latent 

variables of the PLSDA model. Molecular descriptors refer to symbols listed in Table 1. 

Descriptors responsible for identifying NRB substances are circled with the dashed line 

and those responsible for identifying RB substances are circles with the dash-dot line. 

 

Figure 2. Scores plot with respect to the first and second latent variables of the PLS-DA 

model for external validation substances.  
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Figure 3.  Classes predicted by the PLS-DA model for the calibration, validation, and 

external validation sets, with confidence intervals for all substances as estimated by the 

residual bootstrap method. The class boundary ybound is shown with a dashed line and 

the probability of assignment to the NRB class is shown with dots. Predicted RB 

substances have confidence intervals above ybound and predicted NRB substances have 

confidence intervals below ybound. Substances that are correctly classified are shown 

with open circles and those that are incorrectly classified are shown with filled circles. 

(A) Calibration substances, (B) Validation substances, and (C) External Validation 

substances. 



21 

 

 

Figure 4. Misclassification probabilities with respect to classifications predicted by the 

PLS-DA model. The vertical dashed line indicates ybound, with RB substances to the 

right and NRB substances to the left. The horizontal dashed line indicates Pmisclass = 0.5, 

corresponding to the boundary between correctly-classified and misclassified 

substances. 

 

 


