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Abstract— Access control systems are among the most 
critical of computer security components. Faulty policies, 
misconfigurations, or flaws in software implementations 
can result in serious vulnerabilities. To formally and 
precisely capture the security properties that access 
control should adhere to, access control models are usually 
written, bridging the gap in abstraction between policies 
and mechanisms. Identifying discrepancies between policy 
specifications and their intended function is crucial 
because correct implementation and enforcement of 
policies by applications is based on the premise that the 
policy specifications are correct. As a result, policy 
specifications represented by models must undergo 
rigorous verification and validation through systematic 
verification and testing to ensure that the policy 
specifications truly encapsulate the desires of the policy 
authors. Verifying the conformance of access control 
policies and models is a non-trivial and critical task, and 
one important aspect of such verification is to formally 
check the inconsistency and incompleteness of the model 
and safety requirements of the policy, because an access 
control model and its implementation do not necessarily 
explicitly express the policy, which can also be implicitly 
embedded by mixing with direct access constraints or 
other access control models. 

Keywords— Access Control, Authorization, Policy, Policy 
Verification, Policy Testing, Policy Tool, Model Checking. 

I. INTRODUCTION  
Access control (AC) systems control which users or 

processes have access to which resources in a system.  They 
are among the most critical of computer security components. 
AC policies are specified to facilitate managing and 
maintaining AC systems, therefore faulty policies, 
misconfigurations, or flaws in software implementation can 
result in serious vulnerabilities. However, the correct 
implementations of AC policies by AC mechanisms are very 
challenging problems. It is common that a system’s privacy 
and security are compromised due to the misconfiguration of 
AC policies instead of the failure of cryptographic primitives 
or protocols. This problem becomes increasingly severe as 
software systems become more and more complex, and are 
deployed to manage a large amount of sensitive information 
and resources that are organized into sophisticated structures. 

Therefore, identifying discrepancies between AC policy 
specifications and their intended function is crucial because 
correct implementation and enforcement of policies by 
applications is based on the premise that the policy 
specifications are correct.  

AC models are usually written to bridge the rather wide gap 
in abstraction between AC policies and mechanisms to 
formally and precisely capture the safety requirements that AC 
systems should adhere to. As a result, policy specifications 
represented by models must undergo rigorous verification and 
validation through systematic verification and testing to ensure 
that the policy specifications truly encapsulate the desires of 
the policy authors. Verifying the conformance of AC policies 
and models is a non-trivial and critical task. One important 
aspect of such verification is to formally check the 
inconsistency and incompleteness of the model and policy 
safety requirements, because an AC model and its 
implementation do not necessarily explicitly express the 
policy, which can also be implicitly embedded by mixing with 
direct access constraints or other AC models. 

In this document, we discuss general approaches for the 
verification for AC models and the testing of model 
implementations by first defining standardized structures of 
AC models. We then demonstrate the expressions of AC 
models and safety requirements in formal specifications of 
model checkers for the use of black box and white box model 
verifications that verify the integrity, coverage, and 
confinement of the specified safety requirements against 
models.  In addition, an efficient way of generating test cases 
for the implementation from a model is discussed. 

This document is divided into seven sections. Section I 
states the purpose, of this document. Section II introduces the 
general concept of AC policy and model. Section III explains 
the elements of AC safety and faults. The focus of this 
document is presented in Section IV, which introduces main 
concepts for AC model verification and testing. Section V 
provides some AC system implementation considerations. 
Section VI present some major related works. Section VII is 
the conclusion to the document.  

II. GENERAL AC MODELS 
An AC model is a formal presentation of an AC policy 

enforced by the mechanism and is useful for proving 
theoretical limitations of an AC system so that AC 



 
 

mechanisms can be designed to adhere to the properties of the 
model. Users see an AC model as an unambiguous and precise 
expression of requirements. Vendors and system developers 
see AC models as design and implementation requirements. 
On one extreme, an AC model may be rigid in its 
implementation of a single policy. On the other extreme, an 
AC model will allow for the expression a wide variety of 
policies and policy classes. In general, all nondiscretionary 
AC polices can be modeled by static, dynamic and historical 
Finite State Machine (FSM) models from one of the following 
classes: 

a) Static model 
Static policies regulate the access permission by static 

system states or conditions such as rules, attributes, and 
system environments (times and locations for access). Popular 
AC policies with these types of properties include ABAC [1], 
MLS[2], and RBAC[2]. These types of policies can be 
specified by asynchronous or direct specification 
expressions of an FSM model. The transition relation of 
authorization states is directly specified as a propositional 
formula in terms of the current and next values of the state 
variables. Any current state/next state pair is in the transition 
relation if and only if it satisfies the formula, as demonstrated 
in Example 1: 
VARIABLES 

    access_state : boolean;  /* 1 as grant, 0 as deny*/ 
    ………. 
 INITIAL  
    access_state := 0; 
 TRANS /* transit to next access state */ 
        next (access_state) := 
         ((constraint_1 & constraint_2 & …… constraint_n) | 
         (constraint_a & constraint_b & …… constraint_m) 
……..);  

Example 1 – static AC model 

The system state of access authorization is initialized as the 
deny state and moved to the grant state for any access request 
that complies with the constraints of the rule corresponding 
with each constraint predicate (i.e., constraint_1.& 
constraint_n) in a rule, and stay in the deny state otherwise.  

b) Dynamic model  
Dynamic policies may include temporal constraints that 

regulate access permissions by dynamic system states or 
conditions such as specified events or system counters or N-
person AC policy. An AC model with these types of 
properties specifies that accesses are permitted only by a 
certain subject to a certain object with certain limitations (e.g., 
object x can be accessed only no more than i times 
simultaneously by user group y). For example, if a user’s role 
is a cashier, he or she cannot be an accountant at the same 
time when handling a customer’s checks. This type of policy 
can be specified with asynchronous or direct specification 
expressions of an FSM model, which uses a variable 
semaphore to express the dynamic properties of the 
authorization decision process. Another example of dynamic 
constraint states is enforcing a limited number of concurrent 
accesses to an object. The authorization process for a user thus 
has four states: idle, entering, critical, and exiting. A user is 

normally in the idle state. The user is moved to the entering 
state when the user wants to access the critical object. If the 
limited number of access times is not reached, the user is 
moved to the critical state, and the number of the current 
access is increased by 1. When the user finishes accessing the 
critical object, the user is moved to the exiting state, and the 
number of the current access is decreased by 1. Then the user 
is moved from the exiting state to the idle state. The 
authorization process can be modeled as the following 
asynchronous FSM specification; example 2: 
  VARIABLES      
        count, access_limit : INTEGER;  
        request_1 : process_request (count);  
        request_2 : process_request (count); 
        ……. 
        request_n: process_request (count);  
        /*max number of user requests allowed by the system*/ 
        access_limit := k;  /*max number of concurrent access*/ 
        count := 0; act {rd, wrt}; object {obj}; 
        process_request  (access_limit) { 
            VARIABLES 
                permission : {start, grant, deny}; 
                state : {idle, entering, critical, exiting};        
            INITIAL_STATE (permission) := start; 
            INITIAL_STATE (state) := idle; 
            NEXT_STATE (state) := CASE { 
                 state == idle : {idle, entering}; 
                 state == entering & ! (count > access_limit):   critical;                                                                          
                 state == critical : {critical, exiting}; 
                 state == exiting : idle; 
                 OTHERWISE: state}; 
           NEXT_STATE (count) := CASE { 
                 state == entering : count + 1; 
                 state == exiting : count -1; 
                 OTHERWISE: DO_NOTHING }; 
           NEXT_STATE (permission) := CASE { 
                (state == entering) & (act == rd) & (object == obj): 
grant;                                        
                OTHERWISE: deny; 
                } 
        } 

Example 2 – dynamic AC model 

c) Historical model 
Historical policies regulate access permissions by 

historical access states or recorded and predefined series of 
events. Representative AC policies for this type of AC policies 
including Chinese Wall [2] and Workflow AC [2] policies. 
This policy class can be best described by synchronous or 
direct specification expressions of an FSM model. For 
example, the following Example 3 synchronous FSM 
specification specifies a Chinese Wall AC policy where there 
are two Conflict of Interest groups COI1, COI2 of objects:  
VARIABLES  
     access {grant, deny}; 
     act {rd, wrt}; 
     o_state {none, COI1, COI2}; 
     u_state {1, 2, 3}; 
      INITIAL_STATE(u_state) := 1; 
      INITIAL_STATE(o_state) := none; 
      NEXT_STATE(state) := CASE { 
         u_state == 1 & act == rd & o_state == COI1: 2;  
         u_state == 1 & act == rd & o_state == COI2: 3; 
         u_state == 2 & act == rd & o_state == COI1: 2; 



 
 

         u_state == 2 & act == rd & o_state == COI2: 2; 
         u_state == 3 & act == rd & o_state == COI1: 3;  
         u_state == 3 & act == rd & o_state == COI2: 3; 
         OTHERWISE: 1; }; 
     NEXT_STATE(access) := CASE { 
         u_state == 2 & act == rd & o_state == COI1: grant; 
         u_state == 3 & act == rd & o_state == COI2: grant; 
       OTHERWISE: deny; }; 
       NEXT_STATE (act) := act; 
       NEXT_STATE (o_state) := object;  
 

Example 3 – historical AC model 

Note that in practice, the same AC policies may be 
expressed by multiple different AC models or expressed by a 
single model in addition to extra constraint rules outside of the 
model.  

III. AC SAFETY AND FAULTS 
Safety is the fundamental property of an AC system, which 

ensure that the AC system will not result in the 
leakage/blockage of permissions to an unauthorized/authorized 
principal. Thus, an AC system is safe if no privilege can be 
escalated to unauthorized or unintended principals, but the 
correct privileges are always accessible to authorized 
principals. Safety is specified through the use of restricted AC 
models that can be proven in general for that model describing 
the safety requirements of any configuration [3].  

Among all the safety features, Separation of Duties (SoD) 
[2] are more dynamic than others. SoD refers to the principle 
that no user should be given enough privileges to misuse the 
system on their own. For example, the person authorizing 
paychecks should not also be the one who can prepare them. 
SoDs can be enforced either statically (by defining conflicting 
roles, i.e., roles which cannot be assigned to the same user) or 
dynamically (by enforcing the control at access time). AC 
faults compromise the safety, at semantic level, AC faults are 
usually caused by erroneous or inefficient representation of AC 
properties or permission algorithms. At a syntactic level, AC 
faults are simply caused by implementation errors in AC 
mechanism such as coding errors, or misconfigurations of AC 
systems. In general, AC faults can be categorized into the 
following classes. 

Privilege leakage  
Privilege (i.e. action and resource pair) leakage refers to 

situations in which subject is able to access resources that are 
prohibited by the safety requirements. Such leakage may cause 
either the privilege escalation from one resource domain or 
class to prohibited ones such as leakage from lower to higher 
ranks of MLS policy, or privilege leak such as from one role to 
other prohibited ones of an RBAC policy. Privilege leakage 
can be caused by mistaken privilege assignment directly or 
careless privilege inheritance indirectly.  

Privilege blocking  
Opposite to privilege leaking, a privilege blocking fault 

blocks a legitimate access to rightful resources. Privilege 
blocking can also occur when the properties of AC policy 
cannot render a grant or deny decision, or there is no available 
logic in the AC policy algorithm for evaluating the access 

request. Privilege blocking can also be a result of the deadlock 
of access rules specification where: a rule has a dependency on 
other rule(s), which eventually depend back on the rule itself 
such that a subject’s request will never reach a decision 
because of the cyclic referencing. 

Cyclic inheritance  
Cyclic inheritance fault refers to the problem of privileges 

inheritance from other subjects(groups), which also in a chain 
of inheritance relation inherit back to the subject(group)’s 
privilege. For example, subject x inherits privilege from subject 
y, which inherit privilege from subject z, which inherits 
privilege from subject x. Cyclic inheritance leads to 
undecidable or infinite access evaluation process.  

Privilege conflict  
Unlike regular programming logic that a later value 

assignment of a variable overwrites the previous assigned 
value of the same variable, the rules of an AC policy normally 
have no precedence consideration in permission evaluation.  In 
other words, AC rules will not be overwritten by other rules 
unless specifically allowed to. Thus, privilege conflicts appear 
when the specifications of two or more access rules result in 
the conflicting decisions of permitting subjects access requests 
by either direct or indirect (inherit) access assignments. In 
addition, when multiple policies are evoked for permission, 
conflicting decisions between policies may occur.  

Multi-policies considerations  
In an enterprise environment, it may be required to have 

AC policies specified independently by different collaborative 
or networked systems in the enterprise. Thus, an inter-system 
access request may be evaluated by more than one policy that 
the requesting subject is governed under. Thus, AC policy 
autonomy should also be preserved for secure inter-system 
access. Maintaining the autonomy of all collaborative system is 
a key requirement of the policy for inter-operation. The 
principle of autonomy states that if an access is permitted by an 
individual system, it must also be permitted under secure inter-
system access. The principle of security states that if an access 
is denied by an individual system, it must also be denied under 
secure inter-system access. In a collaborative system, 
violations of secure inter-system access can be caused by 
adding inter-system privilege inheritance relations, for 
example, Fig. 1 shows that privilege k inherits privilege j 
through legal inter-system privilege inheritance (because both 
has the same privilege level j), which is granted in network x 
but denied in network y. These types of violations can be 
detected by checking for cyclic inheritance, privilege leakage 
and SoD violation. Thus, both security and autonomy can be 
characterized as safety requirements of a multi-policies AC 
system, which should be preserved during collaborations. A 
meta-policy is a policy that is usually applied for reconciling 
policy autonomy difference or to handle priorities of access 
decisions rendered from more than one policy. Thus, in 
addition to autonomy requirements, AC safety requirement 
may include priority model within the meta policy [4].  

 



 
 

 Fig.1   Privilege leaks through inter-system privilege inheritance. 

IV. VERIFICATION APPROACHES 
The fundamental goal of AC policy and implementation 

verification is to detect conflicting or missing rules (i.e. policy 
statements) by verifying AC policy model and testing output 
of the policy. To achieve this, semantically and syntactically 
methods with Black-box and/or White-box testing techniques 
may be used. Although the general safety computation is 
proven undecidable [5] especially for discretionary AC 
policies, which are impossible to be described by static policy 
models, practical safety constraints such as confinements can 
be specified for discretionary AC policies. As a result, 
verifications can be performed upon the constraints. 

In a nutshell, AC policy verification must test if the safety 
requirements of an AC policy are incorporated in the 
expressed model, which will be the blue print for 
implementing the AC system. The specification of safety 
requirements can be AC properties, business requirements, 
specifications of expected/unexpected system security features, 
or direct translations of policy features. Safety requirements 
can also include privilege inheritance, for example to verify a 
SoD property, safety requirement will specify that 1) subject x 
and y are mutually exclusive if neither one inherit the other’s 
privilege directly or indirectly, 2) If subject x and y are 
mutually exclusive, then there is no other subject inherits 
privilege from both of them. Similar to SoD, dynamic SoD 
(DSoD) has the safety requirement: 3) If SoD holds, then 
DSoD is maintained. Thus, 1) and 2) must be guaranteed [4]. 
 

Note that an AC policy is not necessarily explicitly 
expressed by a single model; it can also be implicitly 
embedded by mixing with direct access constraints or other 
AC models. Thus, an AC policy may be expressed by 
combining multiple AC models (e.g. for policy combinations) 
or additional constraints outside of the model into one 
combined model. The principle of ensuring the conformance 
of a model to the policy is to formally detect inconsistency 
and incompleteness faults as described in Section III. In the 
former case, for example, an access request can be both 
accepted and denied, while in the latter case the request is 
neither accepted nor denied according to the model. 

 
Model Verification 

The general approach for checking the correct 
specification of an AC model is to use black-box methods to 
verify the AC model against safety requirements. And since 
the confidence of the model’s correctness depends on the 

quality of the safety requirements, a white-box property 
assessment method on entities in the model and safety 
requirements is required to assess the sufficiency of the safety, 
covering and confinement of the model [6]. 
 

In terms of AC attributes the formal definition of AC 
model can be illustrated by a deterministic finite state 
transducer of a model corresponding to a Finite State Machine 
(FSM) with a five-tuple M = (Σ, ST, s0, δ, F), where Σ is the 
input alphabet that represents the attributes associated with 
subjects, actions, objects, and environment conditions. 
ST is a finite, non-empty set of recorded AC system states and 
permissions, s0 is the initial state, δ is the state-transition 
function, where δ : ST× Σ → ST, F is the set of final states 
include Grant, Deny as the output.  
 

For static AC models as described in II a, the FSM Mstatic 
does not require intern states to reach the permission state, 
thus F = ST = {Grant, Deny}, i.e., Mstatic is just a 
straightforward FSM model without state transitions. For 
dynamic AC models as described in II b, the input alphabets 
of FSM Mdynamic are Σdynamic = {gCond1, …, gCondn}, where 
global condition gCondi is the threshold indicator of the access 
limitation, such as the number of persons that have to access at 
the same time in a N-Person control policy [2], or the 
maximum number of accesses allowed for a 
Limited_Number_of_Access policy. For historical AC models 
as described in II c, the input alphabets of the FSM Mhistorical 
are Σhistorical = {….. sCondi, aCondi, oCondi…}, where subject 
condition sCondi action condition aCondi and object condition 
oCondi contribute to a historical event that is used as 
determining factors for the next permission decision. Note that 
it is possible for different types of AC models to combine into 
one model such that Mcombine = {Mstatic ∪ Mdynamic ∪ Mhistorical}2. 

 
An AC safety requirement p is expressed by the 

proposition p: ST × Σ2 → ST of FSM, which can be 
collectively translated in terms of logical formulae such that p 
= (sCond1*…*sCondn* aCond1*…* aCondn* oCond1* …* 
oCondn*gCond1* …*gCondn) → d, where p ∈ P and d is the 
permission is a set of safety requirements, and * is a Boolean 
operator in terms of logical formulas of temporal logic such as 
computational tree logic (CTL) and linear-time temporal logic 
(LTL). The purpose of model checking is to verify the set ST 
in M in which p is true according to an exhaustive state space 
search. In addition, by verifying the set of states in which the 
negation of p is true, we can obtain the set of counterexamples 
to make the assertion that p is true. The satisfaction of an AC 
model M to the AC safety requirement P by model checking is 
composed of two requirements: 
(1) Safety, where M satisfies P. That is, there is no violation of 
rules to the logic specified in P, and it is assured that M will 
eventually be in a desired state after it takes actions in 
compliance with a user access request.  
(2) Liveness, where M will not have unexpected complexities. 
That is, there is neither a deadlock in which the system waits 
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……. 
AG (p = = i & q = = j) → access  
= grant 

 
 
 
 

NEXT_STATE(p) := CASE { 
   x : i 
   …. 
} 

NEXT_STATE(q) := CASE { 
   ! x : j 
   …. 
} 

NEXT_STATE(access) := 
CASE { 
   p = = i & q = = j : grant 
   OTHERWISE: deny  
   …… 
} 

AG means that 
condition (p = = i & q 
= = j) → access  = 
grant is always (A), 
or globally (G), true 
in all the states of 
all the possible path 
in the model by 
CTL check 

forever for system events, nor a livelock in which the model 
repeatedly executes the same operations forever.  

 
Thus, the AC rules define the system behaviors that 

function as the transition relation δ in M. Then when the AC 
safety requirement is represented by temporal logic formula p, 
we can represent the assertion that model M satisfies p by M |= 
Ap → AXd, where temporal logic quantifier A represents 
“always”, and logic quantifier X represents “is true next state”. 
The purpose of safety and liveness verification using model 
checking is to determine whether these assertions are true, and 
to identify a state in which the assertions are not true as a 
counterexample for the assertions. Since the behavior of the 
AC mechanism can be represented by FSM M, and the safety 
requirements that M must satisfy can be represented by 
temporal logic formulas, we can define the correctness more 
precisely as that the model can be led from every possible 
state that is reachable from initial states to the defined final 
state while complying with the safety requirements. 
 

Even though checked by the black box testing as 
described above, the model is not fault proof because the 
temporal logic in the model might not be thorough in covering 
all possible values of all rules or all conditions in rules. For 
example, two states determined by opposite assignments of 
the same Boolean variable are embedded in different sub-state 
modules, where a third state is triggered only when the 
constraints of the two states are satisfied. As demonstrated in 
Fig. 2, the two rules will never agree due to the self-negation 
to the same constraint. In this case, the third state will never be 
satisfied, but proven correct without counterexamples through 
the black box checking.  

 
Fig.2   Example of never-achieved rules and the safety requirement in an AC 
model. 
 

To detect this kind of semantic fault, the white box testing, 
based on code analysis should be applied such that the 
resulting mutated versions are used to detects faults of the 
model. Testing for mutations makes sure all paths of a part of 
a model code are covered by setting the related target 
variables to all possible values as input, and checking to see if 
there are different outcomes from the changes. If there is none, 
then either the code that had been mutated was never executed 
or the variable was unable to locate the faults.  As shown in 
Fig. 2, If we mutate the first case module to change x to !x, the 
resulting access state will be grant without being affected. 
(That works the same for the second case module). This fault 
demonstrates that there is a redundancy in the model, which 
does not violate the temporal logic of the model. Further 
investigation to check the model that relates to the variable 
should reveal that the (p = = i & q = = j) → access = = grant 
safety requirement will never happen. Note that this fault can 
be caught if one more safety requirement E! (p = = i & q = = j) 
(which means there exists some path that eventually in the 
future will satisfy !(p = = i & q = = j) in CTL model checking) 
is specified for the black box checking. Hence, it is not 
expected that all safety requirements are perfectly specified in 
the beginning. Thus, white box checking can be used as a 
second line of defense against faults that will not be spotted by 
black box checking. 

 
Most faults in a AC model result from the nondeterministic 
automata of FSM states, for example, in Fig. 3, white box 
checking will detect that the value x will result to a grant of 
access when it is either s or t. This does not violate the safety 
requirement, however, the safety property will not be 
maintained if a more stringent safety requirement requires that 
only one value of x attribute is desired from the policy.  

Fig. 3   Example of ambiguous value and the safety requirement in an AC 
model. 
 

Another example shows a transition to an unspecified 
state for a certain range of data values such as in Fig. 4, there 
is no way for the black box checker to figure out the value of 
access when x value is other than s unless we check with the 
safety requirement AG ! (p = = i) → access = deny. This 
uncovered value can be detected by the white box checking 
when different values were assigned to x, which does not 
match any expected case condition, and results in the same 

 
 
 
 
 
 
 
 
 

 
……. 
AG  (p = = i) → access  = grant 

 
 
 
 

NEXT_STATE(p) := CASE { 
   x==s|t : i 
   …. 
} 

NEXT_STATE(access) := CASE { 
    p == i : grant 
    OTHERWISE: deny  
    …… 
} 



 
 

grant of access. Thus, the safety requirement verification 
informs the users which rules are not covered by the existing 
safety requirement so that the users can add new properties to 
cover the uncovered. 

 
Fig. 4   Example of uncovered value and the safety requirement in an AC 
model. 
 
Coverage and Confinements Semantic faults 

 

Fig. 5  Relations of Policy, Model, and Safety Requirements 
 
The rules in the policy, model, and safety requirements 

may each describe their own space of permission conditions, 
and may not be congruent in one space as the initial relation 
illustrated examples in Fig. 5. The safety and liveness check 
can assure only the logical integrity of some rules against 
some safety requirements. The complete satisfaction of a 
model to its policy requires fixing of coverage and 
confinement faults if any violations are detected by additional 
Coverage and Confinement Checks (CCC), the second line of 
defense against such semantic faults. 
 

CCC requires mutant versions of the model, and extra 
modified properties for additional model checking. As 
illustrated in Fig. 5, the goal of CCC is to ensure that the rules 

in the safety requirement are completely covered by the 
model, and to confirm that no exceptional access permissions 
are granted unless intentionally allowed. The first step of CCC 
is to discover the rules, which are seeped through the 
specification of the safety requirement by applying white box 
checking on mutated versions of the model. The second step is 
to detect unexpected access permission that might not be the 
intention of the policy author, by applying model checking on 
modified rules extracted from the original ones.  
 
Rule coverage checking 

The key notion of rule coverage checking is to synthesize 
a version of the given model in such a way that the permission 
of its rules is mutated such that rule r is changed to ~r. If 
safety requirements are satisfied by both mutated and original 
models through model checking, then some of the rules and 
their mutants would never be applied to the safety 
requirements; in other words, the safety requirements do not 
cover all the rules in the model. 

 

As an example in Fig. 6, the safety and liveness checking 
verify that the model conforms the safety requirement AG (q = 
= i) → access = grant without counterexamples; however, by 
applying the CCC by mutating the rule u == j: grant to u == j 
: deny for the coverage checking, the result shows that the 
safety requirement satisfies the mutated rules as well (without 
counterexamples), indicating that the variable u was never 
applied to the safety requirement AG (q = = i) → access = 
grant. This result shows that the rule u == j : grant  is not 
verified with the property AG (q == i) → access = grant. One 
way of addressing this insufficiency is adding a new property 
that describes proper control of u. Note that it is necessary to 
check every rule in the model against all safety requirement to 
achieve thorough verification. 

 
 
 
 
 
 
 
 

 
……. 
AG  (p == i) → access  = grant 

 
 
 
 

NEXT_STATE(p) := CASE { 
   x==s : i 
   …. 
} 

NEXT_STATE(access):= CASE { 
    p == i : grant 
    …… 
} 
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Fig. 6   Example of uncovered rules in a AC model 
 
Property confinement checking 

Property confinement checking ensures that there is no 
exceptional permission allowed in addition to the specified 
safety requirement; this checking requires a modified safety 
requirement to be added for the next run of model checking. 
Confinement check should discover the discrepancy of the 
specified safety requirement and the safety requirement the 
AC policy author intend. The rationale is that if the model 
does not satisfy the modified safety requirement, then there 
are exceptional access permissions that leak through the safety 
requirement. Fig. 7 shows a transition to an unspecified state 
for a certain range of data values that allow exceptional 
permissions not covered by a specified safety requirement 
because the value of access when u value is different than i 
(such as u = j) also grants access permission by the rule 
otherwise: grant. This fault can be caught by a 
counterexample AG (u == j) → access = grant when checking 
the model against the additional confinement property ¬AG (u 
== i) → access = deny derived from original property AG (u 
== i) → access = grant. The additional model checking for 
confinement verification informs the AC policy authors which 
safety requirement is not confined so that the AC policy 
author can add new rules to enforce the safety of the model. 
As in this case, changing the rule otherwise: grant to 
otherwise : deny and adding all granted rules in the state will 
correct the problem.  

 

Fig. 7   Unconfined rule in a property 
 

Note that it is possible the AC policy author intentionally 
allowed the exception for a safety requirement, and it is 
necessary to check every safety requirement against the set of 
rules in the model to achieve thorough verification. 
 
Implementation Test 

Black box model checking and white box mutation test 
provide methods for verifying the correct model 
representation of the policy. Once a model is verified, the AC 
mechanism can be implemented based on the design of the 
model and additional constraints if needed. Usually AC 
mechanisms are code developed in a language the AC system 
supports, for example dedicated AC language such as 
XACML [7] is commonly used for AC code implementation. 
AC implementation can be error prone. As the AC model is 
directly implemented by an algorithm, the errors are often 
caused by syntactic faults, such as mistakenly changing the + 
sign to – sign, or typing letter O instead of 0.  
 

The correct implementation of the policy needs to be 
tested. To achieve that, a test oracle that contains cases of all 
possible outcome of the AC safety requirement is required, 
because implementation faults are unpredictable without a 
logical trace for detecting. Thus, all the combinations of the 
variables in the safety requirements need to be covered in the 
oracle. For example, a safety requirement: “x read y grant” 
where x has 3 different values and y has 5 different values will 
have 3*2*5*2 (assume that the AC actions has two values: 
read and write, and permission has only two values: grant and 
deny) test cases in the test oracle. The implemented AC 
system will then run these test cases to verify whether the 
actual test outputs are the same as the expected outputs. 
 

It is not uncommon that a verification test includes 
hundreds of safety requirements; each contains tens of 
variables, in such case, the number of test cases in a test oracle 
for the implementation test is too great to be efficiently 
performed, therefor, additional techniques [8,9] for reducing 
the test case size without sacrificing the capability may be 
required for the test. 

V. IMPLEMENTATION CONSIDERATIONS 
General AC system testing framework shown in Fig. 8 

contains four major functions using the methods as stated in 
Section IV. The AC Rule Real-time Error detector is used 
optionally for design the initial AC models [10]. The Black 
Box Tester checks if a model (original or mutant) holds for the 
specified Safety Requirements. The Black Box Tester 
(counterexample results) provides information for original 
model fix (a human action as dotted line in the Figure) and for 
mutation killing check for White Box Tester, it also takes 
output from the Test Generator and returns results for test case 
generation. The White Box Tester generates and kills mutant 
models based on the original model and safety requirements; 
its mutated models are sent to the Black Box Tester for 

……. 
AG  (u == i) → access = 
grant 

 

NEXT_STATE(u):= 
CASE { 
   x==s :i 
   x==t :j 

 
    

 
NEXT_STATE(access):= 
CASE { 
  u== k : deny 
  …… 
Otherwise grant 
} 

¬AG  (u == 
i) → access 
= deny 

 

Addition  

NEXT_STATE(q):= 
CASE { 
   x :i 
   …. 
} NEXT_STATE(a

ccess):= CASE 
{ 
u == j : deny 
g == I : deny 
OTHERWISE: 
grant 
   …… 
} 

Mutant 

…… 
AG (q == i) → access = grant 
 

 

NEXT_STATE(access):= 
CASE { 
   u == j :grant 
   g == I : grant 

OTHERWISE: deny  
   …… 
} 



 
 

mutation killing check, or to the AC model author for original 
model or safety requirement fix (a human action as shown in 
dotted lines in the figure). The Test Oracle Generator 
generates test cases based on the Safety Requirement and the 
Black Box Tester’s counterexample results. The process steps 
are listed below: 
1. (optional) AC models is designed based on the AC policy 

by using AC Rule Real-time Error Checker (as described 
in Section 5.4). 

2. Safety requirements are specified  
3. Completed original AC model is checked against safety 

requirements by Black Box Tester, if an error is found, the 
original model needs to be fixed (thus repeat steps 1 to 3), 
otherwise proceed to next step 4. 

4. Fixed original model send to White Box Tester for 
coverage and confinement check. The White Box Tester 
uses Black Box Tester to decide if generated mutant 
models were killed. If not, original model or safety 
requirements need to be fixed (thus repeat step 1 to 4), 
otherwise, proceeds to next step 5. 

5. Test Oracle Generator generates test cases based on Safety 
Requirements, which are sent to Black Box Tester for 
generating permission results used for test oracle. 
 
Note that the components in Fig. 8 and steps are not 

necessarily all required for an AC model verification; the 
selections of components and steps might depend on the 
complexity of the model and the cost for implementing the test 
framework. Thus, an AC model test framework can contain 
optional components/functions in Fig. 8 except that the Black 
Box tested is essential. 

 
Fig. 8   AC model verification framework 

VI. RELATED WORK 
 In addition to the FSM based method, other techniques [11] 
are available for AC model verification such as theorem Proof 
(including first and higher logic proof) and MTBDD [12] 
methods.  

Multi-Terminal Binary Decision Diagrams (MTBDD) 
Developed in Racket (formal PLT) Scheme, Margrave 

[13] is a software tool suite for verifying safety requirements 
against AC policies written in XACML. Margrave represents 
XACML policies as MTBDD models, it allows the user to 
specify various forms of safety requirements in the Scheme 
programming language. Margrave uses one variable for each 
attribute-value pair in the XACML policy. Margrave creates 

MTBDD models for the individual policy rules, then 
combines these with MTBDD-combining algorithms that 
implement the XACML rule- and policy-combining 
algorithms. 

 
Margrave views the policy constants permit and deny as 

rules; an operation called augment-rule takes a Boolean 
condition on the variables and a rule and constrains the rule to 
also require the given condition. It supports query-based 
verification and provides query-based views by computing 
exhaustive sets of scenarios that yield different results 
including change-impact analysis for comparing a pair of 
policies. Margrave provides the benefits of static verification 
without requiring authors to write formal properties; its power 
comes from choosing an appropriate policy model in first-
order logic, and embracing both scenario-finding and multi-
level policy-reasoning.  In general, Margrave identifies 
formulas corresponding to many common firewall-analysis 
problems automatically, thus providing exhaustive analysis for 
richer policies and queries. 
 
ACPT   

NIST’s Access Control Policy Tool (ACPT) [14] provides 
(1) GUI templates for composing AC models, (2) safety 
requirements verification for AC models through an SMV 
(Symbolic Model Verification) model checker NuSMV, (3) 
complete test cases generated by NIST’s combinatorial testing 
tool ACTS, and (4) XACML policy generation as output of 
verified model. Through the four major functions, ACPT 
performs all the syntactic and semantic verifications as well as 
the interface for composing and combining AC models for AC 
policies; ACPT is capable of verifying combined policies 
based on the permission priorities and/or algorithms specified 
by the user. 

ACPT allows users to specify AC models or their 
combinations, as well as safety requirements through GUI that 
contains model templates for three major AC policies: static 
Attribute-Based AC, Multi-Leveled Security, and stated Work-
Flow. ACPT then performs black box model check to verify if 
the specified safety requirements conform to the specified 
models. If not, non-conformance messages are returned to the 
user, otherwise, ACPT proceeds to generate test cases through 
ACTS, which are ready for testing the AC application 
implemented according to the models.  

Formal Methods 
Formal methods for the validation of access control policies 

involving mathematical tools and proofs have also been 
advocated.  Rémi Delmas and Thomas Polacsek [15] have 
proposed a logical modelling framework to find the 
inconsistencies and incompleteness in access control policies. 
Providing a mechanism for the detection of these two 
properties, they have introduced two new properties, 
applicability and minimality and their proposed technique is 
capable verifying these two properties [16]. By using the 
concepts of signatures, formula and predicates, they have 
defined some rules for the logical framework, which works for 
limited or finite data so their rules are also applicable to the 
finite data. They also mentioned that the MSFOL (many-sorted 



 
 

first order logic) [17] formula should be converted to a pseudo-
Boolean logic formula to analyze it. The proposed tool is a 
three-steps procedure where grounding operation gives the 
grounded formula in the first step which is converted to a bit-
vector expression using the bit-vector encoding in the second 
step of this process. In the last step of this procedure, the bit-
vector expressions are converted into clauses which are in 
pseudo-Boolean form and give us the pseudo-Boolean formula. 

Z [18] is based on axiomatic set theory and first order 
predicate logic, which can be used for describing and modeling 
AC policies [19].  Z notation apply set theory forms an 
adequate basis for building the AC model, which allow syntax 
and type checking, schema expansion, precondition 
calculation, domain checking, and general theorem proving for 
model verification by domain checking. Many of the proof 
obligations are easily proven. In more difficult cases, 
generating the proof obligation is often a substantial aid in 
determining whether a specification in the AC model is 
meaningful to the AC policy. 

VII. CONCLUSIONS 
This paper describes a notion of safety for access control, 

and analyzes verification approaches for static, dynamic, and 
historical AC models. Static models are those in which no 
state is retained, while dynamic models may retain state 
during a session. Historical models include long-term user and 
object history in access decisions. An AC system is safe if no 
privilege can be escalated to unauthorized principals, but the 
correct privileges are always accessible to authorized 
principals. We also describe a rough taxonomy of faults that 
may be present access control models. 

 
To verify safety requirements for AC models, we 

provided a general approach that expresses AC models and 
AC safety requirements in the formal specification of a black 
box model or first order logic checkers for verification. Then 
the black box verifier verifies the specified models against the 
specified safety requirements. Most of the verification system 
supports static, dynamic, and historical AC models. In 
addition to black box checking, white box checking methods 
make sure that the semantic coverage of the safety 
requirements also conforms to the intentions of the AC policy 
authors.  Finally, the generation of test cases to check the 
conformance of the models and their implementations is 
necessary. 

 
Access Control model and safety requirements 

conformance verification of generic AC policies bring benefits 
to society in two aspects. First, it should lead to improved 
verification practices for testing and verifying AC models in 
improving AC system quality and security in general. Second, 

innovations in new testing and verification algorithms and 
tools tend to propagate quickly across application or task 
domains where AC policies are used. 
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