

General Methods for Access Control Policy
Verification

Vincent C. Hu, D. Richard Kuhn
National Institute of Standards and Technology

Gaithersburg, MD, USA
vhu, kuhn@nist.gov

Abstract— Access control systems are among the most
critical of computer security components. Faulty policies,
misconfigurations, or flaws in software implementations
can result in serious vulnerabilities. To formally and
precisely capture the security properties that access
control should adhere to, access control models are usually
written, bridging the gap in abstraction between policies
and mechanisms. Identifying discrepancies between policy
specifications and their intended function is crucial
because correct implementation and enforcement of
policies by applications is based on the premise that the
policy specifications are correct. As a result, policy
specifications represented by models must undergo
rigorous verification and validation through systematic
verification and testing to ensure that the policy
specifications truly encapsulate the desires of the policy
authors. Verifying the conformance of access control
policies and models is a non-trivial and critical task, and
one important aspect of such verification is to formally
check the inconsistency and incompleteness of the model
and safety requirements of the policy, because an access
control model and its implementation do not necessarily
explicitly express the policy, which can also be implicitly
embedded by mixing with direct access constraints or
other access control models.

Keywords— Access Control, Authorization, Policy, Policy
Verification, Policy Testing, Policy Tool, Model Checking.

I. INTRODUCTION
Access control (AC) systems control which users or

processes have access to which resources in a system. They
are among the most critical of computer security components.
AC policies are specified to facilitate managing and
maintaining AC systems, therefore faulty policies,
misconfigurations, or flaws in software implementation can
result in serious vulnerabilities. However, the correct
implementations of AC policies by AC mechanisms are very
challenging problems. It is common that a system’s privacy
and security are compromised due to the misconfiguration of
AC policies instead of the failure of cryptographic primitives
or protocols. This problem becomes increasingly severe as
software systems become more and more complex, and are
deployed to manage a large amount of sensitive information
and resources that are organized into sophisticated structures.

Therefore, identifying discrepancies between AC policy
specifications and their intended function is crucial because
correct implementation and enforcement of policies by
applications is based on the premise that the policy
specifications are correct.

AC models are usually written to bridge the rather wide gap
in abstraction between AC policies and mechanisms to
formally and precisely capture the safety requirements that AC
systems should adhere to. As a result, policy specifications
represented by models must undergo rigorous verification and
validation through systematic verification and testing to ensure
that the policy specifications truly encapsulate the desires of
the policy authors. Verifying the conformance of AC policies
and models is a non-trivial and critical task. One important
aspect of such verification is to formally check the
inconsistency and incompleteness of the model and policy
safety requirements, because an AC model and its
implementation do not necessarily explicitly express the
policy, which can also be implicitly embedded by mixing with
direct access constraints or other AC models.

In this document, we discuss general approaches for the
verification for AC models and the testing of model
implementations by first defining standardized structures of
AC models. We then demonstrate the expressions of AC
models and safety requirements in formal specifications of
model checkers for the use of black box and white box model
verifications that verify the integrity, coverage, and
confinement of the specified safety requirements against
models. In addition, an efficient way of generating test cases
for the implementation from a model is discussed.

This document is divided into seven sections. Section I
states the purpose, of this document. Section II introduces the
general concept of AC policy and model. Section III explains
the elements of AC safety and faults. The focus of this
document is presented in Section IV, which introduces main
concepts for AC model verification and testing. Section V
provides some AC system implementation considerations.
Section VI present some major related works. Section VII is
the conclusion to the document.

II. GENERAL AC MODELS
An AC model is a formal presentation of an AC policy

enforced by the mechanism and is useful for proving
theoretical limitations of an AC system so that AC

mechanisms can be designed to adhere to the properties of the
model. Users see an AC model as an unambiguous and precise
expression of requirements. Vendors and system developers
see AC models as design and implementation requirements.
On one extreme, an AC model may be rigid in its
implementation of a single policy. On the other extreme, an
AC model will allow for the expression a wide variety of
policies and policy classes. In general, all nondiscretionary
AC polices can be modeled by static, dynamic and historical
Finite State Machine (FSM) models from one of the following
classes:

a) Static model
Static policies regulate the access permission by static

system states or conditions such as rules, attributes, and
system environments (times and locations for access). Popular
AC policies with these types of properties include ABAC [1],
MLS[2], and RBAC[2]. These types of policies can be
specified by asynchronous or direct specification
expressions of an FSM model. The transition relation of
authorization states is directly specified as a propositional
formula in terms of the current and next values of the state
variables. Any current state/next state pair is in the transition
relation if and only if it satisfies the formula, as demonstrated
in Example 1:
VARIABLES

 access_state : boolean; /* 1 as grant, 0 as deny*/
 ……….
 INITIAL
 access_state := 0;
 TRANS /* transit to next access state */
 next (access_state) :=
 ((constraint_1 & constraint_2 & …… constraint_n) |
 (constraint_a & constraint_b & …… constraint_m)
……..);

Example 1 – static AC model

The system state of access authorization is initialized as the
deny state and moved to the grant state for any access request
that complies with the constraints of the rule corresponding
with each constraint predicate (i.e., constraint_1.&
constraint_n) in a rule, and stay in the deny state otherwise.

b) Dynamic model
Dynamic policies may include temporal constraints that

regulate access permissions by dynamic system states or
conditions such as specified events or system counters or N-
person AC policy. An AC model with these types of
properties specifies that accesses are permitted only by a
certain subject to a certain object with certain limitations (e.g.,
object x can be accessed only no more than i times
simultaneously by user group y). For example, if a user’s role
is a cashier, he or she cannot be an accountant at the same
time when handling a customer’s checks. This type of policy
can be specified with asynchronous or direct specification
expressions of an FSM model, which uses a variable
semaphore to express the dynamic properties of the
authorization decision process. Another example of dynamic
constraint states is enforcing a limited number of concurrent
accesses to an object. The authorization process for a user thus
has four states: idle, entering, critical, and exiting. A user is

normally in the idle state. The user is moved to the entering
state when the user wants to access the critical object. If the
limited number of access times is not reached, the user is
moved to the critical state, and the number of the current
access is increased by 1. When the user finishes accessing the
critical object, the user is moved to the exiting state, and the
number of the current access is decreased by 1. Then the user
is moved from the exiting state to the idle state. The
authorization process can be modeled as the following
asynchronous FSM specification; example 2:
 VARIABLES
 count, access_limit : INTEGER;
 request_1 : process_request (count);
 request_2 : process_request (count);
 …….
 request_n: process_request (count);
 /*max number of user requests allowed by the system*/
 access_limit := k; /*max number of concurrent access*/
 count := 0; act {rd, wrt}; object {obj};
 process_request (access_limit) {
 VARIABLES
 permission : {start, grant, deny};
 state : {idle, entering, critical, exiting};
 INITIAL_STATE (permission) := start;
 INITIAL_STATE (state) := idle;
 NEXT_STATE (state) := CASE {
 state == idle : {idle, entering};
 state == entering & ! (count > access_limit): critical;
 state == critical : {critical, exiting};
 state == exiting : idle;
 OTHERWISE: state};
 NEXT_STATE (count) := CASE {
 state == entering : count + 1;
 state == exiting : count -1;
 OTHERWISE: DO_NOTHING };
 NEXT_STATE (permission) := CASE {
 (state == entering) & (act == rd) & (object == obj):
grant;
 OTHERWISE: deny;
 }
 }

Example 2 – dynamic AC model

c) Historical model
Historical policies regulate access permissions by

historical access states or recorded and predefined series of
events. Representative AC policies for this type of AC policies
including Chinese Wall [2] and Workflow AC [2] policies.
This policy class can be best described by synchronous or
direct specification expressions of an FSM model. For
example, the following Example 3 synchronous FSM
specification specifies a Chinese Wall AC policy where there
are two Conflict of Interest groups COI1, COI2 of objects:
VARIABLES
 access {grant, deny};
 act {rd, wrt};
 o_state {none, COI1, COI2};
 u_state {1, 2, 3};
 INITIAL_STATE(u_state) := 1;
 INITIAL_STATE(o_state) := none;
 NEXT_STATE(state) := CASE {
 u_state == 1 & act == rd & o_state == COI1: 2;
 u_state == 1 & act == rd & o_state == COI2: 3;
 u_state == 2 & act == rd & o_state == COI1: 2;

 u_state == 2 & act == rd & o_state == COI2: 2;
 u_state == 3 & act == rd & o_state == COI1: 3;
 u_state == 3 & act == rd & o_state == COI2: 3;
 OTHERWISE: 1; };
 NEXT_STATE(access) := CASE {
 u_state == 2 & act == rd & o_state == COI1: grant;
 u_state == 3 & act == rd & o_state == COI2: grant;
 OTHERWISE: deny; };
 NEXT_STATE (act) := act;
 NEXT_STATE (o_state) := object;

Example 3 – historical AC model

Note that in practice, the same AC policies may be
expressed by multiple different AC models or expressed by a
single model in addition to extra constraint rules outside of the
model.

III. AC SAFETY AND FAULTS
Safety is the fundamental property of an AC system, which

ensure that the AC system will not result in the
leakage/blockage of permissions to an unauthorized/authorized
principal. Thus, an AC system is safe if no privilege can be
escalated to unauthorized or unintended principals, but the
correct privileges are always accessible to authorized
principals. Safety is specified through the use of restricted AC
models that can be proven in general for that model describing
the safety requirements of any configuration [3].

Among all the safety features, Separation of Duties (SoD)
[2] are more dynamic than others. SoD refers to the principle
that no user should be given enough privileges to misuse the
system on their own. For example, the person authorizing
paychecks should not also be the one who can prepare them.
SoDs can be enforced either statically (by defining conflicting
roles, i.e., roles which cannot be assigned to the same user) or
dynamically (by enforcing the control at access time). AC
faults compromise the safety, at semantic level, AC faults are
usually caused by erroneous or inefficient representation of AC
properties or permission algorithms. At a syntactic level, AC
faults are simply caused by implementation errors in AC
mechanism such as coding errors, or misconfigurations of AC
systems. In general, AC faults can be categorized into the
following classes.

Privilege leakage
Privilege (i.e. action and resource pair) leakage refers to

situations in which subject is able to access resources that are
prohibited by the safety requirements. Such leakage may cause
either the privilege escalation from one resource domain or
class to prohibited ones such as leakage from lower to higher
ranks of MLS policy, or privilege leak such as from one role to
other prohibited ones of an RBAC policy. Privilege leakage
can be caused by mistaken privilege assignment directly or
careless privilege inheritance indirectly.

Privilege blocking
Opposite to privilege leaking, a privilege blocking fault

blocks a legitimate access to rightful resources. Privilege
blocking can also occur when the properties of AC policy
cannot render a grant or deny decision, or there is no available
logic in the AC policy algorithm for evaluating the access

request. Privilege blocking can also be a result of the deadlock
of access rules specification where: a rule has a dependency on
other rule(s), which eventually depend back on the rule itself
such that a subject’s request will never reach a decision
because of the cyclic referencing.

Cyclic inheritance
Cyclic inheritance fault refers to the problem of privileges

inheritance from other subjects(groups), which also in a chain
of inheritance relation inherit back to the subject(group)’s
privilege. For example, subject x inherits privilege from subject
y, which inherit privilege from subject z, which inherits
privilege from subject x. Cyclic inheritance leads to
undecidable or infinite access evaluation process.

Privilege conflict
Unlike regular programming logic that a later value

assignment of a variable overwrites the previous assigned
value of the same variable, the rules of an AC policy normally
have no precedence consideration in permission evaluation. In
other words, AC rules will not be overwritten by other rules
unless specifically allowed to. Thus, privilege conflicts appear
when the specifications of two or more access rules result in
the conflicting decisions of permitting subjects access requests
by either direct or indirect (inherit) access assignments. In
addition, when multiple policies are evoked for permission,
conflicting decisions between policies may occur.

Multi-policies considerations
In an enterprise environment, it may be required to have

AC policies specified independently by different collaborative
or networked systems in the enterprise. Thus, an inter-system
access request may be evaluated by more than one policy that
the requesting subject is governed under. Thus, AC policy
autonomy should also be preserved for secure inter-system
access. Maintaining the autonomy of all collaborative system is
a key requirement of the policy for inter-operation. The
principle of autonomy states that if an access is permitted by an
individual system, it must also be permitted under secure inter-
system access. The principle of security states that if an access
is denied by an individual system, it must also be denied under
secure inter-system access. In a collaborative system,
violations of secure inter-system access can be caused by
adding inter-system privilege inheritance relations, for
example, Fig. 1 shows that privilege k inherits privilege j
through legal inter-system privilege inheritance (because both
has the same privilege level j), which is granted in network x
but denied in network y. These types of violations can be
detected by checking for cyclic inheritance, privilege leakage
and SoD violation. Thus, both security and autonomy can be
characterized as safety requirements of a multi-policies AC
system, which should be preserved during collaborations. A
meta-policy is a policy that is usually applied for reconciling
policy autonomy difference or to handle priorities of access
decisions rendered from more than one policy. Thus, in
addition to autonomy requirements, AC safety requirement
may include priority model within the meta policy [4].

 Fig.1 Privilege leaks through inter-system privilege inheritance.

IV. VERIFICATION APPROACHES
The fundamental goal of AC policy and implementation

verification is to detect conflicting or missing rules (i.e. policy
statements) by verifying AC policy model and testing output
of the policy. To achieve this, semantically and syntactically
methods with Black-box and/or White-box testing techniques
may be used. Although the general safety computation is
proven undecidable [5] especially for discretionary AC
policies, which are impossible to be described by static policy
models, practical safety constraints such as confinements can
be specified for discretionary AC policies. As a result,
verifications can be performed upon the constraints.

In a nutshell, AC policy verification must test if the safety
requirements of an AC policy are incorporated in the
expressed model, which will be the blue print for
implementing the AC system. The specification of safety
requirements can be AC properties, business requirements,
specifications of expected/unexpected system security features,
or direct translations of policy features. Safety requirements
can also include privilege inheritance, for example to verify a
SoD property, safety requirement will specify that 1) subject x
and y are mutually exclusive if neither one inherit the other’s
privilege directly or indirectly, 2) If subject x and y are
mutually exclusive, then there is no other subject inherits
privilege from both of them. Similar to SoD, dynamic SoD
(DSoD) has the safety requirement: 3) If SoD holds, then
DSoD is maintained. Thus, 1) and 2) must be guaranteed [4].

Note that an AC policy is not necessarily explicitly
expressed by a single model; it can also be implicitly
embedded by mixing with direct access constraints or other
AC models. Thus, an AC policy may be expressed by
combining multiple AC models (e.g. for policy combinations)
or additional constraints outside of the model into one
combined model. The principle of ensuring the conformance
of a model to the policy is to formally detect inconsistency
and incompleteness faults as described in Section III. In the
former case, for example, an access request can be both
accepted and denied, while in the latter case the request is
neither accepted nor denied according to the model.

Model Verification

The general approach for checking the correct
specification of an AC model is to use black-box methods to
verify the AC model against safety requirements. And since
the confidence of the model’s correctness depends on the

quality of the safety requirements, a white-box property
assessment method on entities in the model and safety
requirements is required to assess the sufficiency of the safety,
covering and confinement of the model [6].

In terms of AC attributes the formal definition of AC
model can be illustrated by a deterministic finite state
transducer of a model corresponding to a Finite State Machine
(FSM) with a five-tuple M = (Σ, ST, s0, δ, F), where Σ is the
input alphabet that represents the attributes associated with
subjects, actions, objects, and environment conditions.
ST is a finite, non-empty set of recorded AC system states and
permissions, s0 is the initial state, δ is the state-transition
function, where δ : ST× Σ → ST, F is the set of final states
include Grant, Deny as the output.

For static AC models as described in II a, the FSM Mstatic
does not require intern states to reach the permission state,
thus F = ST = {Grant, Deny}, i.e., Mstatic is just a
straightforward FSM model without state transitions. For
dynamic AC models as described in II b, the input alphabets
of FSM Mdynamic are Σdynamic = {gCond1, …, gCondn}, where
global condition gCondi is the threshold indicator of the access
limitation, such as the number of persons that have to access at
the same time in a N-Person control policy [2], or the
maximum number of accesses allowed for a
Limited_Number_of_Access policy. For historical AC models
as described in II c, the input alphabets of the FSM Mhistorical
are Σhistorical = {….. sCondi, aCondi, oCondi…}, where subject
condition sCondi action condition aCondi and object condition
oCondi contribute to a historical event that is used as
determining factors for the next permission decision. Note that
it is possible for different types of AC models to combine into
one model such that Mcombine = {Mstatic ∪ Mdynamic ∪ Mhistorical}2.

An AC safety requirement p is expressed by the

proposition p: ST × Σ2 → ST of FSM, which can be
collectively translated in terms of logical formulae such that p
= (sCond1*…*sCondn* aCond1*…* aCondn* oCond1* …*
oCondn*gCond1* …*gCondn) → d, where p ∈ P and d is the
permission is a set of safety requirements, and * is a Boolean
operator in terms of logical formulas of temporal logic such as
computational tree logic (CTL) and linear-time temporal logic
(LTL). The purpose of model checking is to verify the set ST
in M in which p is true according to an exhaustive state space
search. In addition, by verifying the set of states in which the
negation of p is true, we can obtain the set of counterexamples
to make the assertion that p is true. The satisfaction of an AC
model M to the AC safety requirement P by model checking is
composed of two requirements:
(1) Safety, where M satisfies P. That is, there is no violation of
rules to the logic specified in P, and it is assured that M will
eventually be in a desired state after it takes actions in
compliance with a user access request.
(2) Liveness, where M will not have unexpected complexities.
That is, there is neither a deadlock in which the system waits

network x

m

j

network y

k

j

X
k

…….
AG (p = = i & q = = j) → access
= grant

NEXT_STATE(p) := CASE {
 x : i
 ….
}

NEXT_STATE(q) := CASE {
 ! x : j
 ….
}

NEXT_STATE(access) :=
CASE {
 p = = i & q = = j : grant
 OTHERWISE: deny
 ……
}

AG means that
condition (p = = i & q
= = j) → access =
grant is always (A),
or globally (G), true
in all the states of
all the possible path
in the model by
CTL check

forever for system events, nor a livelock in which the model
repeatedly executes the same operations forever.

Thus, the AC rules define the system behaviors that

function as the transition relation δ in M. Then when the AC
safety requirement is represented by temporal logic formula p,
we can represent the assertion that model M satisfies p by M |=
Ap → AXd, where temporal logic quantifier A represents
“always”, and logic quantifier X represents “is true next state”.
The purpose of safety and liveness verification using model
checking is to determine whether these assertions are true, and
to identify a state in which the assertions are not true as a
counterexample for the assertions. Since the behavior of the
AC mechanism can be represented by FSM M, and the safety
requirements that M must satisfy can be represented by
temporal logic formulas, we can define the correctness more
precisely as that the model can be led from every possible
state that is reachable from initial states to the defined final
state while complying with the safety requirements.

Even though checked by the black box testing as
described above, the model is not fault proof because the
temporal logic in the model might not be thorough in covering
all possible values of all rules or all conditions in rules. For
example, two states determined by opposite assignments of
the same Boolean variable are embedded in different sub-state
modules, where a third state is triggered only when the
constraints of the two states are satisfied. As demonstrated in
Fig. 2, the two rules will never agree due to the self-negation
to the same constraint. In this case, the third state will never be
satisfied, but proven correct without counterexamples through
the black box checking.

Fig.2 Example of never-achieved rules and the safety requirement in an AC
model.

To detect this kind of semantic fault, the white box testing,
based on code analysis should be applied such that the
resulting mutated versions are used to detects faults of the
model. Testing for mutations makes sure all paths of a part of
a model code are covered by setting the related target
variables to all possible values as input, and checking to see if
there are different outcomes from the changes. If there is none,
then either the code that had been mutated was never executed
or the variable was unable to locate the faults. As shown in
Fig. 2, If we mutate the first case module to change x to !x, the
resulting access state will be grant without being affected.
(That works the same for the second case module). This fault
demonstrates that there is a redundancy in the model, which
does not violate the temporal logic of the model. Further
investigation to check the model that relates to the variable
should reveal that the (p = = i & q = = j) → access = = grant
safety requirement will never happen. Note that this fault can
be caught if one more safety requirement E! (p = = i & q = = j)
(which means there exists some path that eventually in the
future will satisfy !(p = = i & q = = j) in CTL model checking)
is specified for the black box checking. Hence, it is not
expected that all safety requirements are perfectly specified in
the beginning. Thus, white box checking can be used as a
second line of defense against faults that will not be spotted by
black box checking.

Most faults in a AC model result from the nondeterministic
automata of FSM states, for example, in Fig. 3, white box
checking will detect that the value x will result to a grant of
access when it is either s or t. This does not violate the safety
requirement, however, the safety property will not be
maintained if a more stringent safety requirement requires that
only one value of x attribute is desired from the policy.

Fig. 3 Example of ambiguous value and the safety requirement in an AC
model.

Another example shows a transition to an unspecified
state for a certain range of data values such as in Fig. 4, there
is no way for the black box checker to figure out the value of
access when x value is other than s unless we check with the
safety requirement AG ! (p = = i) → access = deny. This
uncovered value can be detected by the white box checking
when different values were assigned to x, which does not
match any expected case condition, and results in the same

…….
AG (p = = i) → access = grant

NEXT_STATE(p) := CASE {
 x==s|t : i
 ….
}

NEXT_STATE(access) := CASE {
 p == i : grant
 OTHERWISE: deny
 ……
}

grant of access. Thus, the safety requirement verification
informs the users which rules are not covered by the existing
safety requirement so that the users can add new properties to
cover the uncovered.

Fig. 4 Example of uncovered value and the safety requirement in an AC
model.

Coverage and Confinements Semantic faults

Fig. 5 Relations of Policy, Model, and Safety Requirements

The rules in the policy, model, and safety requirements

may each describe their own space of permission conditions,
and may not be congruent in one space as the initial relation
illustrated examples in Fig. 5. The safety and liveness check
can assure only the logical integrity of some rules against
some safety requirements. The complete satisfaction of a
model to its policy requires fixing of coverage and
confinement faults if any violations are detected by additional
Coverage and Confinement Checks (CCC), the second line of
defense against such semantic faults.

CCC requires mutant versions of the model, and extra
modified properties for additional model checking. As
illustrated in Fig. 5, the goal of CCC is to ensure that the rules

in the safety requirement are completely covered by the
model, and to confirm that no exceptional access permissions
are granted unless intentionally allowed. The first step of CCC
is to discover the rules, which are seeped through the
specification of the safety requirement by applying white box
checking on mutated versions of the model. The second step is
to detect unexpected access permission that might not be the
intention of the policy author, by applying model checking on
modified rules extracted from the original ones.

Rule coverage checking

The key notion of rule coverage checking is to synthesize
a version of the given model in such a way that the permission
of its rules is mutated such that rule r is changed to ~r. If
safety requirements are satisfied by both mutated and original
models through model checking, then some of the rules and
their mutants would never be applied to the safety
requirements; in other words, the safety requirements do not
cover all the rules in the model.

As an example in Fig. 6, the safety and liveness checking
verify that the model conforms the safety requirement AG (q =
= i) → access = grant without counterexamples; however, by
applying the CCC by mutating the rule u == j: grant to u == j
: deny for the coverage checking, the result shows that the
safety requirement satisfies the mutated rules as well (without
counterexamples), indicating that the variable u was never
applied to the safety requirement AG (q = = i) → access =
grant. This result shows that the rule u == j : grant is not
verified with the property AG (q == i) → access = grant. One
way of addressing this insufficiency is adding a new property
that describes proper control of u. Note that it is necessary to
check every rule in the model against all safety requirement to
achieve thorough verification.

…….
AG (p == i) → access = grant

NEXT_STATE(p) := CASE {
 x==s : i
 ….
}

NEXT_STATE(access):= CASE {
 p == i : grant
 ……
}

 Specified
properties

Confined
properties

Specified
properties

Model

Confined
properties

Confined
properties /

Confined
properties

Model

Model/

specified
properties

specified
properties

Model /

Coverage fault
fixing

Confinement
fault fixing

Initial relation

or

All rules and all
properties verified

All rules and properties
are verified and
confined

Some rules and
some properties
verified

Fig. 6 Example of uncovered rules in a AC model

Property confinement checking

Property confinement checking ensures that there is no
exceptional permission allowed in addition to the specified
safety requirement; this checking requires a modified safety
requirement to be added for the next run of model checking.
Confinement check should discover the discrepancy of the
specified safety requirement and the safety requirement the
AC policy author intend. The rationale is that if the model
does not satisfy the modified safety requirement, then there
are exceptional access permissions that leak through the safety
requirement. Fig. 7 shows a transition to an unspecified state
for a certain range of data values that allow exceptional
permissions not covered by a specified safety requirement
because the value of access when u value is different than i
(such as u = j) also grants access permission by the rule
otherwise: grant. This fault can be caught by a
counterexample AG (u == j) → access = grant when checking
the model against the additional confinement property ¬AG (u
== i) → access = deny derived from original property AG (u
== i) → access = grant. The additional model checking for
confinement verification informs the AC policy authors which
safety requirement is not confined so that the AC policy
author can add new rules to enforce the safety of the model.
As in this case, changing the rule otherwise: grant to
otherwise : deny and adding all granted rules in the state will
correct the problem.

Fig. 7 Unconfined rule in a property

Note that it is possible the AC policy author intentionally
allowed the exception for a safety requirement, and it is
necessary to check every safety requirement against the set of
rules in the model to achieve thorough verification.

Implementation Test

Black box model checking and white box mutation test
provide methods for verifying the correct model
representation of the policy. Once a model is verified, the AC
mechanism can be implemented based on the design of the
model and additional constraints if needed. Usually AC
mechanisms are code developed in a language the AC system
supports, for example dedicated AC language such as
XACML [7] is commonly used for AC code implementation.
AC implementation can be error prone. As the AC model is
directly implemented by an algorithm, the errors are often
caused by syntactic faults, such as mistakenly changing the +
sign to – sign, or typing letter O instead of 0.

The correct implementation of the policy needs to be
tested. To achieve that, a test oracle that contains cases of all
possible outcome of the AC safety requirement is required,
because implementation faults are unpredictable without a
logical trace for detecting. Thus, all the combinations of the
variables in the safety requirements need to be covered in the
oracle. For example, a safety requirement: “x read y grant”
where x has 3 different values and y has 5 different values will
have 3*2*5*2 (assume that the AC actions has two values:
read and write, and permission has only two values: grant and
deny) test cases in the test oracle. The implemented AC
system will then run these test cases to verify whether the
actual test outputs are the same as the expected outputs.

It is not uncommon that a verification test includes
hundreds of safety requirements; each contains tens of
variables, in such case, the number of test cases in a test oracle
for the implementation test is too great to be efficiently
performed, therefor, additional techniques [8,9] for reducing
the test case size without sacrificing the capability may be
required for the test.

V. IMPLEMENTATION CONSIDERATIONS
General AC system testing framework shown in Fig. 8

contains four major functions using the methods as stated in
Section IV. The AC Rule Real-time Error detector is used
optionally for design the initial AC models [10]. The Black
Box Tester checks if a model (original or mutant) holds for the
specified Safety Requirements. The Black Box Tester
(counterexample results) provides information for original
model fix (a human action as dotted line in the Figure) and for
mutation killing check for White Box Tester, it also takes
output from the Test Generator and returns results for test case
generation. The White Box Tester generates and kills mutant
models based on the original model and safety requirements;
its mutated models are sent to the Black Box Tester for

…….
AG (u == i) → access =
grant

NEXT_STATE(u):=
CASE {
 x==s :i
 x==t :j

NEXT_STATE(access):=
CASE {
 u== k : deny
 ……
Otherwise grant
}

¬AG (u ==
i) → access
= deny

Addition

NEXT_STATE(q):=
CASE {
 x :i
 ….
} NEXT_STATE(a

ccess):= CASE
{
u == j : deny
g == I : deny
OTHERWISE:
grant
 ……
}

Mutant

……
AG (q == i) → access = grant

NEXT_STATE(access):=
CASE {
 u == j :grant
 g == I : grant

OTHERWISE: deny
 ……
}

mutation killing check, or to the AC model author for original
model or safety requirement fix (a human action as shown in
dotted lines in the figure). The Test Oracle Generator
generates test cases based on the Safety Requirement and the
Black Box Tester’s counterexample results. The process steps
are listed below:
1. (optional) AC models is designed based on the AC policy

by using AC Rule Real-time Error Checker (as described
in Section 5.4).

2. Safety requirements are specified
3. Completed original AC model is checked against safety

requirements by Black Box Tester, if an error is found, the
original model needs to be fixed (thus repeat steps 1 to 3),
otherwise proceed to next step 4.

4. Fixed original model send to White Box Tester for
coverage and confinement check. The White Box Tester
uses Black Box Tester to decide if generated mutant
models were killed. If not, original model or safety
requirements need to be fixed (thus repeat step 1 to 4),
otherwise, proceeds to next step 5.

5. Test Oracle Generator generates test cases based on Safety
Requirements, which are sent to Black Box Tester for
generating permission results used for test oracle.

Note that the components in Fig. 8 and steps are not

necessarily all required for an AC model verification; the
selections of components and steps might depend on the
complexity of the model and the cost for implementing the test
framework. Thus, an AC model test framework can contain
optional components/functions in Fig. 8 except that the Black
Box tested is essential.

Fig. 8 AC model verification framework

VI. RELATED WORK
 In addition to the FSM based method, other techniques [11]
are available for AC model verification such as theorem Proof
(including first and higher logic proof) and MTBDD [12]
methods.

Multi-Terminal Binary Decision Diagrams (MTBDD)
Developed in Racket (formal PLT) Scheme, Margrave

[13] is a software tool suite for verifying safety requirements
against AC policies written in XACML. Margrave represents
XACML policies as MTBDD models, it allows the user to
specify various forms of safety requirements in the Scheme
programming language. Margrave uses one variable for each
attribute-value pair in the XACML policy. Margrave creates

MTBDD models for the individual policy rules, then
combines these with MTBDD-combining algorithms that
implement the XACML rule- and policy-combining
algorithms.

Margrave views the policy constants permit and deny as

rules; an operation called augment-rule takes a Boolean
condition on the variables and a rule and constrains the rule to
also require the given condition. It supports query-based
verification and provides query-based views by computing
exhaustive sets of scenarios that yield different results
including change-impact analysis for comparing a pair of
policies. Margrave provides the benefits of static verification
without requiring authors to write formal properties; its power
comes from choosing an appropriate policy model in first-
order logic, and embracing both scenario-finding and multi-
level policy-reasoning. In general, Margrave identifies
formulas corresponding to many common firewall-analysis
problems automatically, thus providing exhaustive analysis for
richer policies and queries.

ACPT

NIST’s Access Control Policy Tool (ACPT) [14] provides
(1) GUI templates for composing AC models, (2) safety
requirements verification for AC models through an SMV
(Symbolic Model Verification) model checker NuSMV, (3)
complete test cases generated by NIST’s combinatorial testing
tool ACTS, and (4) XACML policy generation as output of
verified model. Through the four major functions, ACPT
performs all the syntactic and semantic verifications as well as
the interface for composing and combining AC models for AC
policies; ACPT is capable of verifying combined policies
based on the permission priorities and/or algorithms specified
by the user.

ACPT allows users to specify AC models or their
combinations, as well as safety requirements through GUI that
contains model templates for three major AC policies: static
Attribute-Based AC, Multi-Leveled Security, and stated Work-
Flow. ACPT then performs black box model check to verify if
the specified safety requirements conform to the specified
models. If not, non-conformance messages are returned to the
user, otherwise, ACPT proceeds to generate test cases through
ACTS, which are ready for testing the AC application
implemented according to the models.

Formal Methods
Formal methods for the validation of access control policies

involving mathematical tools and proofs have also been
advocated. Rémi Delmas and Thomas Polacsek [15] have
proposed a logical modelling framework to find the
inconsistencies and incompleteness in access control policies.
Providing a mechanism for the detection of these two
properties, they have introduced two new properties,
applicability and minimality and their proposed technique is
capable verifying these two properties [16]. By using the
concepts of signatures, formula and predicates, they have
defined some rules for the logical framework, which works for
limited or finite data so their rules are also applicable to the
finite data. They also mentioned that the MSFOL (many-sorted

first order logic) [17] formula should be converted to a pseudo-
Boolean logic formula to analyze it. The proposed tool is a
three-steps procedure where grounding operation gives the
grounded formula in the first step which is converted to a bit-
vector expression using the bit-vector encoding in the second
step of this process. In the last step of this procedure, the bit-
vector expressions are converted into clauses which are in
pseudo-Boolean form and give us the pseudo-Boolean formula.

Z [18] is based on axiomatic set theory and first order
predicate logic, which can be used for describing and modeling
AC policies [19]. Z notation apply set theory forms an
adequate basis for building the AC model, which allow syntax
and type checking, schema expansion, precondition
calculation, domain checking, and general theorem proving for
model verification by domain checking. Many of the proof
obligations are easily proven. In more difficult cases,
generating the proof obligation is often a substantial aid in
determining whether a specification in the AC model is
meaningful to the AC policy.

VII. CONCLUSIONS
This paper describes a notion of safety for access control,

and analyzes verification approaches for static, dynamic, and
historical AC models. Static models are those in which no
state is retained, while dynamic models may retain state
during a session. Historical models include long-term user and
object history in access decisions. An AC system is safe if no
privilege can be escalated to unauthorized principals, but the
correct privileges are always accessible to authorized
principals. We also describe a rough taxonomy of faults that
may be present access control models.

To verify safety requirements for AC models, we

provided a general approach that expresses AC models and
AC safety requirements in the formal specification of a black
box model or first order logic checkers for verification. Then
the black box verifier verifies the specified models against the
specified safety requirements. Most of the verification system
supports static, dynamic, and historical AC models. In
addition to black box checking, white box checking methods
make sure that the semantic coverage of the safety
requirements also conforms to the intentions of the AC policy
authors. Finally, the generation of test cases to check the
conformance of the models and their implementations is
necessary.

Access Control model and safety requirements

conformance verification of generic AC policies bring benefits
to society in two aspects. First, it should lead to improved
verification practices for testing and verifying AC models in
improving AC system quality and security in general. Second,

innovations in new testing and verification algorithms and
tools tend to propagate quickly across application or task
domains where AC policies are used.

REFERENCES
[1] V. C. Hu et al, NIST Special Publication 800-162, “Attribute Based

Access Control Definition and Consideration.”
[2] V. C. Hu, D. F. Ferraiolo, D. R. Kuhn, NIST Interagency Report 7316,

“Assessment of Access Control Systems”.
[3] V. C. Hu, and K. Scarfone, NIST Interagency Report 800-7874

“Guidelines for Access Control System Evaluation Metrics”.
[4] A. Gouglidis, I. Mavridis, V. C. Hu, “Security policy verification for

multi-domains in Cloud systems” International Journal of Information
Security (IJIS13), article No. s10207-013-0205-x, 13(2), 97-111 in
Springer, July, 2014.

[5] Harriosn M. A., Ruzzo W. L., and Ullman J. D., “Protection in
Operating Systems”, Communications of the ACM, Volume 19, 1976.

[6] V. Hu, R. Kuhn, T. Xie, and J. Hwang, “Model Checking for
Verification of Mandatory Access Control Models and Properties,”
International Journal of Software Engineering and Knowledge
Engineering (IJSEKE) regular issue IJSEKE Vol. 21, No. 1., 2011.

[7] XACML, https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

[8] http://csrc.nist.gov/groups/SNS/acts/index.html
[9] V. C. Hu, R. D. Kuhn, T. Xie, “Property Verification for Generic Access

Control Models”, in Proceeding of The 2008 IEEE/IFIP International
Symposium on Trust, Security and Privacy for Pervasive Application
(TSP2008), Shanghai, China, December 17-20 2008.

[10] V. Hu, K. Scarfone, “Real-Time Access Control Rule Fault Detection
Using a Simulated Logic Circuit”, Proceeding, 2013 ASE/IEEE
International Conference on Privacy, Security, Risk and Trust,
Washington D.C., USA September 8th-14th, 2013.

[11] A. Li, Q. Li, V. C. Hu, and J. Di “Evaluating the Capability and
Performance of Access Control Policy Verification Tools”, Proceeding
The Premier International Conference for Military Communications
(MILCOM 2015), Tampa FL, August 17-24, 2015

[12] E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao, “Multi-terminal
binary decision diagrams: An efficient data structure for matrix
representation’, International Workshop on Logic Synthesis, 1993.

[13] K. Fisler et al, “Verification and Change Impact Analysis of Access
Control Policies”, Proceeding, 27th International Conference on
Software Engineering (ICSE’05), Page 196-205, ACM, New York, NY,
2005.

[14] http://csrc.nist.gov/groups/SNS/acpt/index.html.
[15] R. Abassi, S. Fatmi, "An Automated Validation Method for Security

Policies: the firewall case", The 4th Int. Conf. on Information Assurance
and Security, 2008, pp. 291-294.

[16] M. Aqib, R. A. Shaikh. “Analysis and Comparison of Access Control
Policies Validation Mechanisms”, I.J. Computer Network and
Information Security, 2015, 1, 54-69.

[17] J. H. Gallier, “Logic for Computer Science: Foundations of Automatic
Theorem Proving”, ch. 10, pp. 448–476, Wiley, 1987.

[18] B. Potter, J. Sinclair, and D. Till, “An Introduction to Formal
Specification and Z” Second Edition, by Prentice Hall International
Series in Computer Science, 1996.

[19] V. C. Hu, “The Policy Machine For Universal Access Control”,
Dissertation, Computer Science Department, University of Idaho, 2002.

http://csrc.nist.gov/groups/SNS/acts/index.html

