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Abstract. The concept of attack surface has seen many applications in various 
domains, e.g., software security, cloud security, mobile device security, Moving 
Target Defense (MTD), etc. However, in contrast to the original attack surface 
metric, which is formally and quantitatively defned for a software, most of the 
applications at higher abstraction levels (e.g., the network level) are limited to an 
intuitive and qualitative notion, losing the power of the original concept. In this 
paper, we lift the attack surface concept to the network level as a security met-
ric for evaluating the resilience of networks against potential zero day attacks. 
Specifcally, we tackle two main challenges as follows. First, we develop mod-
els for addressing the incompatibility between the original attack surface model 
and the need for average across different resources inside a network. Second, we 
design heuristic algorithms to signifcantly reduce the complexity of calculating 
the network attack surface. Finally, we confrm the effectiveness of the proposed 
algorithms through simulation results. 

1 Introduction 

For a mission critical computer network (e.g., those that play the role of a nerve system 
in critical infrastructures, governmental or military organizations, and enterprises), the 
security administrators usually look beyond traditional security mechanisms, such as 
frewalls and IDSs. Their worry over the prospect of Advanced Persistent Threat (APT) 
and hidden malware usually drive them to understand the resilience of their networks 
against potential zero day attacks exploiting previously unknown vulnerabilities. How-
ever, while there exist many standards and metrics for measuring the relative severity 
of known vulnerabilities (e.g., CVSS [21]), the task becomes far more challenging for 
unknown vulnerabilities, which are sometimes believed to be unmeasurable [19]. 

To that end, a promising solution is the attack surface concept [18], which is orig-
inally proposed for measuring a software’s degree of security exposure along three di-
mensions, namely, entry and exit points (i.e., methods calling I/O functions), channels 
(e.g., TCP and UDP), and untrusted data items (e.g., registry entries or confguration 
fles). Since attack surface relies on such intrinsic properties of a software independent 
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of external factors, such as the disclosure of vulnerabilities or availability of exploits, 
it naturally covers both known and unknown vulnerabilities [18] and becomes a good 
candidate for understanding the threat of zero day attacks. 

Evidently, in addition to software security, the concept of attack surface has also 
seen many applications in other emerging domains, e.g., cloud security [9], mobile 
device security [15], automotive security [5], Moving Target Defense (MTD) [13], etc. 
(a detailed review of related work is provided in Section 5). However, in contrast to the 
original attack surface metric, which is formally and quantitatively defned for a single 
software, most of the applications at higher abstraction levels (e.g., the network level) 
are limited to an intuitive and qualitative notion. Adopting such an imprecise notion 
unavoidably loses most of the original concept’s power in formally and quantitatively 
reasoning about the likelihood of a system to contain vulnerabilities. 

In this paper, we address this issue by lifting the original attack surface concept to 
the network level as a security metric, namely, network attack surface, for evaluating the 
resilience of networks against potential zero day attacks. There are two main challenges 
in lifting attack surface to the network level. First, the attack surface model relies on 
addition for aggregating scores, which is incompatible with the causal relationships 
among different resources inside a network. Second, there exists a paradox that the 
only way to avoid the costly calculation of attack surface is to perform that calculation. 
We devise models and heuristic algorithms to address those challenges, and we confrm 
the effectiveness of the proposed solutions through experiments (e.g., our algorithms 
produce less than 0.05 error rate with only 20% of the resources calculated). 

The main contribution of this work is twofold. First, to the best of our knowledge, 
this is the frst effort on lifting the attack surface concept to the network level as a for-
mally defned security metric. We believe such a metric may serve as a foundation of 
many useful analyses for quantitatively designing, evaluating, and improving network 
security. Second, our simulation results show that the proposed algorithms can produce 
relatively accurate results with a signifcant reduction in the costly calculation of at-
tack surface, paving the way for practical applications. The remainder of this paper is 
organized as follows. We frst build intuitions through a motivating example and then 
present the formal models in Section 2. We design heuristic algorithms in Section 3 
and evaluate their performance in Section 4. We review related work in Section 5 and 
discuss limitations and future work before we conclude the paper in Section 6. 

1.1 Motivating Example 

First, we illustrate the main challenges through a motivating example shown in Figure 1 
(the topology is roughly based on [27]). We assume the External Firewall allows all 
outbound connection requests but blocks all inbound requests to the Mail Server (h2) 
and File Server (h3), including those from the Classroom Computers (h25); the Internal 
Firewall allows all outbound requests from h4 but blocks all inbound requests except 
those from h2. We also assume our main concern is protecting the Admin Host (h4) 
containing critical assets. Based on such assumptions, we can easily see that, an attacker 
at h0 can follow an attack path, e.g., h1 → h2 → h4, to compromise h4. Keeping this 
in mind, we now consider the question: How could we apply the attack surface concept 
to such a network to measure its security (e.g., in terms of h4)? 
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Classroom Computers (h25)

Attacker (h0)

Internet

Web Server (h1)

Cisco Network Registrar v7.0

Apache HTTP Server v2.4.20

TeamViewer v11.0.56083

MySQL v5.7

ProFTP v1.2.10

Apache MINA SSHD v1.0

Samba v4.4.0

Nginx v1.9.10

TeamViwer v11.0.56083

ProFTP v1.2.10

External Firewall 

IPCop v2.1.5

Internal Firewall 
IPCop v2.1.5

Bonjour v2.0

Samba v4.4.0

MySQL v5.7

192.168.1.1~192.168.1.25 192.168.2.1

192.168.2.2

PRTG v16.1.22.2657

Courier IMAP v4.0.1

Samba v4.4.0

TeamViwer v11.0.56083

Sendmail SMTP v8.1.5.2

Mail Server (h2) File Server (h3)
192.168.2.3 192.168.2.4

Admin Server (h4)

Fig. 1: The Motivating Example 

Two obvious solutions are to directly apply the metric either by regarding the whole 
network as a single software system, or by frst applying it to each resource separately, 
and then adding the results together. Since the addition operation is associative, both 
solutions yield the total numbers of methods, channels, and untrusted data items, re-
spectively (more details are given in Section 2). The main problem here is that such an 
addition operation is incompatible with the causal relationships between network re-
sources, which can be either conjunctive or disjunctive. For example, in Figure 1, while 
it makes sense to add up the attack surface of all the Classroom Computers (i.e., a larger 
number of such computers means the network is more exposed to attacks), doing this 
along an attack path, e.g., h1 → h2 → h4, is less meaningful, because it means a longer 
attack path would yield a larger attack surface (less secure), but a longer path usually 
requires more effort from attackers (more secure), which is a contradiction. Therefore, 
our frst challenge is how to aggregate the attack surface of network resources while 
respecting their causal relationships, which will be the main topic of Section 2. 

The second major challenge lies in the calculation of attack surface, which is well 
known to be costly since identifying the code that lies on the attack surface requires ex-
pertise and signifcant manual effort [18, 29]. Therefore, a natural question is whether 
we can reduce our effort by avoiding calculating attack surface for those resources that 
do not contribute to the fnal result. For example, in Figure 1, since our main concern 
is h4, we only need to calculate attack surface for the path h1 → h2 → h4, which 
signifcantly saves the effort by avoiding the calculation for the 25 Classroom Comput-
ers. However, the problem is not so straightforward in general. In the above example, 
suppose we change the frewall rules such that requests from both h2 and h3 to h4 are 
allowed. We now have a paradox that, in order to know which path, h1 → h2 → h4 or 
h1 → h3 → h4, should be calculated (the criteria for selecting the path will be detailed 
in Section 2) such that we can avoid calculating the other path, we must frst calculate 
and compare the attack surface of both h2 and h3, which defes the purpose because 
by then we would have calculated both attack paths. Therefore, our second challenge 
is how to reduce the effort of calculating attack surface for network resources while 
keeping the fnal result suffciently accurate, which will be the main topic of Section 3. 
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2 The Network Attack Surface Model 

In this section, we lift the attack surface concept to the network level in two steps. First, 
Section 2.1 converts the attack surface of a software to its attack probability. Second, 
Section 2.2 aggregates the attack probabilities of network resources into a single mea-
sure of network attack surface. 

2.1 Converting Attack Surface to Attack Probability 

This section addresses the challenge that the addition operation used in attack surface is 
incompatible with the causal relationships between network resources, as demonstrated 
in Section 1.1. Our main idea is to convert the attack surface of each software resource 
into an attack probability, which refects the relative likelihood that the software con-
tains at least one exploitable zero day vulnerability 4. Since attack surface provides 
an indication of both the severity (represented by the weights, i.e., the access rights and 
privileges) and the likelihood (represented by the counts, i.e., the total numbers of meth-
ods, channels, and untrusted data items) of potential vulnerabilities [18], the conversion 
will take two steps as follows. 

– First, for each group of methods, we explore a mapping between the attack surface 
and the common vulnerability scoring system (CVSS) [21] to convert the access 
rights and privileges of attack surface to a CVSS base score. 

– Second, at the software level, we aggregate the base scores of different groups of 
methods into a single attack probability for the entire software. 

Method Group-Level Conversion First, we briefy review the concepts of attack sur-
face and CVSS. As illustrated in the frst column of Table 1, the CVSS defnes six 
base metrics in two groups, the accessibility group including access vector (AV), access 
complexity (AC), and authentication (Au), and the impact group including confdential-
ity impact (C), integrity impact (I), and availability impact (A) (the possible values of 
each metric and their corresponding numerical scores are also shown in the table) [21]. 
The second column of Table 1 shows the different access rights and privileges and their 
numerical values used as weights in the attack surface metric (the underlined rows will 
be discussed later). 

Since both the accessibility group of CVSS and the access rights of attack surface 
represent the pre-conditions for exploiting a vulnerability, their values may be mapped 
together. Similarly, the impact group of CVSS and the privileges of attack surface both 
represent the post-conditions of exploiting a vulnerability, and hence are mapped to-
gether. The exact mapping for those two IMAP daemons are shown in the last column 
of Table 1. Each CVSS vector maps to the corresponding access right or privilege shown 
in the same row in the second column. 

The mapping is established based on understanding the software, including its chan-
nels and untrusted data items (consequently, we will not count those again later when 
we convert base scores into attack probabilities). For example, in the third row, the au-
thenticated access right is mapped to network for access vector (i.e., AV:N), because the 

4 Note the attack probability here is only intended as a relative metric for comparison purposes, 
instead of the actual probability of attacks which is generally infeasible to obtain in practice. 
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CVSS (Base Metric Group) Attack Surface (Methods) Vectors 
AV:[L:0.395,A:0.646,N:1.0] 
AC:[H:0.35,M:0.61,L:0.71] 
Au:[M:0.45,S:0.56,N:0.704] 

Access Rights 
anoymous 

unauthenticated 
authenticated 

admin 

1 
1 
3 
4 

[AV:N,AC:L,Au:N] 
[AV:N,AC:L,Au:N] 
[AV:N,AC:M,Au:S] 
[AV:A,AC:H,Au:M] 

C:[N:0.0,P:0.275,C:0.66] 
I:[N:0.0,P:0.275,C:0.66] 

A:[N:0.0,P:0.275,C:0.66] 
Privileges 

authenticated 
cyrus 
root 

3 
4 
5 

[C:P,I:P,A:C] 
[C:C,I:C,A:C] 
[C:C,I:C,A:C] 

Table 1: Mapping Attack Surface to CVSS Base Metrics for Courier IMAP Server 
v4.1.0 and Cryus IMAP Server v2.2.10 

UNIX socket in those software has the local authenticated access right, which means 
attackers may obtain the local authenticated access right over the network. Also, we as-
sign access complexity to medium (i.e., AC:M), because the authenticated access right 
matches the description of the medium access complexity: “The affected confguration 
is non-default, and is not commonly confgured (e.g., a vulnerability present when a 
server performs user account authentication via a specifc scheme, but not present for 
another authentication scheme)” [21]. Finally, we assign Authentication to single (i.e., 
Au:S), because the access requires a single authenticated session in those software. Sim-
ilarly, in the ffth row, the authenticated privilege is mapped to partial confdentiality 
impact, partial integrity impact, and complete availability impact (i.e., C:P, I:P, A:C), 
since the authenticated privilege implies accesses to 13 fles in those software, allows 
modifying some system fles or data, and may render the system unusable by deleting 
critical fles. 

Note that, since this mapping is based on the understanding of access rights, priv-
ileges, and the software, different administrators may end up assigning the mappings 
in different and incomparable ways. However, since metrics are relative, and meant for 
comparing similar confgurations of the same network, the results would still be mean-
ingful as long as the mapping is consistent across different confgurations. 

Based on the mapping shown in Table 1, we map all the methods of those two 
software to corresponding CVSS base metrics, and then calculate the overall base score 
according to the CVSS formula [21], as shown in Table 2. The methods are divided into 
groups (frst column) according to similar privileges (second column) and access rights 
(third column). The fourth and ffth columns show the total numbers of entry and exit 
points in each group. The next two columns show the mapped CVSS vector and the 
calculated base score for each group. 

Software-Level Conversion Now that we have calculated the base score for each 
group of methods, we can convert the attack surface into an attack probability repre-
senting the relative likelihood of the software to be exploitable through at least one zero 
day vulnerability. Suppose there are totally g groups of methods in the attack surface. 
Let bi and si (1 ≤ i ≤ g) denote the base score and the number of methods of each 
group, respectively. Assume on average there will exist one zero day vulnerability for 
every n methods, and the probability for attackers to discover such a vulnerability is p0 

(n of p0 are both intended as normalizing constants; see below for more discussions). In 
Equation 1, the base score divided by its range 10 gives the probability that a vulnera-
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Method Group Privilege Access Rights DEP DExp Vector Base Score 
Courier 

M1 
M2 
M3 

root 
root 

authenticated 

unauthenticated 
authenticated 
authenticated 

28 17 [AV:1.0,AC:0.71,Au:0.704,C:0.66,I:0.66,A:0.66] 
21 10 [AV:1.0,AC:0.61,Au:0.56,C:0.66,I:0.66,A:0.66] 
113 28 [AV:1.0,AC:0.61,Au:0.56,C:0.275,I:0.275,A:0.66] 

10 
8.5 
7.5 

Cyrus 
M1 
M2 
M3 
M4 

cyrus 
cyrus 
cyrus 
cyrus 

unauthenticated 
authenticated 

admin 
anonymous 

16 17 [AV:1.0,AC:0.71,Au:0.704,C:0.66,I:0.66,A:0.66] 
12 21 [AV:1.0,AC:0.61,Au:0.56,C:0.66,I:0.66,A:0.66] 
13 22 [AV:0.646,AC:0.35,Au:0.45,C:0.66,I:0.66,A:0.66] 
12 21 [AV:1.0,AC:0.71,Au:0.704,C:0.66,I:0.66,A:0.66] 

10 
8.5 
6.3 
10 

Table 2: Method Groups and Their Base Scores for Courier IMAP Server v4.1.0 and 
Cyrus IMAP Server v2.2.10 

bility in this group is exploitable; multiplying this with p0 gives the probability that the 
method can be both discovered and exploited; si/n gives the number of vulnerabilities 
out of those si methods in this group; the equation therefore gives the probability p that 
the software contains at least one exploitable zero day vulnerability. Note that, the true 
values of parameters n and p0 are certainly impossible to obtain in practice, so those are 
only intended to be normalizing constants chosen to ensure a reasonable value for p. As 
long as those values stay constant between different software, the equation will yield 
a relative value suffcient for comparing the exploitability of different software based 
on both the severity (represented by the base scores bi) and counts (represented by the 
number of methods si) of potential zero day vulnerabilities. 

g∏ sibi 
np = 1 − (1 − p0 ) (1)

10 
i=1 

Example 1. Assuming n = 30 and p0 = 0.08, we can calculate p for both software as 
follows. For Courier, p = 1 − (1 − 0.08 ∗ 10/10)45/30 ∗ (1 − 0.08 ∗ 8.5/10)31/10 ∗ (1 − 
0.08 ∗ 7.5/10)141/30 = 0.384, and similarly for Cyrus, p = 0.273. 

2.2 Aggregating Attack Probabilities inside a Network 

Now that we have converted the attack surface of a resource to its attack probability, we 
can easily aggregate the attack surface of all network resources into a single network 
attack surface value. We consider two different ways for aggregating the attack surface 
of resources in the network, the shortest path-based approach [31] and the Bayesian 
network (BN)-based approach [36], which refect the worst case scenario (i.e., with 
respect to attackers following the easiest attack path) and the average case scenario 
(i.e., with respect to any attacker), respectively. 

To illustrate the idea, Figure 2 shows a partial resource graph [31] for our exam-
ple, which is syntactically equivalent to an attack graph, but models zero day attacks 
instead of known vulnerabilities. Specifcally, each pair in plaintext is a security-related 
condition, e.g., connection ⟨source, destination⟩ or privilege ⟨privilege, host⟩, and 
each triple inside a box is a zero day exploit ⟨resource, source, destination⟩. The 
probability inside each box is the attack probability of the corresponding resource. 

Example 2. In Figure 2, for the shortest path-based approach, we can calculate the at-
tack probability for the shortest path indicated by the dashed line, ⟨IP Cop, 0, F ⟩ → 
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<Apache,0,1>

0.79

<0,1>
<user,0>

<0,F>

<IPCop,0,F>

0.5

<ProFTP,0,3>

0.39

<3,4>

<user,3>

<user,4>

<Nginx,1,3>

0.27

<user,1>

<0,3>

<1,3>

<MySql,3,4>

0.5

<0,2>

<Courier,0,2>

0.384

<MySql,2,4>

0.5

<user,2>

<2,4>

<IPCop,0,F>

0.5
<Sendmail,3,2>

0.35

<Team viewer,1,3>

0.16

Fig. 2: The Resource Graph with Attack Probability for the Network in Figure 1 

⟨Courier, 0, 2⟩ → ⟨MySql, 2, 4⟩, the probability can be calculated as p = 0.5∗0.384∗ 
0.5 = 0.096. Note that our approach here addresses a key limitation of the existing k-
zero day safety metric (which also adopts a shortest path-based approach) [31], i.e., it 
cannot discriminate different resources based on their relative attack probabilities. 

Example 3. For the BN-based approach, we can simply regard Figure 2 as a Bayesian 
network, with the attack probability of each resource regarded as the conditional proba-
bility that the corresponding resource can be exploited given that its pre-conditions are 
all satisfed, and then perform probabilistic inference using the BN [36]. In this exam-
ple, we can calculate the probability for attackers to reach ⟨user, 4⟩ as pgoal = 0.236. 

The following formally defnes the concept of network attack surface. 

Defnition 1 (Network Attack Surface). Given a network with the set of resources R, 
the attack probability p(r) as defned in Equation 1 for each r ∈ R, the resource graph 
G and a given condition cg ∈ G, 

– let AP denote the collection of all attack paths in G ending at cg , and for each 
ap ∈ AP , let R(ap) denote the set of resources involved in ap and denote p(ap) = ∏ 

r∈R(ap) p(r). We call max({p(ap) : ap ∈ AP }) (where max(.) returns the 
maximum value of a set) the worst case network attack surface w.r.t. cg . 

– let B = (G ′ , θ) be a BN, where G ′ is G annotated with the attack probabilities 
and θ is the set of parameters of the BN (the BN is more precisely defned in [7] 
and details are omitted here due to space limitations), and let CI be the set of 
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conditions without parents in G ′, we call p = P (cg | ∀c∈CI c = T rue) the average 
case network attack surface w.r.t. cg. 

We note that, although the network attack surface above is defned as probabilities, 
those can potentially be converted into other forms for different interpretations. For 
example, given the network attack surface p as a probability, we can easily convert p into 
the equivalent number of methods s with a given base score b, by inverting Equation 1 
as: s = n log1−p0 

(1 − p). We can therefore evaluate the network as a single software 
system with an attack surface composed of s methods with the base score b (which can 
also be mapped back to access rights and privileges if necessary). Also, we can convert 
p back into an equivalent number of zero day vulnerabilities as log0.08 p (here 0.08 
is a nominal probability for zero day vulnerabilities based on CVSS base metrics as 
described in [36]), which is a simple count-based metric helpful for interpretation and 
comparison purposes (we will use this method in our algorithms and simulations). 

3 Heuristic Algorithms for Calculating Network Attack Surface 

In this section, we propose heuristic algorithms to reduce the effort in evaluating the 
network attack surface. We frst state the problem in Section 3.1, and then introduce 
several simple heuristics in Section 3.2 and design algorithms based on such heuristics 
in Section 3.3. 

3.1 The Problem 

Calculating the attack surface of a software is well known to be costly [18, 29] mostly 
due to the manual work and expertise required for analyzing the source code of the 
software in order to extract both the counts (e.g., the total number of methods calling 
I/O functions) and weights (e.g., the access rights and privileges). On the other hand, 
the calculation of attack surface is becoming more practical due to ongoing efforts on 
automating or approximating the calculation [29]. Nonetheless, we believe although the 
calculation is practical with automated techniques, it will still remain a costly process 
due to the ever increasing size of modern software 5. 

Therefore, we investigate the problem of evaluating the network attack surface while 
reducing the effort of calculating the attack surface of individual resources. We will fo-
cus on the worst case network attack surface, as given in Defnition 1, while leaving 
the average case network attack surface to future work. Clearly, there will be a tradeoff 
between the cost (i.e., the percentage of network resources whose attack surface is cal-
culated), and the error in the calculated network attack surface result. Specifcally, given 
a network with the set of resources R and suppose the true value of the network attack 
surface is ptrue and the calculated value is pcal (we assume all the values described in 
this section are count-based, as described at the end of Section 2.2), we would like to 

5 For example, the number of lines of software mentioned in our running example in Figure 1 
are as follows: Nginx (171,567), IPCop (271,645), Apache(1,800,402), MySql (2,731,107), 
Linux Kernel (18,766,825), and Google Chrome (14,137,145). 
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|ptrue−pcal|minimize the error while calculating the attack surface for no more than a ptrue 

given percentage of resources (the budget). 
Note that, although the above may seem to be a standard optimization problem, this 

is not the case, because the objective function |ptrue−pcal | contains an unknown value ptrue 

ptrue, whose calculation would imply calculating the attack surface for all resources 
and defy the very purpose of reducing the cost. Also, since the problem of fnding 
the shortest path is already NP-hard [31], which is a special case of our problem with 
unlimited budget, the latter is also intractable. Therefore, we study heuristic algorithms 
in the coming section. 

3.2 The Heuristics 

The main observation is that, since we can only calculate a certain percentage of re-
sources under a given budget, what determines the error is the order of calculation 
among all resources. Therefore, this section frst considers a few straightforward heuris-
tics for choosing the resources in the right order, e.g., by exploring the structural prop-
erties of a resource graph. We will then combine those heuristics into better algorithms 
in the coming section and evaluate their performance later in Section 4. 

Random Choose The most obvious solution is probably to simply choose resources in a 
completely random fashion, namely, the random choose heuristic. Although the random 
choose algorithm is likely far from optimal, it provides a baseline for comparison with 
other heuristic algorithms we will propose. For example, in Figure 2, if our budget is to( )

8calculate the attack surface of at most two resources, then among the = 28 possible2 
choices, the worst result is p = 0.46 with an error rate of 0.51, whereas the best result 
is p = 0.7 with error 0.24. 

Frequency Choose The idea of this heuristic is that, since the same resource may appear 
on multiple hosts inside a network, calculating the attack surface for the most frequently 
seen resources will provide the most information with the same cost. For example, in 
Figure 2, we can see both IPCop and MySql appear twice among totally 10 exploits. 
Therefore, if our budget is two, then calculating both of them will unveil 4/10 of the 
exploits (the result is p = 0.7 with an error rate of 0.24). 

Topological Order The idea here is that, since the nodes closer to the beginning and 
end of a resource graph tend to be shared among more attack paths (e.g., the last two 
exploits are shared by all paths in Figure 2), it may help to choose resources based on 
a topological order among the exploits. We consider both the topological order and the 
reversed topological order heuristics, which choose resources from the beginning and 
from the end, respectively. For example, in Figure 2, suppose our budget is two, the 
topological order heuristic may choose Apache and IPCop while the reversed topolog-
ical order may choose MySql and Sendmail (the results would both be p = 0.58 with 
error 0.375). 

Shortest Path This heuristic starts the calculation with resources on the path with the 
least number of exploits (e.g., the path depicted in dashed line in Figure 2), which, 
although not always the right path in terms of the fnal result, may serve as a good 
starting point. For example, in Figure 2, if our budget is two, then the shortest path 
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heuristic will choose IPCop and MySql on the dashed line path (the result is p = 0.70 
with error 0.24). In this particular example, this path happens to be the right path for 
calculating the fnal result, so a larger budget will potentially produce more accurate 
result. 

3.3 The Algorithms 

The above heuristics may not produce good results when each of them is used alone, 
but combining them leads to algorithms with good performance, as we will show in this 
section. 

Mpath-Topo Heuristic Algorithm: This algorithm combines the above topological order 
and shortest path heuristics as follows. First, we apply the shortest path heuristic to 
choose M (an integer parameter) shortest paths, which are ranked based on the number 
of exploits, as the starting points. Since there is no order between resources along each 
such path, we next apply the topological order heuristic to sort all paths, as well as 
those not on such paths. The algorithm is more clearly depicted on the left-hand side of 
Figure 3. 

Procedure Keynode Heuristic 
Input: Resource graph G, p0, p1 ∈ [0, 1], and budget NProcedure Mpath-Topo Heuristic Output: a sequence of resources PInput: Resource graph G, parameter M , and budget N Method:Output: a sequence of resources P 1. Let P = ϕ be a sequence of resources Method: 2. Let KN = ϕ be a sequence of resources1. Let P = ϕ be a sequence of resources 3. Let p be the network attack surface calculated based on2. Let MS be the sequence of M paths with the least assigning p0 to all the resources in Gnumbers of exploits in G, with the paths sorted 4. For each resource r in Gascendingly based on such numbers, and the 5. Calculate p again on G with p1 assigned to r resources inside each path topologically sorted 6. If p changes3. Let T = G \ MS, topologically sorted 7. Add r to KN 4. While N >0 8. Sort KN based on topological order 5. If| MS |> 0 9. While N >06. Append the frst resource r in MS to P 10. If | KN |> 07. Remove r from MS 11. Append the frst resource r in KN to P8. Else If | T |> 0 12. Remove r from KN 9. Append the frst resource r in T to P 13. Else If | G \ KN |> 010. Remove r from T 14. Append the frst resource r to P11. Let N= N-1 15. Remove r from G12. Return P 16. Let N= N-1 
17. Return P 

Fig. 3: Mpath-Topo (Left) and Keynode (Right) Heuristic Algorithms 

Example 4. In Figure 2, assuming M = 2, we have MS = IP Cop, Courier, MySql, 
P roF T P, Sendmail and T = Apache,Nginx, Team viewer. If our budget N = 2, 
then P = IP Cop, Courier, and the fnal result is p = 0.61, with error 0.34. 

Keynode Heuristic Algorithm This heuristic algorithm is based on the idea that a re-
source is more important in determining the fnal network attack surface value p, if 
changing its value may result in signifcant changes, e.g., a change in the shortest path 
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(the path selected for calculating the fnal result, which is different from the one men-
tioned in the above shortest path heuristic) , or a change in the currently calculated 
result of p. We then combine this heuristic with the topological order heuristic to form 
the algorithm depicted on the right-hand side of Figure 3 (here we only show the change 
in p, which can be replaced with the change in the shortest path, and we will evaluate 
both algorithms in the coming section). 

Example 5. Here we choose p0 = 0.08 and p1 = 1. In Figure 2, we initially calculate 
p = 5.12 ∗ 10−4 . We then calculate p again by assigning p1 to each resource. For exam-
ple, with IPCop changed from p0 to p1, we have p = 0.0064, so IPCop is a key node. 
Similarly, we can obtain the key nodes sequence as KN = IP Cop, Courier, MySql. 
If our budget N = 2, then IP Cop and Courier will be chosen and the result p = 0.61 
with error 0.34. 

We will evaluate the performance of those heuristics and algorithms, including both 
the accuracy and running time, in the coming section. 

4 Experimental Results 

In this section, we frst support our model for converting attack surface to attack proba-
bility with experimental results on the correlation between attack surface and vulnera-
bilities based on real software. We then conduct simulations to evaluate the performance 
of our heuristic algorithms proposed in Section 4. 

4.1 Correlation between Attack Surface and Vulnerabilities 

Since our model for converting attack surface to attack probability (presented in Sec-
tion 2.1) is based on the hypothesis that attack surface refects a software’s likelihood of 
having vulnerabilities, we investigate this correlation by conducting experiments with 
real software. We examine the correlation both for different software and for different 
versions of the same software. 

First, we examine 34 popular software and their correlation results are presented 
in Figure 4(a). The name of each software can be found in the Appendix based on its 
index number. We manually study the source code of each software in order to calculate 
the attack surface, and subsequently convert the result into attack probability using the 
method mentioned in Section 2.1. In Figure 4(a), the left y-axis and the green line show 
the attack surface (converted to attack probability) multiplied by the days of exposure 
of each software (since vulnerabilities take time to be discovered even though the attack 
surface of the software remains the same over time). The right y-axis and the red line 
show the number of vulnerabilities found for the same software in NVD [23]. 

From the results, we can see that there is a positive correlation between the number 
of vulnerabilities and attack surface multiplied by exposure days for most of the soft-
ware (specifcally, 25 out of 34). The correlation is unclear for the last few software 
(after index number 25). We believe the reason lies in other related factors affecting 
vulnerability discovery, e.g., the market share of a software, popularity of a software 

11 



0 5 10 15 20 25 30 35
# of Index

0

1000

2000

3000

4000

5000

A
tt
ac
k 
su
rf
ac
e 
E
xp
os
ur
e 
D
ay
s

Attack Surface

0

10

20

30

40

50

60

70

80

#
 o
f 
vu
ln
er
ab
ili
ti
es

Vulnerability

0 5 10 15 20 25
# of Index

0

200

400

600

800

1000

1200

A
tt
ac

k 
su

rf
ac

e 
E
xp

os
ur

e 
D
ay

s

Attack Surface 1.0.0

Attack Surface 1.0.1

Attack Surface 1.0.2

0

10

20

30

40

50

60

70

80

90

#
 o
f 
vu

ln
er

ab
ili
ti
es

1.0.0

1.0.1

1.0.2

(a) (b) 

Fig. 4: Correlation between Attack Surface and the Number of Vulnerabilities for Dif-
ferent Software (a) and Different Versions of OpenSSL (b) 

among attackers, and the security expertise level of typical users of a software. For ex-
ample, the index number 33 is freetype, a popular software development library used 
for rendering font-related operations, which is widely used by modern video games, 
Opera for Wii, and many other projects [2]. Such a widely used software is usually 
more attractive for attackers to discover vulnerabilities, and hence becomes an outlier 
in our results. As another example, the index number 34 is Amanda, a network-based 
backup system, which has only one vulnerability, even though its attack surface * expo-
sure days is relative large. We believe the reason could be that such a backup system is 
usually hosted in enterprise networks and operated by administrators with more security 
expertise and awareness, which may make the software less attractive to attackers. 

Second, we examined 53 different versions of OpenSSL along 3 version branches, 
1.1.0, 1.0.1, and 1.0.2, respectively, and the results are presented in Figure 4(b). The 
study of different versions of the same software reduces the infuence of aforementioned 
unrelated factors in discovering the vulnerabilities (e.g., market share). The index indi-
cates the version numbers in chronologically order. From the results, we can see that the 
number of vulnerabilities has a similar trend with the attack surface * exposure days for 
all three branches. The branch with larger attack surface * exposure days also has more 
vulnerabilities. The new versions inside each branch always have less vulnerabilities 
while attack surface * exposure days are also smaller. For all three branches, we can see 
the maximum number of vulnerabilities always appears somewhere in the middle of the 
branch, likely because, with a major change of version branch, it takes time for user 
adoption and also for attackers to change the focus. The version branch 1.0.2 is newly 
released since January 2015, so the attack surface * exposure days is not suffcient to 
create visible trends. 

The above experiments, although are still of a limited scale, show a promising result 
supporting our hypothesis that there is a positive correlation between the attack surface 
and the number of vulnerabilities. Our ongoing work will signifcantly expand the scope 
and scale of the experiments. 

4.2 Performance of Heuristic Algorithms 

In this section, we study the performance of our proposed heuristic algorithms via sim-
ulations. All simulation results are collected using a computer equipped with a 3.0 GHz 
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CPU and 8GB RAM in the Python environment under Ubuntu 14.04 LTS. All the re-
source graphs are created from small seed graphs based on realistic networks (e.g., the 
one shown in Figure 1), by increasing the number of hosts and resources in a random 
but realistic fashion. 

The objective of the frst two simulations is to evaluate the error rate of our simple 
heuristics (presented in Section 3.2) and heuristic algorithms (presented in Section 3.3). 
The error rate is defned in the same way as in the previous section ( |ptrue−pcal| 

ptrue 
where 

both ptrue and pcal are count-based values, as described at the end of Section 2.2). The 
cost is defned as the percentage of resources whose attack surface is calculated, and 
denoted as α. The reason we choose the percentage of resources instead of the absolute 
numbers, is that evaluating a larger network naturally implies a larger budget will be 
require so a relative value will be more meaningful. 

Figure 5(a) shows the error vs. the percentage of calculated resources (α) for simple 
heuristics and Figure 5(b) shows it for the heuristic algorithms. The y-axis is shown in 
reversed scale in both fgures in order to show the increasing accuracy of those algo-
rithms for a larger α. Figure 5(c) depicts the processing time of the algorithms. In all 
simulations, for each confguration, we repeat 500 times to obtain the average results. 
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Fig. 5: The Cost vs. Error for Simple Heuristics (a) and for Heuristic Algorithms (b) 

Results and Implications: From Figure 5 (a), we have following observations. First 
of all, with the increase of α, the error generally decreases, and when α increases to 1, 
which means we calculate all the resources in the network, the error of all the heuristics 
reaches 0 as expected. The green line with round markers is the baseline for comparison, 
which represents the results of the random choose heuristic and the error of this heuristic 
reduces almost linearly in both simulations. The frequency choose heuristic represented 
by the red line with vertical markers has the worst error among all the heuristics. The 
reason is that, the repetition of a resource does not necessarily mean the importance 
of this resource in determining the fnal result. The blue line with square and purple 
line with star represents the reversed topological order heuristic and the topological 
order heuristic, respectively. Both heuristics start worse than the random heuristic, and 
the reverse topological order stays worse than the random heuristic, but the topological 
order heuristic reduces and later becomes better than random. The reason is that, the 

13 



reversed topological order tends to choose resources equally among all the paths, since 
the paths converge towards the end of the graph. On the other hand, the topological 
order heuristic chooses from beginning nodes, which might converge into one path and 
give better results. The most accurate one in Figure 5(a) is the shortest path heuristic 
algorithm, which combines the topological order and shortest path heuristics together. 
The error rate of this algorithm becomes fat when it fnishes calculating the shortest 
path and starts to calculate other resources. 

Figure 5(b) depicts the error rate of the heuristic algorithms combining multiple 
heuristics. We can see that the keynode and the mpath topo algorithms produce very 
good results, e.g., less than 0.05 error rate with only 20% of resources calculated. Such 
results show a promising solution for obtaining relatively accurate network attack sur-
face results without incurring too much cost for calculation. Here the mpath frequency 
and mpath topo algorithms are the combination of m-shortest path heuristic with the 
frequency choose heuristic and the topological order heuristic, respectively. From the 
results we can see that the mpath topo algorithm has less error than mpath frequency. 
For the keynode heuristic algorithm, we tested two different variations, one based on the 
change of shortest path and the other based on the change of the calculated result. From 
the results, we can see that those two have very different error rate, because the result-
based keynode algorithm tends to gather the resources in the shortest path, whereas the 
path-based algorithm tends to avoid such resources. 

4.3 The Impact of Non-Calculatable Resources 

To calculate the attack surface of network resources we need to have access to the source 
code. However, many resources are closed source applications for which calculating the 
attack surface would be infeasible. Therefore, the objective of this set of simulations 
is to examine the impact of non-calculable resources. Here we assume a brute force 
algorithm which calculates all the attack surface as the baseline for comparison. We 
assign the value 0.68 (which is the attack probability converted from the average value 
of all CVSS scores in NVD [23]) to those non-calculable resources. Figure 6(a) shows 
the performance of our algorithms when half of the resources are non-calculatable. In 
Figure 6(b), we use two brute force algorithms to study the impact of increasing ratio 
of non-calculable resources of which the frst calculates all the attack surface values 
as a base line for comparison, and the second simply assigns 0.68 to non-calculable 
resources but calculates for all other resources. 

Results and Implications: From the results we can see that, the trends of algo-
rithms stay the same in the frst simulation, with generally a larger error due to the 
non-calculable resources. When α is close to 0.4, the error becomes stable at 0.3, which 
matches the corresponding result in Figure 6(b), and the differences between algorithms 
become invisible. In Figure 6(b), the error increases almost linearly with the increase 
of the percentage of non-calculable resources. When non-calculable resources reach 
100%, our metric essentially becomes the k-zero day safety metric [31], which still 
provides a useful measure even though it no longer discriminates different resources. 
Finally, we will also discuss future directions on calculating attack surface on binaries 
for closed source applications in Section 6. 
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Fig. 6: The Error vs. α of Algorithms with 50% Non-Calculable Resources (a) and The 
Percentage of Non-Calculable Resources vs. Error (b) 

5 Related Work 

The concept of attack surface is originally proposed for specifc software and requires 
domain-specifc expertise to formulate and implement [10]. Later on, the concept is 
generalized using formal models and becomes applicable to all software [24]. Further-
more, it is refned and applied to large scale software, and its calculation can be assisted 
by automatically generated call graphs [25, 18]. Attack surface has attracted signifcant 
attentions over the years. It is used as a metric to evaluate Android’s message-passing 
system [15], in kernel tailing [16], and also serves as a foundation in Moving Target De-
fense, which basically aims to change the attack surface over time [13, 12]. Others aim 
to expand the scope of this concept in other domains, such as the six-way attack surfaces 
between users, services, and cloud systems [9], and the approximation of attack surface 
for modern automobiles [5]. The study on automating the calculation of attack surface is 
another interesting domain, e.g., COPES uses static analysis from bytecode to calculate 
attack surface and to secure permission-based software[4]. Stack traces from user crash 
reports is used to approximate attack surface automatically [29]. Despite such tremen-
dous interest in the attack surface concept, to the best of our knowledge, little work 
exists on formally defning attack surface at the network level. The correlation between 
attack surface and vulnerabilities has also been investigated, such as using attack sur-
face entry points and reachability to assess the risk of vulnerability [35]. A study about 
the relationship between attack surface and the vulnerability density is given in [34], 
although the result is only based on two releases of Apache HTTP Server, which gives 
little clue to the general existence of such a correlation. 

As to security metrics in general, there exist standardization efforts on vulnerability 
assessment including the Common Vulnerability Scoring System (CVSS) [21], which 
measures vulnerabilities in isolation. The NIST’s efforts on standardizing security met-
rics are also given in [22] and more recently in [28]. The research on security metrics 
has attracted much attention lately [14]. Earlier work include the a metric in terms of 
time and efforts based on a Markov model [6]. More recently, several security metrics 
are proposed by combining CVSS scores based on attack graphs [30, 8]. The minimum 
efforts required for executing each exploit is used as a metric in [3, 26]. A mean time-
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to-compromise metric is proposed based on the predator state-space model (SSM) used 
in the biological sciences in [17]. While those metrics are mostly developed for known 
vulnerabilities, fewer work are capable of dealing with zero day attacks. A few excep-
tions include an empirical study of the total number of zero day vulnerabilities available 
on a single day based on existing data [20], an effort on ordering different applications 
in a system by the seriousness of consequences of having a single zero day vulnera-
bility [11], and more recently the k-zero day safety model [32, 31] and the network 
diversity model [33, 36] both attempt to model the risk of zero day vulnerabilities, but 
their common limitation is the lack of capability in distinguishing different resources’ 
likelihood of having such vulnerabilities, which is the main contribution of this paper. 

6 Limitations and Conclusion 

An intuitive notion of attack surface at the network level has prevented applications 
from inheriting the precise and quantitative reasoning power of the original attack sur-
face metric. In this paper, we have designed methods for lifting this concept to the net-
work level as a formal security metric for measuring networks’ resilience against zero 
day attacks. The correlation between attack surface and vulnerabilities was validated 
through our preliminary experimental results. We have also shown through algorithm 
design and simulations that the cost of calculating attack surface for network resources 
could be saved without losing too much accuracy. The limitations of our work and fu-
ture directions are as follows. 

– First, our experiments on the correlation between attack surface and vulnerabilities 
are still of relatively small scale and scope. Our future work will strengthen the 
results reported in this paper, and take into consideration other factors, such as 
market share data. 

– Second, there lack automated and mature tools for assisting the calculation of at-
tack surface, which can potential hinder the application of this concept at a higher 
abstraction level. One of our ongoing work is the development of an automated tool 
for calculating the attack surface for open source software. 

– Third, the calculation of attack surface requires source code and thus is not applica-
ble to closed source software. An interesting future direction is to adapt emerging 
tools on binary analysis, such as library function identifcation and clone detection, 
in order to make estimating attack surface for binaries a reality. 

– Fourth, we have not considered the average case network attack surface in the study 
of heuristic algorithms, and this will be a future direction. 

DISCLAIMER 

This paper is not subject to copyright in the United States. Commercial products are 
identifed in order to adequately specify certain procedures. In no case does such iden-
tifcation imply recommendation or endorsement by the National Institute of Standards 
and Technology, nor does it imply that the identifed products are necessarily the best 
available for the purpose. 
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Index Software 
Libfm-1.2.3 
apcupsd-3.14.13 
sox-14.4.2 
w3m-0.5.3 
squashfs4.3 
libtirpc-1.0.1 
ultradefrag 
fwbuilder-5.1.0.3599 
dosbox-0.74 
gnucash-2.6.7 
tcl8.6.4 
icinga-1.10.1 
fuse-2.9.4 
mcrypt-2.6.8 
pnp4nagios-0.6.25 
expat-2.1.0 
fac-1.3.1 
lcms2-2.7 
e2fsprogs-1.42.13 
libpng-1.6.19 
unzip610b 
mpg123-1.22.4 
ganglia-3.7.2 
nagios-4.1.1 
clamav-0.98.7 
net-snmp-5.4.5.pre1 
fex-2.6.0 
vice-2.4 
gnuplot-5.0.1 
zabbix-2.4.7 
optipng-0.7.5 
pcre2-10.20 
freetype-2.6 
amanda-3.3.7p1 

Table 3: Tested Software 
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