
Network Attack Surface: Lifting the Attack Surface
Concept to Network Level for Evaluating the Resilience

against Zero-Day Attacks

Mengyuan Zhang1, Lingyu Wang1, Sushil Jajodia2, and Anoop Singhal3

1 Concordia Institute for Information Systems Engineering, Concordia University
{mengy zh,wang}@ciise.concordia.ca

2 Center for Secure Information Systems, George Mason University
jajodia@gmu.edu

3 Computer Security Division, National Institute of Standards and Technology
anoop.singhal@nist.gov

Abstract. The concept of attack surface has seen many applications in various
domains, e.g., software security, cloud security, mobile device security, Moving
Target Defense (MTD), etc. However, in contrast to the original attack surface
metric, which is formally and quantitatively defned for a software, most of the
applications at higher abstraction levels (e.g., the network level) are limited to an
intuitive and qualitative notion, losing the power of the original concept. In this
paper, we lift the attack surface concept to the network level as a security met-
ric for evaluating the resilience of networks against potential zero day attacks.
Specifcally, we tackle two main challenges as follows. First, we develop mod-
els for addressing the incompatibility between the original attack surface model
and the need for average across different resources inside a network. Second, we
design heuristic algorithms to signifcantly reduce the complexity of calculating
the network attack surface. Finally, we confrm the effectiveness of the proposed
algorithms through simulation results.

1 Introduction

For a mission critical computer network (e.g., those that play the role of a nerve system
in critical infrastructures, governmental or military organizations, and enterprises), the
security administrators usually look beyond traditional security mechanisms, such as
frewalls and IDSs. Their worry over the prospect of Advanced Persistent Threat (APT)
and hidden malware usually drive them to understand the resilience of their networks
against potential zero day attacks exploiting previously unknown vulnerabilities. How-
ever, while there exist many standards and metrics for measuring the relative severity
of known vulnerabilities (e.g., CVSS [21]), the task becomes far more challenging for
unknown vulnerabilities, which are sometimes believed to be unmeasurable [19].

To that end, a promising solution is the attack surface concept [18], which is orig-
inally proposed for measuring a software’s degree of security exposure along three di-
mensions, namely, entry and exit points (i.e., methods calling I/O functions), channels
(e.g., TCP and UDP), and untrusted data items (e.g., registry entries or confguration
fles). Since attack surface relies on such intrinsic properties of a software independent

mailto:anoop.singhal@nist.gov
mailto:jajodia@gmu.edu
mailto:zh,wang}@ciise.concordia.ca

of external factors, such as the disclosure of vulnerabilities or availability of exploits,
it naturally covers both known and unknown vulnerabilities [18] and becomes a good
candidate for understanding the threat of zero day attacks.

Evidently, in addition to software security, the concept of attack surface has also
seen many applications in other emerging domains, e.g., cloud security [9], mobile
device security [15], automotive security [5], Moving Target Defense (MTD) [13], etc.
(a detailed review of related work is provided in Section 5). However, in contrast to the
original attack surface metric, which is formally and quantitatively defned for a single
software, most of the applications at higher abstraction levels (e.g., the network level)
are limited to an intuitive and qualitative notion. Adopting such an imprecise notion
unavoidably loses most of the original concept’s power in formally and quantitatively
reasoning about the likelihood of a system to contain vulnerabilities.

In this paper, we address this issue by lifting the original attack surface concept to
the network level as a security metric, namely, network attack surface, for evaluating the
resilience of networks against potential zero day attacks. There are two main challenges
in lifting attack surface to the network level. First, the attack surface model relies on
addition for aggregating scores, which is incompatible with the causal relationships
among different resources inside a network. Second, there exists a paradox that the
only way to avoid the costly calculation of attack surface is to perform that calculation.
We devise models and heuristic algorithms to address those challenges, and we confrm
the effectiveness of the proposed solutions through experiments (e.g., our algorithms
produce less than 0.05 error rate with only 20% of the resources calculated).

The main contribution of this work is twofold. First, to the best of our knowledge,
this is the frst effort on lifting the attack surface concept to the network level as a for-
mally defned security metric. We believe such a metric may serve as a foundation of
many useful analyses for quantitatively designing, evaluating, and improving network
security. Second, our simulation results show that the proposed algorithms can produce
relatively accurate results with a signifcant reduction in the costly calculation of at-
tack surface, paving the way for practical applications. The remainder of this paper is
organized as follows. We frst build intuitions through a motivating example and then
present the formal models in Section 2. We design heuristic algorithms in Section 3
and evaluate their performance in Section 4. We review related work in Section 5 and
discuss limitations and future work before we conclude the paper in Section 6.

1.1 Motivating Example

First, we illustrate the main challenges through a motivating example shown in Figure 1
(the topology is roughly based on [27]). We assume the External Firewall allows all
outbound connection requests but blocks all inbound requests to the Mail Server (h2)
and File Server (h3), including those from the Classroom Computers (h25); the Internal
Firewall allows all outbound requests from h4 but blocks all inbound requests except
those from h2. We also assume our main concern is protecting the Admin Host (h4)
containing critical assets. Based on such assumptions, we can easily see that, an attacker
at h0 can follow an attack path, e.g., h1 → h2 → h4, to compromise h4. Keeping this
in mind, we now consider the question: How could we apply the attack surface concept
to such a network to measure its security (e.g., in terms of h4)?

2

Classroom Computers (h25)

Attacker (h0)

Internet

Web Server (h1)

Cisco Network Registrar v7.0

Apache HTTP Server v2.4.20

TeamViewer v11.0.56083

MySQL v5.7

ProFTP v1.2.10

Apache MINA SSHD v1.0

Samba v4.4.0

Nginx v1.9.10

TeamViwer v11.0.56083

ProFTP v1.2.10

External Firewall

IPCop v2.1.5

Internal Firewall
IPCop v2.1.5

Bonjour v2.0

Samba v4.4.0

MySQL v5.7

192.168.1.1~192.168.1.25 192.168.2.1

192.168.2.2

PRTG v16.1.22.2657

Courier IMAP v4.0.1

Samba v4.4.0

TeamViwer v11.0.56083

Sendmail SMTP v8.1.5.2

Mail Server (h2) File Server (h3)
192.168.2.3 192.168.2.4

Admin Server (h4)

Fig. 1: The Motivating Example

Two obvious solutions are to directly apply the metric either by regarding the whole
network as a single software system, or by frst applying it to each resource separately,
and then adding the results together. Since the addition operation is associative, both
solutions yield the total numbers of methods, channels, and untrusted data items, re-
spectively (more details are given in Section 2). The main problem here is that such an
addition operation is incompatible with the causal relationships between network re-
sources, which can be either conjunctive or disjunctive. For example, in Figure 1, while
it makes sense to add up the attack surface of all the Classroom Computers (i.e., a larger
number of such computers means the network is more exposed to attacks), doing this
along an attack path, e.g., h1 → h2 → h4, is less meaningful, because it means a longer
attack path would yield a larger attack surface (less secure), but a longer path usually
requires more effort from attackers (more secure), which is a contradiction. Therefore,
our frst challenge is how to aggregate the attack surface of network resources while
respecting their causal relationships, which will be the main topic of Section 2.

The second major challenge lies in the calculation of attack surface, which is well
known to be costly since identifying the code that lies on the attack surface requires ex-
pertise and signifcant manual effort [18, 29]. Therefore, a natural question is whether
we can reduce our effort by avoiding calculating attack surface for those resources that
do not contribute to the fnal result. For example, in Figure 1, since our main concern
is h4, we only need to calculate attack surface for the path h1 → h2 → h4, which
signifcantly saves the effort by avoiding the calculation for the 25 Classroom Comput-
ers. However, the problem is not so straightforward in general. In the above example,
suppose we change the frewall rules such that requests from both h2 and h3 to h4 are
allowed. We now have a paradox that, in order to know which path, h1 → h2 → h4 or
h1 → h3 → h4, should be calculated (the criteria for selecting the path will be detailed
in Section 2) such that we can avoid calculating the other path, we must frst calculate
and compare the attack surface of both h2 and h3, which defes the purpose because
by then we would have calculated both attack paths. Therefore, our second challenge
is how to reduce the effort of calculating attack surface for network resources while
keeping the fnal result suffciently accurate, which will be the main topic of Section 3.

3

2 The Network Attack Surface Model

In this section, we lift the attack surface concept to the network level in two steps. First,
Section 2.1 converts the attack surface of a software to its attack probability. Second,
Section 2.2 aggregates the attack probabilities of network resources into a single mea-
sure of network attack surface.

2.1 Converting Attack Surface to Attack Probability

This section addresses the challenge that the addition operation used in attack surface is
incompatible with the causal relationships between network resources, as demonstrated
in Section 1.1. Our main idea is to convert the attack surface of each software resource
into an attack probability, which refects the relative likelihood that the software con-
tains at least one exploitable zero day vulnerability 4. Since attack surface provides
an indication of both the severity (represented by the weights, i.e., the access rights and
privileges) and the likelihood (represented by the counts, i.e., the total numbers of meth-
ods, channels, and untrusted data items) of potential vulnerabilities [18], the conversion
will take two steps as follows.

– First, for each group of methods, we explore a mapping between the attack surface
and the common vulnerability scoring system (CVSS) [21] to convert the access
rights and privileges of attack surface to a CVSS base score.

– Second, at the software level, we aggregate the base scores of different groups of
methods into a single attack probability for the entire software.

Method Group-Level Conversion First, we briefy review the concepts of attack sur-
face and CVSS. As illustrated in the frst column of Table 1, the CVSS defnes six
base metrics in two groups, the accessibility group including access vector (AV), access
complexity (AC), and authentication (Au), and the impact group including confdential-
ity impact (C), integrity impact (I), and availability impact (A) (the possible values of
each metric and their corresponding numerical scores are also shown in the table) [21].
The second column of Table 1 shows the different access rights and privileges and their
numerical values used as weights in the attack surface metric (the underlined rows will
be discussed later).

Since both the accessibility group of CVSS and the access rights of attack surface
represent the pre-conditions for exploiting a vulnerability, their values may be mapped
together. Similarly, the impact group of CVSS and the privileges of attack surface both
represent the post-conditions of exploiting a vulnerability, and hence are mapped to-
gether. The exact mapping for those two IMAP daemons are shown in the last column
of Table 1. Each CVSS vector maps to the corresponding access right or privilege shown
in the same row in the second column.

The mapping is established based on understanding the software, including its chan-
nels and untrusted data items (consequently, we will not count those again later when
we convert base scores into attack probabilities). For example, in the third row, the au-
thenticated access right is mapped to network for access vector (i.e., AV:N), because the

4 Note the attack probability here is only intended as a relative metric for comparison purposes,
instead of the actual probability of attacks which is generally infeasible to obtain in practice.

4

CVSS (Base Metric Group) Attack Surface (Methods) Vectors
AV:[L:0.395,A:0.646,N:1.0]
AC:[H:0.35,M:0.61,L:0.71]
Au:[M:0.45,S:0.56,N:0.704]

Access Rights
anoymous

unauthenticated
authenticated

admin

1
1
3
4

[AV:N,AC:L,Au:N]
[AV:N,AC:L,Au:N]
[AV:N,AC:M,Au:S]
[AV:A,AC:H,Au:M]

C:[N:0.0,P:0.275,C:0.66]
I:[N:0.0,P:0.275,C:0.66]

A:[N:0.0,P:0.275,C:0.66]
Privileges

authenticated
cyrus
root

3
4
5

[C:P,I:P,A:C]
[C:C,I:C,A:C]
[C:C,I:C,A:C]

Table 1: Mapping Attack Surface to CVSS Base Metrics for Courier IMAP Server
v4.1.0 and Cryus IMAP Server v2.2.10

UNIX socket in those software has the local authenticated access right, which means
attackers may obtain the local authenticated access right over the network. Also, we as-
sign access complexity to medium (i.e., AC:M), because the authenticated access right
matches the description of the medium access complexity: “The affected confguration
is non-default, and is not commonly confgured (e.g., a vulnerability present when a
server performs user account authentication via a specifc scheme, but not present for
another authentication scheme)” [21]. Finally, we assign Authentication to single (i.e.,
Au:S), because the access requires a single authenticated session in those software. Sim-
ilarly, in the ffth row, the authenticated privilege is mapped to partial confdentiality
impact, partial integrity impact, and complete availability impact (i.e., C:P, I:P, A:C),
since the authenticated privilege implies accesses to 13 fles in those software, allows
modifying some system fles or data, and may render the system unusable by deleting
critical fles.

Note that, since this mapping is based on the understanding of access rights, priv-
ileges, and the software, different administrators may end up assigning the mappings
in different and incomparable ways. However, since metrics are relative, and meant for
comparing similar confgurations of the same network, the results would still be mean-
ingful as long as the mapping is consistent across different confgurations.

Based on the mapping shown in Table 1, we map all the methods of those two
software to corresponding CVSS base metrics, and then calculate the overall base score
according to the CVSS formula [21], as shown in Table 2. The methods are divided into
groups (frst column) according to similar privileges (second column) and access rights
(third column). The fourth and ffth columns show the total numbers of entry and exit
points in each group. The next two columns show the mapped CVSS vector and the
calculated base score for each group.

Software-Level Conversion Now that we have calculated the base score for each
group of methods, we can convert the attack surface into an attack probability repre-
senting the relative likelihood of the software to be exploitable through at least one zero
day vulnerability. Suppose there are totally g groups of methods in the attack surface.
Let bi and si (1 ≤ i ≤ g) denote the base score and the number of methods of each
group, respectively. Assume on average there will exist one zero day vulnerability for
every n methods, and the probability for attackers to discover such a vulnerability is p0

(n of p0 are both intended as normalizing constants; see below for more discussions). In
Equation 1, the base score divided by its range 10 gives the probability that a vulnera-

5

Method Group Privilege Access Rights DEP DExp Vector Base Score
Courier

M1
M2
M3

root
root

authenticated

unauthenticated
authenticated
authenticated

28 17 [AV:1.0,AC:0.71,Au:0.704,C:0.66,I:0.66,A:0.66]
21 10 [AV:1.0,AC:0.61,Au:0.56,C:0.66,I:0.66,A:0.66]
113 28 [AV:1.0,AC:0.61,Au:0.56,C:0.275,I:0.275,A:0.66]

10
8.5
7.5

Cyrus
M1
M2
M3
M4

cyrus
cyrus
cyrus
cyrus

unauthenticated
authenticated

admin
anonymous

16 17 [AV:1.0,AC:0.71,Au:0.704,C:0.66,I:0.66,A:0.66]
12 21 [AV:1.0,AC:0.61,Au:0.56,C:0.66,I:0.66,A:0.66]
13 22 [AV:0.646,AC:0.35,Au:0.45,C:0.66,I:0.66,A:0.66]
12 21 [AV:1.0,AC:0.71,Au:0.704,C:0.66,I:0.66,A:0.66]

10
8.5
6.3
10

Table 2: Method Groups and Their Base Scores for Courier IMAP Server v4.1.0 and
Cyrus IMAP Server v2.2.10

bility in this group is exploitable; multiplying this with p0 gives the probability that the
method can be both discovered and exploited; si/n gives the number of vulnerabilities
out of those si methods in this group; the equation therefore gives the probability p that
the software contains at least one exploitable zero day vulnerability. Note that, the true
values of parameters n and p0 are certainly impossible to obtain in practice, so those are
only intended to be normalizing constants chosen to ensure a reasonable value for p. As
long as those values stay constant between different software, the equation will yield
a relative value suffcient for comparing the exploitability of different software based
on both the severity (represented by the base scores bi) and counts (represented by the
number of methods si) of potential zero day vulnerabilities.

g∏ sibi
np = 1 − (1 − p0) (1)

10
i=1

Example 1. Assuming n = 30 and p0 = 0.08, we can calculate p for both software as
follows. For Courier, p = 1 − (1 − 0.08 ∗ 10/10)45/30 ∗ (1 − 0.08 ∗ 8.5/10)31/10 ∗ (1 −
0.08 ∗ 7.5/10)141/30 = 0.384, and similarly for Cyrus, p = 0.273.

2.2 Aggregating Attack Probabilities inside a Network

Now that we have converted the attack surface of a resource to its attack probability, we
can easily aggregate the attack surface of all network resources into a single network
attack surface value. We consider two different ways for aggregating the attack surface
of resources in the network, the shortest path-based approach [31] and the Bayesian
network (BN)-based approach [36], which refect the worst case scenario (i.e., with
respect to attackers following the easiest attack path) and the average case scenario
(i.e., with respect to any attacker), respectively.

To illustrate the idea, Figure 2 shows a partial resource graph [31] for our exam-
ple, which is syntactically equivalent to an attack graph, but models zero day attacks
instead of known vulnerabilities. Specifcally, each pair in plaintext is a security-related
condition, e.g., connection ⟨source, destination⟩ or privilege ⟨privilege, host⟩, and
each triple inside a box is a zero day exploit ⟨resource, source, destination⟩. The
probability inside each box is the attack probability of the corresponding resource.

Example 2. In Figure 2, for the shortest path-based approach, we can calculate the at-
tack probability for the shortest path indicated by the dashed line, ⟨IP Cop, 0, F ⟩ →

6

<Apache,0,1>

0.79

<0,1>
<user,0>

<0,F>

<IPCop,0,F>

0.5

<ProFTP,0,3>

0.39

<3,4>

<user,3>

<user,4>

<Nginx,1,3>

0.27

<user,1>

<0,3>

<1,3>

<MySql,3,4>

0.5

<0,2>

<Courier,0,2>

0.384

<MySql,2,4>

0.5

<user,2>

<2,4>

<IPCop,0,F>

0.5
<Sendmail,3,2>

0.35

<Team viewer,1,3>

0.16

Fig. 2: The Resource Graph with Attack Probability for the Network in Figure 1

⟨Courier, 0, 2⟩ → ⟨MySql, 2, 4⟩, the probability can be calculated as p = 0.5∗0.384∗
0.5 = 0.096. Note that our approach here addresses a key limitation of the existing k-
zero day safety metric (which also adopts a shortest path-based approach) [31], i.e., it
cannot discriminate different resources based on their relative attack probabilities.

Example 3. For the BN-based approach, we can simply regard Figure 2 as a Bayesian
network, with the attack probability of each resource regarded as the conditional proba-
bility that the corresponding resource can be exploited given that its pre-conditions are
all satisfed, and then perform probabilistic inference using the BN [36]. In this exam-
ple, we can calculate the probability for attackers to reach ⟨user, 4⟩ as pgoal = 0.236.

The following formally defnes the concept of network attack surface.

Defnition 1 (Network Attack Surface). Given a network with the set of resources R,
the attack probability p(r) as defned in Equation 1 for each r ∈ R, the resource graph
G and a given condition cg ∈ G,

– let AP denote the collection of all attack paths in G ending at cg , and for each
ap ∈ AP , let R(ap) denote the set of resources involved in ap and denote p(ap) = ∏

r∈R(ap) p(r). We call max({p(ap) : ap ∈ AP }) (where max(.) returns the
maximum value of a set) the worst case network attack surface w.r.t. cg .

– let B = (G ′ , θ) be a BN, where G ′ is G annotated with the attack probabilities
and θ is the set of parameters of the BN (the BN is more precisely defned in [7]
and details are omitted here due to space limitations), and let CI be the set of

7

conditions without parents in G ′, we call p = P (cg | ∀c∈CI c = T rue) the average
case network attack surface w.r.t. cg.

We note that, although the network attack surface above is defned as probabilities,
those can potentially be converted into other forms for different interpretations. For
example, given the network attack surface p as a probability, we can easily convert p into
the equivalent number of methods s with a given base score b, by inverting Equation 1
as: s = n log1−p0

(1 − p). We can therefore evaluate the network as a single software
system with an attack surface composed of s methods with the base score b (which can
also be mapped back to access rights and privileges if necessary). Also, we can convert
p back into an equivalent number of zero day vulnerabilities as log0.08 p (here 0.08
is a nominal probability for zero day vulnerabilities based on CVSS base metrics as
described in [36]), which is a simple count-based metric helpful for interpretation and
comparison purposes (we will use this method in our algorithms and simulations).

3 Heuristic Algorithms for Calculating Network Attack Surface

In this section, we propose heuristic algorithms to reduce the effort in evaluating the
network attack surface. We frst state the problem in Section 3.1, and then introduce
several simple heuristics in Section 3.2 and design algorithms based on such heuristics
in Section 3.3.

3.1 The Problem

Calculating the attack surface of a software is well known to be costly [18, 29] mostly
due to the manual work and expertise required for analyzing the source code of the
software in order to extract both the counts (e.g., the total number of methods calling
I/O functions) and weights (e.g., the access rights and privileges). On the other hand,
the calculation of attack surface is becoming more practical due to ongoing efforts on
automating or approximating the calculation [29]. Nonetheless, we believe although the
calculation is practical with automated techniques, it will still remain a costly process
due to the ever increasing size of modern software 5.

Therefore, we investigate the problem of evaluating the network attack surface while
reducing the effort of calculating the attack surface of individual resources. We will fo-
cus on the worst case network attack surface, as given in Defnition 1, while leaving
the average case network attack surface to future work. Clearly, there will be a tradeoff
between the cost (i.e., the percentage of network resources whose attack surface is cal-
culated), and the error in the calculated network attack surface result. Specifcally, given
a network with the set of resources R and suppose the true value of the network attack
surface is ptrue and the calculated value is pcal (we assume all the values described in
this section are count-based, as described at the end of Section 2.2), we would like to

5 For example, the number of lines of software mentioned in our running example in Figure 1
are as follows: Nginx (171,567), IPCop (271,645), Apache(1,800,402), MySql (2,731,107),
Linux Kernel (18,766,825), and Google Chrome (14,137,145).

8

|ptrue−pcal|minimize the error while calculating the attack surface for no more than a ptrue

given percentage of resources (the budget).
Note that, although the above may seem to be a standard optimization problem, this

is not the case, because the objective function |ptrue−pcal | contains an unknown value ptrue

ptrue, whose calculation would imply calculating the attack surface for all resources
and defy the very purpose of reducing the cost. Also, since the problem of fnding
the shortest path is already NP-hard [31], which is a special case of our problem with
unlimited budget, the latter is also intractable. Therefore, we study heuristic algorithms
in the coming section.

3.2 The Heuristics

The main observation is that, since we can only calculate a certain percentage of re-
sources under a given budget, what determines the error is the order of calculation
among all resources. Therefore, this section frst considers a few straightforward heuris-
tics for choosing the resources in the right order, e.g., by exploring the structural prop-
erties of a resource graph. We will then combine those heuristics into better algorithms
in the coming section and evaluate their performance later in Section 4.

Random Choose The most obvious solution is probably to simply choose resources in a
completely random fashion, namely, the random choose heuristic. Although the random
choose algorithm is likely far from optimal, it provides a baseline for comparison with
other heuristic algorithms we will propose. For example, in Figure 2, if our budget is to()

8calculate the attack surface of at most two resources, then among the = 28 possible2
choices, the worst result is p = 0.46 with an error rate of 0.51, whereas the best result
is p = 0.7 with error 0.24.

Frequency Choose The idea of this heuristic is that, since the same resource may appear
on multiple hosts inside a network, calculating the attack surface for the most frequently
seen resources will provide the most information with the same cost. For example, in
Figure 2, we can see both IPCop and MySql appear twice among totally 10 exploits.
Therefore, if our budget is two, then calculating both of them will unveil 4/10 of the
exploits (the result is p = 0.7 with an error rate of 0.24).

Topological Order The idea here is that, since the nodes closer to the beginning and
end of a resource graph tend to be shared among more attack paths (e.g., the last two
exploits are shared by all paths in Figure 2), it may help to choose resources based on
a topological order among the exploits. We consider both the topological order and the
reversed topological order heuristics, which choose resources from the beginning and
from the end, respectively. For example, in Figure 2, suppose our budget is two, the
topological order heuristic may choose Apache and IPCop while the reversed topolog-
ical order may choose MySql and Sendmail (the results would both be p = 0.58 with
error 0.375).

Shortest Path This heuristic starts the calculation with resources on the path with the
least number of exploits (e.g., the path depicted in dashed line in Figure 2), which,
although not always the right path in terms of the fnal result, may serve as a good
starting point. For example, in Figure 2, if our budget is two, then the shortest path

9

heuristic will choose IPCop and MySql on the dashed line path (the result is p = 0.70
with error 0.24). In this particular example, this path happens to be the right path for
calculating the fnal result, so a larger budget will potentially produce more accurate
result.

3.3 The Algorithms

The above heuristics may not produce good results when each of them is used alone,
but combining them leads to algorithms with good performance, as we will show in this
section.

Mpath-Topo Heuristic Algorithm: This algorithm combines the above topological order
and shortest path heuristics as follows. First, we apply the shortest path heuristic to
choose M (an integer parameter) shortest paths, which are ranked based on the number
of exploits, as the starting points. Since there is no order between resources along each
such path, we next apply the topological order heuristic to sort all paths, as well as
those not on such paths. The algorithm is more clearly depicted on the left-hand side of
Figure 3.

Procedure Keynode Heuristic
Input: Resource graph G, p0, p1 ∈ [0, 1], and budget NProcedure Mpath-Topo Heuristic Output: a sequence of resources PInput: Resource graph G, parameter M , and budget N Method:Output: a sequence of resources P 1. Let P = ϕ be a sequence of resources Method: 2. Let KN = ϕ be a sequence of resources1. Let P = ϕ be a sequence of resources 3. Let p be the network attack surface calculated based on2. Let MS be the sequence of M paths with the least assigning p0 to all the resources in Gnumbers of exploits in G, with the paths sorted 4. For each resource r in Gascendingly based on such numbers, and the 5. Calculate p again on G with p1 assigned to r resources inside each path topologically sorted 6. If p changes3. Let T = G \ MS, topologically sorted 7. Add r to KN 4. While N >0 8. Sort KN based on topological order 5. If| MS |> 0 9. While N >06. Append the frst resource r in MS to P 10. If | KN |> 07. Remove r from MS 11. Append the frst resource r in KN to P8. Else If | T |> 0 12. Remove r from KN 9. Append the frst resource r in T to P 13. Else If | G \ KN |> 010. Remove r from T 14. Append the frst resource r to P11. Let N= N-1 15. Remove r from G12. Return P 16. Let N= N-1
17. Return P

Fig. 3: Mpath-Topo (Left) and Keynode (Right) Heuristic Algorithms

Example 4. In Figure 2, assuming M = 2, we have MS = IP Cop, Courier, MySql,
P roF T P, Sendmail and T = Apache,Nginx, Team viewer. If our budget N = 2,
then P = IP Cop, Courier, and the fnal result is p = 0.61, with error 0.34.

Keynode Heuristic Algorithm This heuristic algorithm is based on the idea that a re-
source is more important in determining the fnal network attack surface value p, if
changing its value may result in signifcant changes, e.g., a change in the shortest path

10

(the path selected for calculating the fnal result, which is different from the one men-
tioned in the above shortest path heuristic) , or a change in the currently calculated
result of p. We then combine this heuristic with the topological order heuristic to form
the algorithm depicted on the right-hand side of Figure 3 (here we only show the change
in p, which can be replaced with the change in the shortest path, and we will evaluate
both algorithms in the coming section).

Example 5. Here we choose p0 = 0.08 and p1 = 1. In Figure 2, we initially calculate
p = 5.12 ∗ 10−4 . We then calculate p again by assigning p1 to each resource. For exam-
ple, with IPCop changed from p0 to p1, we have p = 0.0064, so IPCop is a key node.
Similarly, we can obtain the key nodes sequence as KN = IP Cop, Courier, MySql.
If our budget N = 2, then IP Cop and Courier will be chosen and the result p = 0.61
with error 0.34.

We will evaluate the performance of those heuristics and algorithms, including both
the accuracy and running time, in the coming section.

4 Experimental Results

In this section, we frst support our model for converting attack surface to attack proba-
bility with experimental results on the correlation between attack surface and vulnera-
bilities based on real software. We then conduct simulations to evaluate the performance
of our heuristic algorithms proposed in Section 4.

4.1 Correlation between Attack Surface and Vulnerabilities

Since our model for converting attack surface to attack probability (presented in Sec-
tion 2.1) is based on the hypothesis that attack surface refects a software’s likelihood of
having vulnerabilities, we investigate this correlation by conducting experiments with
real software. We examine the correlation both for different software and for different
versions of the same software.

First, we examine 34 popular software and their correlation results are presented
in Figure 4(a). The name of each software can be found in the Appendix based on its
index number. We manually study the source code of each software in order to calculate
the attack surface, and subsequently convert the result into attack probability using the
method mentioned in Section 2.1. In Figure 4(a), the left y-axis and the green line show
the attack surface (converted to attack probability) multiplied by the days of exposure
of each software (since vulnerabilities take time to be discovered even though the attack
surface of the software remains the same over time). The right y-axis and the red line
show the number of vulnerabilities found for the same software in NVD [23].

From the results, we can see that there is a positive correlation between the number
of vulnerabilities and attack surface multiplied by exposure days for most of the soft-
ware (specifcally, 25 out of 34). The correlation is unclear for the last few software
(after index number 25). We believe the reason lies in other related factors affecting
vulnerability discovery, e.g., the market share of a software, popularity of a software

11

0 5 10 15 20 25 30 35
of Index

0

1000

2000

3000

4000

5000

A
tt
ac
k
su
rf
ac
e
E
xp
os
ur
e
D
ay
s

Attack Surface

0

10

20

30

40

50

60

70

80

#
 o
f
vu
ln
er
ab
ili
ti
es

Vulnerability

0 5 10 15 20 25
of Index

0

200

400

600

800

1000

1200

A
tt
ac

k
su

rf
ac

e
E
xp

os
ur

e
D
ay

s

Attack Surface 1.0.0

Attack Surface 1.0.1

Attack Surface 1.0.2

0

10

20

30

40

50

60

70

80

90

#
 o
f
vu

ln
er

ab
ili
ti
es

1.0.0

1.0.1

1.0.2

(a) (b)

Fig. 4: Correlation between Attack Surface and the Number of Vulnerabilities for Dif-
ferent Software (a) and Different Versions of OpenSSL (b)

among attackers, and the security expertise level of typical users of a software. For ex-
ample, the index number 33 is freetype, a popular software development library used
for rendering font-related operations, which is widely used by modern video games,
Opera for Wii, and many other projects [2]. Such a widely used software is usually
more attractive for attackers to discover vulnerabilities, and hence becomes an outlier
in our results. As another example, the index number 34 is Amanda, a network-based
backup system, which has only one vulnerability, even though its attack surface * expo-
sure days is relative large. We believe the reason could be that such a backup system is
usually hosted in enterprise networks and operated by administrators with more security
expertise and awareness, which may make the software less attractive to attackers.

Second, we examined 53 different versions of OpenSSL along 3 version branches,
1.1.0, 1.0.1, and 1.0.2, respectively, and the results are presented in Figure 4(b). The
study of different versions of the same software reduces the infuence of aforementioned
unrelated factors in discovering the vulnerabilities (e.g., market share). The index indi-
cates the version numbers in chronologically order. From the results, we can see that the
number of vulnerabilities has a similar trend with the attack surface * exposure days for
all three branches. The branch with larger attack surface * exposure days also has more
vulnerabilities. The new versions inside each branch always have less vulnerabilities
while attack surface * exposure days are also smaller. For all three branches, we can see
the maximum number of vulnerabilities always appears somewhere in the middle of the
branch, likely because, with a major change of version branch, it takes time for user
adoption and also for attackers to change the focus. The version branch 1.0.2 is newly
released since January 2015, so the attack surface * exposure days is not suffcient to
create visible trends.

The above experiments, although are still of a limited scale, show a promising result
supporting our hypothesis that there is a positive correlation between the attack surface
and the number of vulnerabilities. Our ongoing work will signifcantly expand the scope
and scale of the experiments.

4.2 Performance of Heuristic Algorithms

In this section, we study the performance of our proposed heuristic algorithms via sim-
ulations. All simulation results are collected using a computer equipped with a 3.0 GHz

12

CPU and 8GB RAM in the Python environment under Ubuntu 14.04 LTS. All the re-
source graphs are created from small seed graphs based on realistic networks (e.g., the
one shown in Figure 1), by increasing the number of hosts and resources in a random
but realistic fashion.

The objective of the frst two simulations is to evaluate the error rate of our simple
heuristics (presented in Section 3.2) and heuristic algorithms (presented in Section 3.3).
The error rate is defned in the same way as in the previous section (|ptrue−pcal|

ptrue
where

both ptrue and pcal are count-based values, as described at the end of Section 2.2). The
cost is defned as the percentage of resources whose attack surface is calculated, and
denoted as α. The reason we choose the percentage of resources instead of the absolute
numbers, is that evaluating a larger network naturally implies a larger budget will be
require so a relative value will be more meaningful.

Figure 5(a) shows the error vs. the percentage of calculated resources (α) for simple
heuristics and Figure 5(b) shows it for the heuristic algorithms. The y-axis is shown in
reversed scale in both fgures in order to show the increasing accuracy of those algo-
rithms for a larger α. Figure 5(c) depicts the processing time of the algorithms. In all
simulations, for each confguration, we repeat 500 times to obtain the average results.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
rr
or

shortest

topo

random

frequency

topoReverse

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
rr
or

keynode

mpath topo

mpath frequency

keynode path

random

(a) (b)

Fig. 5: The Cost vs. Error for Simple Heuristics (a) and for Heuristic Algorithms (b)

Results and Implications: From Figure 5 (a), we have following observations. First
of all, with the increase of α, the error generally decreases, and when α increases to 1,
which means we calculate all the resources in the network, the error of all the heuristics
reaches 0 as expected. The green line with round markers is the baseline for comparison,
which represents the results of the random choose heuristic and the error of this heuristic
reduces almost linearly in both simulations. The frequency choose heuristic represented
by the red line with vertical markers has the worst error among all the heuristics. The
reason is that, the repetition of a resource does not necessarily mean the importance
of this resource in determining the fnal result. The blue line with square and purple
line with star represents the reversed topological order heuristic and the topological
order heuristic, respectively. Both heuristics start worse than the random heuristic, and
the reverse topological order stays worse than the random heuristic, but the topological
order heuristic reduces and later becomes better than random. The reason is that, the

13

reversed topological order tends to choose resources equally among all the paths, since
the paths converge towards the end of the graph. On the other hand, the topological
order heuristic chooses from beginning nodes, which might converge into one path and
give better results. The most accurate one in Figure 5(a) is the shortest path heuristic
algorithm, which combines the topological order and shortest path heuristics together.
The error rate of this algorithm becomes fat when it fnishes calculating the shortest
path and starts to calculate other resources.

Figure 5(b) depicts the error rate of the heuristic algorithms combining multiple
heuristics. We can see that the keynode and the mpath topo algorithms produce very
good results, e.g., less than 0.05 error rate with only 20% of resources calculated. Such
results show a promising solution for obtaining relatively accurate network attack sur-
face results without incurring too much cost for calculation. Here the mpath frequency
and mpath topo algorithms are the combination of m-shortest path heuristic with the
frequency choose heuristic and the topological order heuristic, respectively. From the
results we can see that the mpath topo algorithm has less error than mpath frequency.
For the keynode heuristic algorithm, we tested two different variations, one based on the
change of shortest path and the other based on the change of the calculated result. From
the results, we can see that those two have very different error rate, because the result-
based keynode algorithm tends to gather the resources in the shortest path, whereas the
path-based algorithm tends to avoid such resources.

4.3 The Impact of Non-Calculatable Resources

To calculate the attack surface of network resources we need to have access to the source
code. However, many resources are closed source applications for which calculating the
attack surface would be infeasible. Therefore, the objective of this set of simulations
is to examine the impact of non-calculable resources. Here we assume a brute force
algorithm which calculates all the attack surface as the baseline for comparison. We
assign the value 0.68 (which is the attack probability converted from the average value
of all CVSS scores in NVD [23]) to those non-calculable resources. Figure 6(a) shows
the performance of our algorithms when half of the resources are non-calculatable. In
Figure 6(b), we use two brute force algorithms to study the impact of increasing ratio
of non-calculable resources of which the frst calculates all the attack surface values
as a base line for comparison, and the second simply assigns 0.68 to non-calculable
resources but calculates for all other resources.

Results and Implications: From the results we can see that, the trends of algo-
rithms stay the same in the frst simulation, with generally a larger error due to the
non-calculable resources. When α is close to 0.4, the error becomes stable at 0.3, which
matches the corresponding result in Figure 6(b), and the differences between algorithms
become invisible. In Figure 6(b), the error increases almost linearly with the increase
of the percentage of non-calculable resources. When non-calculable resources reach
100%, our metric essentially becomes the k-zero day safety metric [31], which still
provides a useful measure even though it no longer discriminates different resources.
Finally, we will also discuss future directions on calculating attack surface on binaries
for closed source applications in Section 6.

14

0.0 0.2 0.4 0.6 0.8 1.0
α

0.20

0.25

0.30

0.35

0.40

0.45

E
rr

or

Non-calculable Attack Surface = 50%
knode

mpath topo

mpath frenquency

knode path

random

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Non-calculable

0.20

0.25

0.30

0.35

0.40

0.45

E
rr
or

brute force

(a) (b)

Fig. 6: The Error vs. α of Algorithms with 50% Non-Calculable Resources (a) and The
Percentage of Non-Calculable Resources vs. Error (b)

5 Related Work

The concept of attack surface is originally proposed for specifc software and requires
domain-specifc expertise to formulate and implement [10]. Later on, the concept is
generalized using formal models and becomes applicable to all software [24]. Further-
more, it is refned and applied to large scale software, and its calculation can be assisted
by automatically generated call graphs [25, 18]. Attack surface has attracted signifcant
attentions over the years. It is used as a metric to evaluate Android’s message-passing
system [15], in kernel tailing [16], and also serves as a foundation in Moving Target De-
fense, which basically aims to change the attack surface over time [13, 12]. Others aim
to expand the scope of this concept in other domains, such as the six-way attack surfaces
between users, services, and cloud systems [9], and the approximation of attack surface
for modern automobiles [5]. The study on automating the calculation of attack surface is
another interesting domain, e.g., COPES uses static analysis from bytecode to calculate
attack surface and to secure permission-based software[4]. Stack traces from user crash
reports is used to approximate attack surface automatically [29]. Despite such tremen-
dous interest in the attack surface concept, to the best of our knowledge, little work
exists on formally defning attack surface at the network level. The correlation between
attack surface and vulnerabilities has also been investigated, such as using attack sur-
face entry points and reachability to assess the risk of vulnerability [35]. A study about
the relationship between attack surface and the vulnerability density is given in [34],
although the result is only based on two releases of Apache HTTP Server, which gives
little clue to the general existence of such a correlation.

As to security metrics in general, there exist standardization efforts on vulnerability
assessment including the Common Vulnerability Scoring System (CVSS) [21], which
measures vulnerabilities in isolation. The NIST’s efforts on standardizing security met-
rics are also given in [22] and more recently in [28]. The research on security metrics
has attracted much attention lately [14]. Earlier work include the a metric in terms of
time and efforts based on a Markov model [6]. More recently, several security metrics
are proposed by combining CVSS scores based on attack graphs [30, 8]. The minimum
efforts required for executing each exploit is used as a metric in [3, 26]. A mean time-

15

to-compromise metric is proposed based on the predator state-space model (SSM) used
in the biological sciences in [17]. While those metrics are mostly developed for known
vulnerabilities, fewer work are capable of dealing with zero day attacks. A few excep-
tions include an empirical study of the total number of zero day vulnerabilities available
on a single day based on existing data [20], an effort on ordering different applications
in a system by the seriousness of consequences of having a single zero day vulnera-
bility [11], and more recently the k-zero day safety model [32, 31] and the network
diversity model [33, 36] both attempt to model the risk of zero day vulnerabilities, but
their common limitation is the lack of capability in distinguishing different resources’
likelihood of having such vulnerabilities, which is the main contribution of this paper.

6 Limitations and Conclusion

An intuitive notion of attack surface at the network level has prevented applications
from inheriting the precise and quantitative reasoning power of the original attack sur-
face metric. In this paper, we have designed methods for lifting this concept to the net-
work level as a formal security metric for measuring networks’ resilience against zero
day attacks. The correlation between attack surface and vulnerabilities was validated
through our preliminary experimental results. We have also shown through algorithm
design and simulations that the cost of calculating attack surface for network resources
could be saved without losing too much accuracy. The limitations of our work and fu-
ture directions are as follows.

– First, our experiments on the correlation between attack surface and vulnerabilities
are still of relatively small scale and scope. Our future work will strengthen the
results reported in this paper, and take into consideration other factors, such as
market share data.

– Second, there lack automated and mature tools for assisting the calculation of at-
tack surface, which can potential hinder the application of this concept at a higher
abstraction level. One of our ongoing work is the development of an automated tool
for calculating the attack surface for open source software.

– Third, the calculation of attack surface requires source code and thus is not applica-
ble to closed source software. An interesting future direction is to adapt emerging
tools on binary analysis, such as library function identifcation and clone detection,
in order to make estimating attack surface for binaries a reality.

– Fourth, we have not considered the average case network attack surface in the study
of heuristic algorithms, and this will be a future direction.

DISCLAIMER

This paper is not subject to copyright in the United States. Commercial products are
identifed in order to adequately specify certain procedures. In no case does such iden-
tifcation imply recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the identifed products are necessarily the best
available for the purpose.

16

References

1. Computer world uk. http://www.computerworlduk.com/blogs/open-
enterprise/open-source-has-won-3592314//.

2. Freetype. lhttps://en.wikipedia.org/wiki/FreeType.
3. D. Balzarotti, M. Monga, and S. Sicari. Assessing the risk of using vulnerable components.

In Proceedings of the 1st ACM QoP, 2005.
4. Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. Automatically se-

curing permission-based software by reducing the attack surface: An application to android.
In Proceedings of the 27th IEEE/ACM International Conference on Automated Software En-
gineering, pages 274–277. ACM, 2012.

5. Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham, Ste-
fan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi Kohno, et al. Com-
prehensive experimental analyses of automotive attack surfaces. In USENIX Security Sym-
posium. San Francisco, 2011.

6. M. Dacier. Towards quantitative evaluation of computer security. Ph.D. Thesis, Institut
National Polytechnique de Toulouse, 1994.

7. M. Frigault and L. Wang. Measuring network security using bayesian network-based attack
graphs. In Proceedings of The 3rd IEEE International Workshop on Security, Trust, and
Privacy for Software Applications (STPSA’08), 2008.

8. M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring network security using dynamic
bayesian network. In Proceedings of 4th ACM QoP, 2008.

9. Nils Gruschka and Meiko Jensen. Attack surfaces: A taxonomy for attacks on cloud services.
In 2010 IEEE 3rd international conference on cloud computing, pages 276–279. IEEE, 2010.

10. M. Howard, J. Pincus, and J. Wing. Measuring relative attack surfaces. In Workshop on
Advanced Developments in Software and Systems Security, 2003.

11. K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer. Modeling modern network
attacks and countermeasures using attack graphs. In Proceedings of ACSAC’09, pages 117–
126, 2009.

12. S. Jajodia, A.K. Ghosh, V. S. Subrahmanian, V. Swarup, C. Wang, and X.S. Wang. Moving
Target Defense II: Application of Game Theory and Adversarial Modeling. Springer, 2012.

13. S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang, and X.S. Wang. Moving Target Defense:
Creating Asymmetric Uncertainty for Cyber Threats. Springer, 1st edition, 2011.

14. A. Jaquith. Security Merics: Replacing Fear Uncertainity and Doubt. Addison Wesley, 2007.
15. David Kantola, Erika Chin, Warren He, and David Wagner. Reducing attack surfaces for

intra-application communication in android. In Proceedings of the second ACM workshop
on Security and privacy in smartphones and mobile devices, pages 69–80. ACM, 2012.

16. Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin Rothberg,
Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann, and Rüdiger Kapitza.
Attack surface metrics and automated compile-time os kernel tailoring. In NDSS, 2013.

17. D.J. Leversage and E.J. Byres. Estimating a system’s mean time-to-compromise. IEEE
Security and Privacy, 6(1):52–60, 2008.

18. P.K. Manadhata and J.M. Wing. An attack surface metric. IEEE Trans. Softw. Eng.,
37(3):371–386, May 2011.

19. J. McHugh. Quality of protection: Measuring the unmeasurable? In Proceedings of the 2nd
ACM QoP, pages 1–2, 2006.

20. M.A. McQueen, T.A. McQueen, W.F. Boyer, and M.R. Chaffn. Empirical estimates and
observations of 0day vulnerabilities. Hawaii International Conference on System Sciences,
0:1–12, 2009.

17

https://lhttps://en.wikipedia.org/wiki/FreeType
http://www.computerworlduk.com/blogs/open

21. P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring system. IEEE
Security & Privacy, 4(6):85–89, 2006.

22. National Institute of Standards and Technology. Technology assessment: Methods for mea-
suring the level of computer security. NIST Special Publication 500-133, 1985.

23. National vulnerability database. available at: http://www.nvd.org, May 9, 2008.
24. J. Wing P. Manadhata. Measuring a system’s attack surface. Technical Report CMU-CS-04-

102, 2004.
25. J. Wing P. Manadhata. An attack surface metric. Technical Report CMU-CS-05-155, 2005.
26. J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. A weakest-adversary security metric

for network confguration security analysis. In Proceedings of the ACM QoP, pages 31–38,
2006.

27. Allan Reid, Jim Lorenz, and Cheryl A Schmidt. Introducing Routing And Switching In The
Enterprise, CCNA Discovery Learning Guide. Cisco Press, 2008.

28. M. Swanson, N. Bartol, J. Sabato, J. Hash, and L. Graffo. Security metrics guide for infor-
mation technology systems. NIST Special Publication 800-55, 2003.

29. Christopher Theisen, Kim Herzig, Patrick Morrison, Brendan Murphy, and Laurie Williams.
Approximating attack surfaces with stack traces. In Proceedings of the 37th International
Conference on Software Engineering-Volume 2, pages 199–208. IEEE Press, 2015.

30. L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-based probabilistic
security metric. In Proceedings of the 22nd IFIP DBSec, 2008.

31. L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel. k-zero day safety: A network security
metric for measuring the risk of unknown vulnerabilities. IEEE Transactions on Dependable
and Secure Computing, 11(1):30–44, 2013.

32. L. Wang, S. Jajodia, A. Singhal, and S. Noel. k-zero day safety: Measuring the security risk
of networks against unknown attacks. In Proceedings of the 15th European Symposium on
Research in Computer Security (ESORICS), pages 573–587, 2010.

33. L. Wang, M. Zhang, S. Jajodia, A. Singhal, and M. Albanese. Modeling network diver-
sity for evaluating the robustness of networks against zero-day attacks. In Proceedings of
ESORICS’14, pages 494–511, 2014.

34. Awad A Younis and Yashwant K Malaiya. Relationship between attack surface and vul-
nerability density: A case study on apache http server. In Proceedings on the Interna-
tional Conference on Internet Computing (ICOMP), page 1. The Steering Committee of
The World Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2012.

35. Awad A Younis, Yashwant K Malaiya, and Indrajit Ray. Using attack surface entry points
and reachability analysis to assess the risk of software vulnerability exploitability. In High-
Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on,
pages 1–8. IEEE, 2014.

36. M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Albanese. Network diversity: A security
metric for evaluating the resilience of networks against zero-day attacks. IEEE Transactions
on Information Forensics and Security (TIFS), 11(5):1071–1086, 2016.

7 appendix

18

http://www.nvd.org

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Index Software
Libfm-1.2.3
apcupsd-3.14.13
sox-14.4.2
w3m-0.5.3
squashfs4.3
libtirpc-1.0.1
ultradefrag
fwbuilder-5.1.0.3599
dosbox-0.74
gnucash-2.6.7
tcl8.6.4
icinga-1.10.1
fuse-2.9.4
mcrypt-2.6.8
pnp4nagios-0.6.25
expat-2.1.0
fac-1.3.1
lcms2-2.7
e2fsprogs-1.42.13
libpng-1.6.19
unzip610b
mpg123-1.22.4
ganglia-3.7.2
nagios-4.1.1
clamav-0.98.7
net-snmp-5.4.5.pre1
fex-2.6.0
vice-2.4
gnuplot-5.0.1
zabbix-2.4.7
optipng-0.7.5
pcre2-10.20
freetype-2.6
amanda-3.3.7p1

Table 3: Tested Software

19

