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ABSTRACT  

Developing optimal production plans for smart manufacturing systems is challenging 

because shop floor events change dynamically. A virtual factory incorporating 

engineering tools, simulation, and optimization generates and communicates 

performance data to guide wise decision making for different control levels. This 

paper describes such a platform specifically for production planning. We also discuss 

verification and validation of the constituent models. A case study of a machine shop 

is used to demonstrate data generation for production planning in a virtual factory. 
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1 Introduction 

Conventional simulation tools are generally limited in their ability to capture and analyze 

multiple decision levels and system configurations (Bal et al. 2009). A virtual factory, on 

the other hand, creates an integrated model that reproduces scenarios of information flow 

and capable of generating multi-level metrics to guide users in decision- making. These 

decisions can among others increase agility and productivity by reducing product 

realization time (Colledani et al. 2013). Virtual factories have been constructed to aid 

manufacturing system design, implementation, and modification (Yang, et al. 2015).  

Besides designing production systems and products, Choi et al. (2015) sees the potential 

of a virtual factory to predict, solve, and manage problems during production, which 

corresponds with the vision for a virtual factory as enabler of system design, training, 

production planning, maintenance, data analytics, and performance measurement. It is our 

view that the virtual factory’s ability to integrate engineering tools and models such as 

simulations, design data, and optimizations could improve production planning activities. 
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As such, this paper focuses on operations and performance monitoring, particularly 

production planning. 

The rest of the paper is organized as follows. Section 2 reviews literature related to virtual 

factory technology, application of virtual factories, and verification and validation (V&V) 

concepts for the virtual factory. Section 3 describes a role of virtual factory for production 

planning as per control levels defined in the ISA-95 standard. Section 4 presents a 

demonstration case of a virtual factory. Section 5 presents final discussion and conclusion. 

2 Related Work and Virtual Factory Validation 

 A virtual factory is composed of multi-level, multi-resolution models that are typically 

developed by different methods and tools. This section overviews technologies employed 

for developing a virtual factory, various applications, and verification and validation issues. 

 

Technology requirements for a virtual factory: Virtual data management, automatic 

model generation, static and dynamic simulation, and integration and communication are 

paramount to realizing a virtual factory (Choi et al. 2015; Wenbin et al. 2002). Most 

software tools are, in general, not supplied with these capabilities making developing a 

virtual factory challenging. The situation has, however, been recently improving with 

emergence of modeling, computation, communication, and integration technologies and 

standards (Jain et al. 2015). Indeed, much related literature centers on technologies for 

enabling the virtual factory. A few of these technologies are overviewed next.  

 

Overview of technologies and purpose of developing virtual factories: To enhance 

conventional simulations for a virtual factory, Bal et al. (2009) used the PROSA 

architecture for modeling controls while the Quest simulation tool models the physical 

elements. To integrate models and enhance communication, Hints et al. (2011) developed 

a software tool named Design Synthesis Module. Terkaj et al. (2015) produced an ontology 

for a virtual factory to aid planning decisions. While Ghani (2013) developed an integrative 

tool to match low-level machine-component activities with targets set by aggregate 

planning. 

 

Previous virtual factory models: A valid virtual factory should generate consistent data at 

different levels of model resolution. Shao et al. (2014) developed and validated a virtual 

model for generating energy usage data for machining operations. Furthering this research, 

Jain et al. (2015) uses a two-tailed z-test to prove statistical concurrence of experimental 

results from a virtual factory at both the machine and manufacturing cell levels of detail.  

 

Verification and validation of virtual factory models: To ensure that a virtual factory is 

accurate for its intended purpose, V&V of constituent models and related data has to be 



carried out (Sargent 2007). When developing and applying formal V&V methods, key 

features to distinguish about models are (1) deterministic or stochastic, (2) analytical or 

simulated, and (3) computationally efficient or computationally expensive. 

When carrying out formal V&V, Uncertainty Quantification (UQ) needs to be 

considered for better correctness and appropriateness (Roy 2011). Uncertainties can be 

epistemic or aleatoric in nature. Epistemic uncertainties arise from ignorance of involved 

processes, such as invalid assumptions in modeling. Aleatory uncertainties arise from 

inherent variability in processes, such as physical properties of a system. Model fidelity and 

data availability typically vary greatly across different system levels of resolution. This 

issue complicates both the computation of metrics that describe process performance, and 

decision-making based upon those metrics. V&V of a virtual factory as well as UQ can be 

achieved through intermediation environment, such as one created by Hibino et al. (2006) 

to synchronize collected data and virtual factory computed data. 

3 A Virtual Factory Approach to Multi-Level Production Planning  

The virtual factory concept uses the ISA-95 standard (ANSI 2013) to specify decision levels 

that define functions supporting multi-level production planning. This standard was 

developed for all types of industries, representing different manufacturing processes, such 

batch, continuous, discrete, and repetitive processes. As such, the description of the virtual 

factory herein should likewise be universally applied. 

 

Framework and role of models:  Figure 1 shows the functional hierarchical levels of ISA- 

95 as well as virtual factory roles at each level. At level 4, an aggregate plan is developed 

over a long-term planning horizon that is then investigated for stability using system 

dynamics (Sterman, 2000). Level 3 covers short to mid-term plans to determine actual start 

and finish times of individual product batches. Level 2 models make decisions on activities 

such as resource allocations. Level 1 is the manipulation of production process (level 0) to 

achieve required output. Data is collected in real-time at level 0 to update various models. 

 

Multi-level performance analysis and improvements using the virtual factory: A 

production planning problem is often formulated to optimize objectives such as minimize 

late orders, minimize inventory, or maximize resource utilization. These objectives are basis 

for Key Performance Indicators (KPIs) which, along with metrics and constituent measures, 

are communicated and monitored. Decisions are then made to maintain them within a target 

performance envelop. The relationship between data, metrics and KPIs at different levels 

can be numerical, analytical, or heuristic influence. With heuristic influence, a KPI is 

expressed in terms of supporting data, parameters, metrics or other KPIs. The direction of 

change (increase or decrease) in the dependent KPI is investigated through the relationship 

equation. The Supply Chain Operations Reference (SCOR) model (SCC 2012) adopts this 



approach by taking KPIs and performs a metrics decomposition, performance diagnosis, or 

metrics root-cause analysis. SCOR then constructs a metrics dependency tree of multiple 

measures that would generally be generated by different models within the virtual factory. 

 

Figure 1. Role of Virtual Factory Models According to ISA-95 Levels. 

 

Metrics decomposition establishes a diagnostic relationship showing how metrics serve 

as diagnostics for dependent KPIs. For example, overall equipment effectiveness (OEE) 

index, as defined by ISO 22400-2 (ISO 2011), depends on availability, effectiveness, and 

quality rate. OEE belongs to level 3 of ISA-95 while its constituent measures can be 

monitored at level 2. Availability is determined by the equipment model incorporating 

failure and repair time study data obtained from samples of equally-spaced discrete 

observations during operation. The availability model can be constructed with high 

resolution using a programming language. Effectiveness performance model may be of low 

resolution constituted of run time per unit produced, number of units made, and actual 

production time. The quality rate is products that meet specifications compared with total 

units made. 

Once a diagnostic relationship has been established, attention may be directed to a higher 

resolution of the production line model or resource responsible for a measure needing 



improvement while other parts of the virtual factory may remain at a lower resolution. The 

data, resources, and workflow through this model may then be further analyzed to balance 

any competing objectives that may occur. The analyst may also validate diagnosis and 

decision made through high visualizations of the virtual factory. 

4 Case Study 

This section demonstrates the monitoring of KPIs in multi-resolution models of a machining 

shop that exchange performance data at different decision levels using a virtual factory. At 

the management level, aggregate quantities of required final products to be produced are 

distributed to two available machine cells according to prevailing loads at each shop. Each 

machining shop has two major processes: turning and milling. For each process, there is 

more than one machine but the parts traverse both processes in the same sequence. This 

prototypical virtual factory is developed using AnyLogic simulation for three levels of 

decision control. Table 1 shows the functions and type of models employed at each level. 

 

Table 1.  Functions of Multi-Level Models According to ISA-95 Standard 

ISA-Level Physical system Function Virtual modeling method 

4 Enterprise Aggregate planning System dynamics 

3 Machine cell Production scheduling Discrete event simulation 

2 Machine Machine loading Agent based modeling 

 

Enterprise level model: This model is shown in Figure 2 (a) and is built using System 

Dynamics (SD). The product quantities planned for each period are input into the model to 

determine the production start rate at the routed shop. The production rate is a function of 

the production start rate and manufacturing cycle time. The production start rate is 

converted into inter-arrival times for the work cell model. In turn, the cycle time and work 

in progress levels are obtained from the machine cell model. 

 

Machine cell model: This models the processing of a product on the shop floor. Discrete 

event simulation (DES) is employed, as shown in Figure 2(b). Entities enter the system 

from the source and routed to the first available machine for both turning and milling. The 

machines undergo periodic failure and repair cycles. 

 

Machine level model: This is a model of states of a machine during normal operation. They 

are represented by Agent-based Modeling using statecharts in AnyLogic. Machine failure 

and repair cycle are indicated in the statechart shown in Figure 2 (c). When a machine is 

“Up”, default sub-state is idling to which a machine reverts after repair or after ejection of 



the previous batch. Other machine states are “Down” or “Under repair” and, in these states, 

incoming parts cannot be routed to them. The machines undergo this cycle independently.  

 

 
 

(a) 
 

(b) 

 
(c) 

Figure 2. Multi-resolution models of the virtual factory  

Model interactions: When these models are integrated, the SD model receives input data 

from DES for update to aggregate planning. In turn, DES is updated with agent based 

simulations of machine processes. Figure 3 shows the exchanged data. Figure 4 shows that 

there is enough visual concurrency in monitored generated data: work in progress levels 

and production quantity between models at different resolution levels.  

Such data can be used, for example, to monitor and maintain planned throughput rate. 

According to ISO 22400-2 (ISO 2011), throughput rate = quantity produced/order execution 

time. Maximizing throughput in a job-shop production environment requires deploying the 

“shortest remaining processing time” priority rule (Panwalkar et al. 1977). If throughput 

rate is reduced, the causes are investigated using the constituent measures monitored at level 

2 of ISA-95. These are analyzed with the discrete event simulation model. The cause could 

be an increase in order execution time which in turn depends on manufacturing cycle time. 

The causes of increase in cycle time can further be analyzed using work cell model. 
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Figure 3. Data generated and exchanhged between models  

 

 
Figure 4. Work in progress and cumulative production with time for system dynamics 

and discrete event simulations. 

5 Discussion and Conclusion  

A virtual environment can be developed for generating and communicating production 

planning decisions from floor and optimize production, inventory, and cost objectives. 

Communicating performance of production plans and schedules in a virtual environment is 

beneficial to achievement of the smart manufacturing objectives. The industrial internet is 

one technology for connecting, collecting and communicating data. This framework is a 

first step in describing how the virtual factory can be used for developing and integrating 

models at different hierarchical levels. The example in this paper used a multi-method 
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simulation software. To take advantage of strengths of different tools, a virtual factory 

would be developed using heterogeneous tools. Description of needed interfaces and review 

of existing standards will be the subject of future research work.  
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