The New SURF Beamline—3

Rob Vest

UV Radiation Group, Sensor Science Division, NIST

- Introduction to synchrotron radiation
- Beamline design
- End stations
- Scale realizations
- UV radiometry program

SURF III

Synchrotron Radiation Ultraviolet Facility

- Single-magnet synchrotron with highly uniform magnetic field and truly circular electron orbit
 - Optimized for radiometry
- 13 bend-magnet beamlines
- Electron energy from 10 MeV to 408 MeV
 - Optimized for VUV2 nm to 400 nm3 eV to 600 eV
- Injection current = I A
 Typical current = ~200 mA

Synchrotron Radiation

An orbiting electron undergoes acceleration and radiates according to Maxwell's equations.

The emission must be corrected for relativistic effects.

Properties of Synchrotron Radiation

- Spectral distribution of absolute radiance can be calculated from first principles
 - Need to know:
 - any two of:
 - a) electron energy
 - b) bending radius
 - c) magnetic field strength
 - Beam current (number of electrons)
 - Only other absolute source is blackbody radiator.
- Continuum source
- Linearly polarized in orbital plane
- Peak wavelength can be tuned by selecting the electron energy
- Essentially a cw source (actually pulsed at 114 MHz with 10% duty cycle)

Synchrotron Radiation Spectrum

- Continuum source
- Broad-Band
- Peak wavelength is controlled by selecting electron energy
- Only practical, calculable source in the ultraviolet

- Introduction to synchrotron radiation
- Beamline design
- End stations
- Scale realizations
- UV radiometry program

Beamline Layout

Monochromator

- Two elements that can be translated and rotated
- Choice of six elements for each position
- Elements can be grating, mirror, multi-layer mirror, crystal, etc.
- Standard condition now:
 - First element: Au-coated mirror
 - Second element: 600 mm⁻¹ NN-coated grating with 2° blaze angle

Short wavelengths require grazing incidence optics.

For a 600 mm^{-I} grating with 2° blaze angle: Minimum on-blaze wavelength: 7. I nm Wavelength = 2 nm requires $\phi_2 = 0.56^\circ$, which is 1.44° off blaze.

Intermediate wavelengths reached near mid-point travel.

For a 600 mm⁻¹ grating with 2° blaze angle: Wavelength at $2\theta = 90^{\circ}$ is 82.3 nm

Long wavelengths utilize normal incidence optics.

For a 600 mm⁻¹ grating with 2° blaze angle: Maximum on-blaze wavelength: I I 5.9 nm Wavelength = 400 nm requires φ_2 = 6.9°, which is 4.9° off blaze.

- Standard on-blaze wavelength range is
 7 nm to 116 nm with 600 mm⁻¹ grating.
- Extending to shorter and longer wavelengths by going off-blaze reduces throughput.
- Use of gratings with different ruling densities can maintain the on-blaze condition for different wavelength ranges:
 - 150 mm⁻¹ grating: 28.4 nm to 464 nm
 - 2400 mm⁻¹ grating: 1.78 nm to 29.0 nm

Power to Experiments

- Introduction to synchrotron radiation
- Beamline design
- End stations
- Scale realizations
- UV radiometry program

Reflectometer

- Planar samples up to
 25 mm diameter
- Independent detector motion in azimuth and elevation
- Reflectometer rotates 90° without breaking vacuum to change polarizations

Calibration Chamber

- Calibration of:
 - detector responsivity
 - filter transmission
 - spatial uniformity
 - linearity
- Load-lock for rapid sample exchange
- Clean, high-vacuum environment

- Introduction to synchrotron radiation
- Beamline design
- End stations
- Scale realizations
- UV radiometry program

Cryogenic Radiometry

Maintain receiver at temperature *T* above liquid He temperature.

Electrical power P required is measured with shutter open and closed.

Power difference is the optical power.

$$\Delta P = P_{closed} - P_{open} = P_{opt}$$

Cryogenic Radiometry

- Introduction to synchrotron radiation
- Beamline design
- End stations
- Scale realizations
- UV radiometry program

UV Radiometry at NIST on SURF III BL-3

- Single facility covering 2 nm to 450 nm spectral range
- Calibrations of detector responsivity, filter transmission, mirror reflectivity
 - expected responsivity uncertainty of <1% over this entire range
 - fills a gap in current coverage from 92 nm to 116 nm
- Consolidation of several existing facilities into one, improving efficiency (one set of instrumentation, one software system, etc.)