
Planning Algorithms for Multi-Setup Multi-Pass Robotic Cleaning with Oscillatory
Moving Tools

Ariyan M. Kabir† and Joshua D. Langsfeld† and Shaurya Shriyam† and Vinaichandra Sai Rachakonda† and
Cunbo Zhuang† and Krishnanand N. Kaipa† and Jeremy Marvel‡ and Satyandra K. Gupta††

Abstract— We present planning algorithms for cleaning stains
on a curved object. Removing the stain may require multiple
reorientations and repositions of the object and some por-
tions of the stain may require multiple cleaning passes. The
experimental setup involves two robot arms. The first arm
immobilizes the object. The second arm moves the cleaning
tool. The algorithm analyzes the stain and determines the
sequence of positions and orientations needed to clean the
part based on the kinematic constraints of the robot arm.
Our algorithm uses a depth-first branch-and-bound search to
generate setup plan solutions. We also compute the cleaning
trajectories and select the cleaning parameters to maximize
the cleaning performance. The algorithm generates multi-pass
trajectories by replanning based on the observed cleaning
performance. Numerical simulations and cleaning experiments
with two Kuka1 robots are used to validate our approach.

I. INTRODUCTION

Cleaning parts and tools is a common process in many
applications like construction, maintenance, service, manu-
facturing, healthcare, and food processing. Depending upon
the nature of the cleaning task, different modes of cleaning
may be used. In some situations cleaning fluid is applied
to the surface to either dissolve foreign particles or force
the particles to separate from the surface. Cleaning kitchen
utensils is an example of such a cleaning mode. Many
cleaning tasks require application of an oscillatory moving
cleaning tool (often with abrasive particles embedded in
the cleaning surface) over the surface being cleaned. In
this cleaning mode, foreign particles are removed using
mechanical erosion. This paper deals with cleaning tasks
that utilize an oscillatory moving cleaning tool that makes
mechanical contact with the part being cleaned.

Consider the task of removing rust (or sanding off paint
before re-painting) from a non-planar surface in a remanu-
facturing application. This task is typically done manually
and requires a lot of effort on the part of the operator. This
seemingly simple task is hard to automate for the following
reasons:

1) It is difficult to clean the entire part from one orienta-
tion. The part needs to be often moved and regrasped
to ensure that the cleaning tool can access the entire
part surface.

†Maryland Robotics Center, University of Maryland, MD USA ‡National
Institute of Standards and Technology, MD USA ††Center for Ad-
vanced Manufacturing, University of Southern California, CA USA
[guptask]@usc.edu

1DISCLAIMER: Any commercial product or company name in this
paper is given for informational purposes only. Their use does not imply
recommendation or endorsement by NIST or the University of Maryland or
the University of Southern California

Fig. 1. Robotic setup built with two Kuka robots and Microsoft Kinect:
(a) Kinect. (b) Holding robot arm. (c) Cleaning robot arm.

2) The cleaning progress needs to be constantly mon-
itored and the plan needs to be often modified to
ensure efficient cleaning. This requires a sensor-based
feedback loop.

3) Cleaning with mechanical action requires application
of force. Often the parts being cleaned cannot with-
stand arbitrarily large forces. This requires that the
force being applied during the cleaning process be
monitored and controlled to make sure that the part
being cleaned is not physically damaged due to the
application of excessive cleaning force.

4) Cleaning time is considered as a non-value-added
time in manufacturing applications. Hence, it needs to
be minimized by carefully selecting cleaning process
parameters.

5) Cleaning of complex geometries requires complex
cleaning motions.

Recent trends in perception and planning have enabled
use of robots in highly non-repetitive tasks. Representative
examples include kitting [1], [2], bin-picking [3], [4], [5],
[6], assembly [7], and cleaning [8], [9], [10]. Traditionally,
non-repetitive cleaning tasks requiring mechanical contact
with a moving tool are done manually. Advances in robotics
make it feasible to consider industrial robots in cleaning
applications. Bi-manual setups enable one arm to hold and
immobilize the object being cleaned. The second arm can be
used to perform the cleaning. The bi-manual setup enables
the frequent reorientation of the part without requiring part-

2016 IEEE International Conference on Automation Science and Engineering (CASE)
Fort Worth, TX, USA, August 21-24, 2016

978-1-5090-2409-4/16/$31.00 ©2016 IEEE 751

specific fixtures and hence offers flexibility in non-repetitive
tasks to deal with a wide variety of geometries. Many robotic
manipulators now include integrated high resolution force
sensor and support impedance control. This enables safe
cleaning operations without the risk of damaging the part.
Three dimensional (3D) sensors enable estimation of the
shape of the part being cleaned and enable generation of
cleaning trajectories on the fly.

In this paper, we describe planning algorithms for cleaning
stains on curved objects. The stain being cleaned may require
multiple repositions and/or reorientations of the part and
some portions of the stain may require multiple cleaning
passes. The number of cleaning passes is determined by
the intensity of the stain. The cleaning is performed with
a moving tool with an abrasive surface. The experimental
setup involves two robot arms. The first arm immobilizes
the object. The second arm moves the cleaning tool. Figure
1 shows the experimental setup used to implement the
results of the planning algorithm. The algorithm analyzes
the stain and determines the sequence of poses (positions
and orientations) needed to clean the part based on the
kinematic constraints of the robot arm. Each pose is called a
cleaning setup in this paper. For each cleaning setup, we also
compute the cleaning trajectories by computing the tool paths
and select the cleaning parameters to maximize the cleaning
performance. The algorithm is capable of generating multi-
pass trajectories. We use replanning to refine the plan based
on the observed cleaning performance.

To the best of our knowledge, planning of cleaning tasks
by changing object’s pose based on robot’s reachability
has not been considered so far. Our focus is on problems
involving hard stains that typically require multiple passes of
mechanical scrubbing over the same surface area and setup
change for complete coverage.

II. RELATED WORK

Robotic cleaning has been attracting a growing interest
from the research community in the recent years. Prior work
has focused on different aspects of the problem including
coverage path planning [11], perception [12], control [13],
[14], [15], and learning [16], [17]. Most research considered
cleaning with manipulators [11], [13], [14], [15], [16], [17],
while some considered cleaning with mobile robots [12].
Approaches differed based on factors like the type of stains
involved, shape/material of the target surface to be cleaned,
and the environments in which the task was performed.

Hess et al. [11] addressed the coverage path planning for
cleaning 3D surfaces using redundant manipulators. They
explicitly considered the null space by treating different
inverse kinematics solutions as individual nodes in a graph
and modeled the problem as a generalized traveling salesman
problem where the nodes of the graph are subdivided into
clusters and at least one node in each cluster needs to be vis-
ited. They showed that their method outperformed Euclidean
coverage algorithms in terms of manipulation effort and
completion time. Sato et al. [13] presented a trajectory/force
tracking controller, in a mixed position/torque control mode,

for a standing humanoid robot using its right arm to clean
a dry erase marker on a white board. Martinez et al. [18]
presented an approach to plan high-level manipulation ac-
tions for the cleaning task. They considered stains like dry
erase marker on white board and lentils (seeds) on a flat
surface. They addressed changes in dirt distributions during
dragging actions used while cleaning by replanning every
few actions with newer perceptions. They also integrated a
learning component in order to provide adaptation to changes
such as different rag grasps, robots, or cleaning surfaces.
Nagata et al. [15] were able to use a force and position con-
trolled manipulator to perform mold polishing on a curved
surface. King et al. [14] used equilibrium point control to
generate wiping behaviors for a robot giving bed baths to
patients. They considered powdered candy with food color
as the stains to be cleaned. Hermann et al. [19] developed
algorithms to automatically generate tool trajectories in real
time for Computer Aided Design (CAD) applications. These
algorithms can be used to plan trajectory on curved surfaces
for robotic cleaning applications. Machine learning methods
have also been applied to robotic cleaning tasks. Eppner et
al. [16] developed an imitation learning framework through
the use of a dynamic Bayesian network for the task of
cleaning a whiteboard. Gams et al. [17] developed a two-
layer framework that models a human through vision and
then uses force profiling to wipe a kitchen table. In our earlier
works [10], [8], [9], we used a semi-supervised learning
approach to learn optimal operation parameters and a part
deformation model for robotic cleaning.

III. PROBLEM FORMULATION

We define the task for the robot as cleaning stains on
an arbitrary curved surface Γ ∈ R3. Let ` ∈ R6 =
{x, y, z, α, β, γ} represent a general pose where (x, y, z) and
(α, β, γ) represent the position and orientation, respectively
in 3D. Let Γ(`) represent the target surface oriented in an
arbitrary pose `. We approximate the stain on the surface as a
set of small discrete stain patches P = {pi : i = 1, 2, . . . , n}.
Each patch pi is a small planar triangle with an area ai ≤
am, where am is the surface area of the tip of the cleaning
tool. Figure 2(a) demonstrates an example of a surface after
triangulation. The red region represents P .

We assume that the stain intensity is not uniform across
the surface and that a single pass may not be able to clean the
entire stain region completely. Let Ni represent the number
of cleaning passes required to remove the stain from patch
pi. The number of passes is determined by image processing
explained in section VII. We restrict the robot’s motion such
that its tool axis is close to the surface normal and the
sweeping motions are orthogonal to the surface normal. The
robot may fail to satisfy these conditions for some segments
of P , for some Γ(`) ∈ F , where F ⊂ R6 is the set of all
such poses. For each Γ(`), we can test how many patches
can be reached by the robot by solving its inverse kinematics.
This reachability problem can be solved by changing Γ(`)
in steps such that all the subsets of the target surface fall
in the robot’s reachability space atleast once. Therefore, we

752

Fig. 2. (a) Representation of the surface using triangles. The red region is
the target region to clean P . (b, c) Two sample candidate setups from S.

formulate our cleaning problem as a multi-setup, multi-pass,
cleaning task with setup planning for the target surface and
trajectory planning for the cleaning tool.

We define a set of candidate setups S = {sj ; j =
1, 2, . . . ,m}, where sj = {pji : i = 1, 2, . . . , k} ⊆
P , k ≤ n and the conditions on robot motion is satisfied
∀pji ∈ sj . Figure 2(b,c) demonstrates two candidate setups
to clean P . Each setup sj corresponds to a distinct pose
Γ(`j). The maximum number of passes to cover sj is given
by Nm = max

|sj |
i=1Ni, where Ni is the number of passes to

clean pi. Let tm be the time to complete Nm passes. If ti
≤ tm is the time required for the ith cleaning pass, then the
total time spent to clean pk is tpk=

∑Nk

i=1 ak×ti/(ãi), where
ãi is the total area covered by ith pass. Cleaning rate for pk
is rjk=ak/tpk , where ak is the surface area of pk. Cleaning
rate for setup sj is Rj = (

∑|sj |
i=1 ai)/(tm + ts), where ts is

the setup time defined as time to change the pose of P from
one setup to another.

We can generate different ordered setup sequences by
permuting si ∈ S. We define a valid setup plan S =
{si ∈ S : i = 1, 2, . . . , q ≤ |S|} as an ordered sequence of
setups that cleans the entire region. The path planner gener-
ates a trajectory τ(si) for each si ∈ S. The robot may need to
reposition the tool to cover disjoint patches in a setup and to
transition between two setups. The sampling based method
for generating S and the algorithm to find setup sequence
solutions are described in Section IV and V, respectively.
Our method to generate trajectories is described in Section
VI. The method to select optimal operation parameters (e.g.
tool speed, applied force, etc.) is described in Section VIII.

For each setup, si, there is an execution time te(si) =
tc(τ(si)) + tr(τ(si)), where tc(τ(si)) is the cleaning time
when the tool is in contact with P while following τ(si)
and tr(τ(si)) is the repositioning time when the cleaning
robot moves between setups or disjoint patches). We define
the total cleaning time for a valid setup plan S as below:

T(S) = q × ts +

q∑
i=1

te(si) (1)

The problem is formally stated as follows: Find a setup
plan S∗ = {s∗1, s∗2, . . . , s∗l }, where s∗1, s

∗
2, . . . , s

∗
l ∈ S, such

that P is completely clean and T (S∗) is minimized.

IV. GENERATING CANDIDATE SETUPS

We use a sampling based approach to generate the initial
collection of setups. For a candidate setup si being evaluated,
we examine how many patches in P are reachable by
the robot in the desired orientation. We solve the inverse

kinematics for the vertices for each pi ∈ P . If all vertices
of a patch can be reached, then we consider that patch to be
reachable by the robot and assign that patch to si. The patch
must be relatively small compared to the tool tip’s surface
area. This is achieved by surface triangulation.

We begin with a coarse resolution sampling over a large
range of configuration space parameters to establish the
narrower feasible sampling range. We eliminate candidate
setups that are not useful for cleaning any patch. We will
use the notion of non-dominated setup to describe these
approaches. We consider a setup s to be dominated if there
exists another setup s′ that contains all the patches covered
by s. At the beginning of each of the following sampling
approach we initialize an empty set of setups, ψ. When the
non-dominated setups in ψ cover all pi ∈ P , we send them
as input to setup planner.

A. Fine resolution uniform sampling

1) Set a fine resolution for each axis of the configuration
space to perform uniform sampling over the narrower
sampling range.

2) Generate setup samples using the resolution from Step
(1) and add them to ψ.

3) Eliminate all dominated setups in ψ.

B. Hierarchical uniform sampling with gradient descent

1) Set a coarse resolution for each axis of the config-
uration space to perform uniform sampling over the
narrower sampling range.

2) Generate samples of setups using above resolution.
3) Pick setups in the generated set which do not belong to

ψ and refine them by using gradient descent over the
configuration parameters to optimize the area covered
by each setup. Add the refined setups to ψ.

4) Eliminate all dominated setups in ψ.
5) If the non-dominated setups in ψ do not cover all pi ∈
P , then refine sampling resolution and go to step (2).

C. Random sampling

1) Generate a random setup sample from the narrower
sampling range.

2) Refine this setup by using gradient descent to optimize
the area covered by this setup.

3) If refined setup does not belong to ψ, then add it to ψ.
4) Repeat steps (1-3) until setups in ψ cover all pi ∈ P .
5) Eliminate all dominated configurations in ψ.

D. Gradient descent to improve area coverage

We use gradient descent in the configuration space to
optimize the area covered by a setup. Let P1 ∈ P be
the set of patches that were reachable by the robot for a
starting configuration. We define |P1| as the score for the
starting configuration. Suppose one step was taken in the
configuration space by gradient descent and it is at a new
setup configuration. Let P2 ∈ P be the set of patches that
are reachable by the robot for this new configuration. We use
the following two score evaluation schemes:

753

TABLE I
GRADIENT DESCENT VARIANTS EXPLORED TO IMPROVE AREA COVERED

BY A SETUP. SCORING METHODS: TYPE I - CONSERVATIVE; TYPE II -
TWO ROUNDS (ROUND 1 IS CONSERVATIVE AND ROUND 2 IS ABSOLUTE)

Abbreviation Scoring method Gradient descent type
C XY Type I Along x and y axes for fixed αCA XY Type II

C XY α Type I Along x and y axes keeping α
fixed and then along α axis aloneCA XY α Type II

C XYα Type I Along x, y, and α axesCA XYα Type II

Conservative scoring: In this scheme, We enforce a con-
straint to ensure that the improved configuration is able
to cover all the patches that were present in the starting
configuration. Therefore, if P1 ⊆ P2, then the score of the
new configuration is |P2|. Else, it is |P1 ∩ P2|.

Absolute scoring: We do not enforce any constraint. The
score for the new configuration is evaluated as |P2|.

We explore different gradient descent variants by perform-
ing a search over the entire configuration space, over the
subspaces by batch covering the entire configuration space,
with conservative scoring scheme, and with both conservative
and absolute scoring schemes (refer to Table I).

V. SETUP PLANNING

The sampling based method described in section IV leads
to a set of refined setups. The setup planner finds a setup
plan from this set of candidate setups S.

Our algorithm uses a depth-first branch-and-bound search
with computational time bound Tmax to generate setup plans.
Let sij ∈ S represent a setup, where i is the iteration index
and j is the node index in the ith solution. Therefore, the ith

solution is given by Si = {si1, si2, . . . , sir : r ≤ |S|}. Initially,
we select a setup s01 ∈ S based on the cleaning rate and area
coverage of that setup. This results in the remaining stain
area Pr = P − {pi ∈ s01} to be covered. Then we use the
same basis to find other setups sij , one at a time, until all the
stain area is covered (Pr = ∅). Once the initial solution S0
is found, we set the best solution S∗ = S0 and the cleaning
time for the best solution T∗ = T(S0), which is the sum
of all the setup time and execution time for the solution
setup sequence. Then we keep branching to find an optimal
solution until Tmax is exceeded.

Let, Scurr be a set of setups in a solution search path.
Scurr may not necessarily be a complete solution. We define
T(Scurr) as the total execution and setup time for the setups
included in Scurr. We consider this as the current cost. We
define Tlb(Pr)=ts + minj t

e(sij), where sij /∈ Scurr, as the
lower bound for execution and setup time for the remaining
stain region Pr and use it as the lower bound on future cost
to prune sub-optimal branches in the search tree.

Input for Algorithm 1: P : set of patches on the surface
that need to be cleaned. S: set of candidate setups.

Input for Algorithm 2: Pr : set of remaining patches not
covered in any setup so far in this solution search path. Su :

set of candidate setups not used so far in this solution search
path. Scurr : current setup plan in this solution search path.

Algorithm 1 FindSetupPlan (P,S)

1: Initialize S∗ = ∅
2: Initialize T∗ = ∞
3: Call AddSetUp (P,S, ∅)
4: Return S∗

Algorithm 2 AddSetUp(Pr,Su,Scurr)

1: If computation time exceeds Tmax then abort search.
2: If Pr = ∅ and T(Scurr) > T∗ then Return
3: If Pr = ∅ and T(Scurr) ≤ T∗, then

update S∗ = Scurr, T∗ = T(Scurr) and Return
4: If T(Scurr) + Tlb(Pr) ≥ T(S∗), then Return
5: Otherwise,

If ∃p ∈ Pr associated with only one s ∈ Su, then
Find P(s) by patches that are present in s
Call AddSetUp (Pr − P(s), Su − s, Scurr

⋃
s)

Otherwise,
Sort Su by highest to lowest cleaning rate.
For every s in Su in decreasing order of
cleaning rate

Find P(s) by patches that are present in s
Call AddSetUp (Pr −P(s),Su − s,Scurr

⋃
s)

VI. TRAJECTORY PLANNING

Cleaning trajectory is planned for each pass of each setup.
A setup s∗j ∈ S∗ may require N j

m passes to complete
cleaning. Correspondingly, there are total N j

m number of
trajectories generated for the setup s∗j . For example, if
sj={pj1, p

j
2, p

j
3} and number of passes required for pj1, p

j
2,

and pj3 are 1, 2, and 3, respectively, then the first trajectory
will pass through all the patches pj1, p

j
2 and pj3. The second

trajectory will pass through pj2 and pj3, and the third tra-
jectory will cover pj3 alone. To generate the trajectory, we
intersect the target surface by equally spaced parallel planes
and sample the resulting curves to generate waypoints. We
generate each trajectory τ(sj) to cover sj as a spline curve
`(sj , ρ) ∈ R6, where ρ ∈ I is an arc-length parameter
over a set I. Figure 3(a) demonstrates an example of a
cleaning trajectory for one sample setup. The robot may
not be able to travel through all the desired points on a
continuous smooth spline curve. In these cases we segment
the trajectory in multiple spline curves and reposition the arm
after completing each spline such that it can travel through
the next spline. We also reposition the arm to avoid traveling
through already cleaned regions, which may come in between
unclean regions. Repositioning is similar to jumps because
the arm comes out of contact with the P during these moves,
hence incurring repositioning time.

The cleaning trajectory is generated by creating a spline
through the connected triangles in a setup. Therefore, the

754

Fig. 3. (a) An example trajectory generated by parallel plane slicing for
a setup. (b) Overlay pattern generated by an example set of parameters.
The normalized values for the parameters used in this example is v=0.10,
fx=0.50, Fx=1.0, Sx=1.0, Fz=0.50

cleaning trajectory consists of multiple splines for a single
setup. We overlay a force oscillation on top of the sweeps to
expedite cleaning. This is described in Section VIII. Figure
3(b) illustrates an example of a trajectory with overlaid force
oscillation. The repositioning trajectory is generated as a
spline curve that connects the current pose of the tool, an
intermediate pose where the tool is not in contact with P ,
and the starting pose of the tool for the next cleaning spline.
We use the spline motion primitives of the Kuka Robotics
Application Programming Interface (API), which takes a set
of way points L = {`i ∈ R6} as input and creates a smooth
spline curve for the tool to follow if the points are in the valid
reachable space. We denote the trajectory for the ith pass on
the setup sj by τi(sj) = {τ cli (sj), τ

repo
i (sj)}, where τ cli (sj)

is the cleaning trajectory and τ repoi (s∗j) is the repositioning
trajectory for the ith pass.

VII. PERCEPTION

We detect the object using the Iterative Closest Point (ICP)
algorithm by matching the depth image of the object with
its CAD (Computer-aided Design) model. We use image
processing to detect the stain on the object, evaluate the
cleaning performance after each cleaning pass, and estimate
the required number of cleaning passes. After each pass we
must know how much dirt was removed to measure cleaning
rate. We use K-means clustering to classify the background
color and stain. This method performs pixel-wise vector
quantization. The pixels are represented in 3D space of Red-
Green-Blue (RGB) colors and all pixels are clustered into
two colors− white to represent the cleaned area and black to
represent the remaining stains. Let C0 and C1 be the number
of black pixels in the binary image of the target surface
before and after the cleaning pass, respectively. Let Ih and Iw
be the height and width of the target region in pixels. Then
we define cleaning performance Cp = (C0−C1)/(Ih× Iw).

Our algorithm needs to know the number of cleaning
passes required to clean each triangulated stain patch. We
quantize the pixel colors of the image of the stain into
Nc number of color clusters using k-means algorithm. Nc

can be determined through supervised learning methods
with a rich database of images of stains. In our current
implementation Nc is user defined. The color value of the
clusters are considered as points in RGB 3D space and their
distance from the origin determine the required number of
cleaning passes. Fig. 4 illustrates an example for Nc=4. The

Fig. 4. Pixel-wise vector quantization of stain image

RGB color value furthest from the origin, i.e., from black,
represents no cleaning pass and the point nearest to the origin
represents three cleaning passes.

VIII. OPERATION PARAMETER SELECTION

We tune the following robot motion parameters to find
optimal cleaning performance: (1) Robot tool speed v, (2)
Force f applied by the tool in orthogonal direction to the
surface, (3) Stiffnesses Sx and Sy in the x and y directions
of the tool reference frame, (4) Frequency fx (or fy) of
the forced oscillation in the x (or y) direction with respect
to the tool reference frame, and (5) Amplitude of overlaid
force Fx and Fy for Lissajous force oscillation mode. It
is difficult to express cleaning performance as a closed
form function of these parameters. We adapted the Gaussian
Process Regression based learning method developed in
our previous work [10] to estimate the optimal cleaning
parameters. The method requires to conduct some initial
exploration experiments and then it selects candidate points
in the parameter space to conduct exploitation experiments.
The points are selected based on a probability of achieving
desired cleaning performance.

IX. RESULTS

A. Synthetic test cases

We tested the setup planner by conducting simulated
experiments using the Puma 560 robot for cleaning. Figure
5 shows four arbitrary curved surfaces used as synthetic
objects to clean in the simulations. The curved surfaces were
represented as triangulated mesh where each face has an area
less than 1.5 cm2. There are about 4000 to 5000 stain patches
(faces marked as red) on these objects. Stain intensity was
set such that each patch could be cleaned by one to three
cleaning passes. In our experiments we have used a robot to
immobilize the object and another robot to manipulate the
cleaning tool. The two arms can also be used to change the
pose of the object. We have considered a fixture-free work
environment on a plane. Therefore we had a 3D configuration
space in our experiments (x, y, and α, where α is the rotation
about z). The narrowed down sampling region was [0, 1m]
× [0, 1m] ×[0, 2π].

1) Baseline results: To find the number of minimum
possible setups needed to clean the four test objects, we uni-
formly sampled the configuration space with fine resolution,
eliminated the dominated setups, and ran setup planner on the

755

Fig. 5. Four curved surfaces used as synthetic test objects: (a) Sine function (1600mm x 1600 mm x 500 mm), (b) Schwefel function (600mm x 600
mm x 350 mm), (C) Concave bowl (1200mm x 1200 mm x 530 mm), and (d) Hyperboloid of one sheet (1200mm x 1200 mm x 412 mm).

TABLE II
BASELINE RESULTS FOR THE FOUR TEST CASES IN SIMULATION

Case No. of setups in solution Non Dominated Setups
Sine 4 36

Schwefel 1 1
Concave bowl 5 531
Hyperboloid 4 751

non-dominated setups. Gradient descent was not used here
(Section IV-A). The largest resolution for uniform sampling
that gave set cover for the stain patches for all the four test
cases was 50 mm in both x and y axes and 10◦ in α axis. The
baseline result is summarized in table II. The reachability test
function determines how many stain patches are reachable by
the robot for a particular setup configuration. We use the total
reachability function calls nrfc, the number of calls to the
reachability function, as one of the performance measures
as this function takes the most time to evaluate. For all the
cases in Table II, nrfc = 16317.

2) Comparison between different sampling and gradi-
ent descent approaches: We explored hierarchical uniform
sampling and random sampling approaches as mentioned
in Sections IV-B and IV-C. We tested the performance
of gradient descent variants described in Section IV-D on
these approaches. For hierarchical uniform sampling, we
used different resolutions at different levels of hierarchy.
The resolution was doubled along one axis at a time in
the hierarchies. The results for the four test cases using
hierarchical uniform sampling are given in Table III. The
system was able to find the optimal setup solution for the
four test cases by refining the input setup configurations for
the setup planner with the CA XY variant (refer to Table
I). For the random sampling approach, we ran 100 trials
for each test case, with each type of gradient descent. The
likelihood of finding the optimal solution for each case is
summarized in Table IV. We can see that the likelihood is
reasonable with the CA XY variant for all the four test
cases. We can see that hierarchical uniform sampling with
the CA XY variant can guarantee an optimal solution. The
random sampling based approach has three fold reduction in
nrfc compared to that of hierarchical uniform sampling. But
with a certain type of gradient descent, it can only guarantee
optimal solution with likelihood less than 0.5.

3) Comparison of heuristics for setup planner: We used
two heuristics on the branch-and-bound-depth-first search
for faster convergence towards optimal solution. The first

Fig. 6. The object’s surface (a) before cleaning and (b) after cleaning.
Images taken from two different angles.

heuristic (step 5 of algorithm 2), sorting candidate setups
based on cleaning rate, provides guidelines for choosing a
potential branch with optimal solution. The second heuristic
(step 4 in algorithm 2), is to prune branches based on
the estimated lower bound on future cost. We tested the
planner performance by toggling these two heuristics on and
off. Performance is summarized in Table V for Sine-object
with 36 uniform initial samples, among which 12 are non-
dominated setups, and the optimal solution comprised five
setups.

B. Physical Testing Results

We conducted robotic cleaning experiments on a bowl and
used acrylic paint as a surrogate for stain as shown in Fig. 6.
Stain intensity was controlled by applying multiple layers of
paint. The map among the coordinate frames of the robots
and visual sensors can be found by tracking markers attached
to the end effectors of the robots. The location of the object
with respect to the visual sensor can be found using the ICP
algorithm.

We segmented the bowl as a discrete set of 15644 trian-
gles, making a total surface area of about 1472.8 cm2. The
stain region consisted of about 1000 triangles with surface
area of 113.45 cm2. The surface area of each triangle was
less than 10 mm2. We found the following parameters using
our parameter selection method (described in Section VIII)
for optimal cleaning of the acrylic paint stain on the bowl
surface and used them in the experiment: (1) fx=7Hz (2)
Sx, Sy=5000 N/m, (3) Fx, Fy = 30 N, (4) v = 0.3 (where
maximum joint velocity vmax =1), and (5) Fz=10 N. We used
Yth=0.60, Pth=0.10 and N=10. We sampled the candidate
setups in 3 Degrees of Freedom(DOF) x, y and α, where
α is the angle about z. Hierarchical uniform sampling with
gradient descent was used to generate the candidate setups.
We found a solution sequence of five setups for the cleaning
task generated by our setup planner. It took three passes to
clean the region in setup 1 and two passes for others. The

756

TABLE III
RESULTS OF HIERARCHICAL UNIFORM SAMPLING FOR FOUR SYNTHETIC OBJECTS

Gradient Descent Type Sine Schwefel Concave Bowl Hyperboloid
Setups in solution nrfc Setups in solution nrfc Setups in solution nrfc Setups in solution nrfc

w/o grad. dsc. 5 36 1 36 6 36 5 36
CA XY 4 536 1 264 5 574 4 457

CA XY α 5 1074 1 811 5 1179 4 1089
CA XYα 5 659 1 426 7 1209 5 671

TABLE IV
LIKELIHOOD OF FINDING OPTIMAL SOLUTION BY RANDOM SAMPLING

Grad. Dsc.
Type Sine Schwefel Concave bowl Hyperboloid

Without
Grad. Dsc. 0 0.13 0.01 0.05

CA XY 0.19 0.35 0.21 0.32
CA XY T 0.07 0.54 0.04 0.01
CA XYT 0.05 0.43 0.05 0.08

TABLE V
COMPARISON OF HEURISTICS FOR SETUP PLANNER

Heuristic Node expansion in search tree
before convergence

Branch
Guiding

Branch
Pruning Sine Concave bowl Hyperboloid

ON ON 20286 353630 569
OFF ON 39822 362208 679
ON OFF 1176109 16240590 3104
OFF OFF 1188175 16242862 3138

overall cleaning rate was about 0.167 cm2/s. Figure 6 shows
the object before and after the cleaning task is performed.

X. CONCLUSIONS

This paper presents algorithms for automated cleaning of
objects with curved surfaces. The method is equally effective
for paint stripping and polishing tasks. The algorithm is
capable of generating the optimal number of setups to
maximize the cleaning rate. The system identifies the best
cleaning parameter settings by a semi-supervised learning
scheme. It is capable of adjusting the parameters based on the
observed performance. The system was able to successfully
remove stains that were difficult and tedious for humans
to remove. In the current implementation, setup change is
performed manually. In the future, we will automate setup
changing using two manipulators.

REFERENCES

[1] S. Balakirsky, Z. Kootbally, C. Schlenoff, T. Kramer, and S. K.
Gupta. An industrial robotic knowledge representation for kit building
applications. In Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1365–1370, Oct 2012.

[2] A. G. Banerjee, A. Barnes, K. N. Kaipa, J. Liu, S. Shriyam, N. Shah,
and S. K. Gupta. An ontology to enable optimized task partitioning
in human-robot collaboration for warehouse kitting operations. In
Proc. SPIE, Next-Generation Robotics II; and Machine Intelligence
and Bio-inspired Computation: Theory and Applications IX, 94940H,
2015.

[3] K. N. Kaipa, S. S. Thevendria-Karthic, S. Shriyam, A. M. Kabir, J. D.
Langsfeld, and S. K. Gupta. Resolving automated perception system
failures in bin-picking tasks using assistance from remote human
operators. In Proc. of IEEE International Conference on Automation
Science and Engineering, August 2015.

[4] K. N. Kaipa, S. Shriyam, N. B. Kumbla, and S .K. Gupta. Automated
plan generation for robotic singulation from mixed bins. In IROS
Workshop on Task Planning for Intelligent Robots in Service and
Manufacturing, 2015.

[5] K. N. Kaipa, N. B. Kumbla, and S .K. Gupta. Characterizing
performance of sensorless fine positioning moves in the presence of
grasping position uncertainty. In IROS Workshop on Task Planning
for Intelligent Robots in Service and Manufacturing, 2015.

[6] K. N. Kaipa, A. S. Kankanhalli-Nagendra, and S. K. Gupta. Toward
estimating task execution confidence for robotic bin-picking appli-
cations. In AAAI Fall Symposium: Self-Confidence in Autonomous
Systems, 2015.

[7] C. Morato, K. N. Kaipa, and S. K. Gupta. Improving assembly
precedence constraint generation by utilizing motion planning and part
interaction clusters. Computer-Aided Design, 45(11):1349 – 1364,
2013.

[8] J. D. Langsfeld, A. M. Kabir, K. N. Kaipa, and S. K. Gupta. Online
learning of part deformation models in robotic cleaning of compliant
objects. In ASMEs 11th Manufacturing Science and Engineering
Conference, June 2016.

[9] J. D. Langsfeld, A. M. Kabir, Kaipa K. N., and Gupta S. K. Robotic
bimanual cleaning of deformable objects with online learning of part
and tool models. In Proc. of IEEE International Conference on
Automation Science and Engineering, August 2016.

[10] A. M. Kabir, J. D. Langsfeld, C. Zhuang, Kaipa K. N., and Gupta S.
K. Automated learning of operation parameters for robotic cleaning
by mechanical scrubbing. In ASMEs 11th Manufacturing Science and
Engineering Conference, June 2016.

[11] J. Hess, G. D. Tipaldi, and W. Burgard. Null space optimization for
effective coverage of 3D surfaces using redundant manipulators. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1923–1928, 2012.

[12] R. Bormann, F. Weisshardt, G. Arbeiter, and J. Fischer. Autonomous
dirt detection for cleaning in office environments. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1260–
1267, May 2013.

[13] F. Sato, T. Nishii, J. Takahashi, Y. Yoshida, M. Mitsuhashi, and
D. Nenchev. Experimental evaluation of a trajectory/force tracking
controller for a humanoid robot cleaning a vertical surface. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3179–3184, Sept 2011.

[14] C. H. King, T. L. Chen, A. Jain, and C. C. Kemp. Towards an assistive
robot that autonomously performs bed baths for patient hygiene.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
(1):319–324, 2010.

[15] F. Nagata, T. Hase, Z. Haga, M. Omoto, and K. Watanabe. CAD/CAM-
based position/force controller for a mold polishing robot. Mechatron-
ics, 17(4-5):207–216, 2007.

[16] C. Eppner, J. Sturm, M. Bennewitz, C. Stachniss, and W. Burgard.
Imitation learning with generalized task descriptions. In IEEE Inter-
national Conference on Robotics and Automation, pages 3968–3974,
May 2009.

[17] A. Gams, M. Do, A. Ude, T. Asfour, and R. Dillmann. On-line
periodic movement and force-profile learning for adaptation to new
surfaces. In 10th IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pages 560–565, Dec 2010.

[18] D. Martı́nez, G. Alenyà, and C. Torras. Planning robot manipulation
to clean planar surfaces. Engineering Applications of Artificial
Intelligence, 39:23–32, 2015.

[19] G. Hermann. Algorithms for real-time tool path generation. Geometric
Modeling for CAD Applications, pages 295–305, 1988.

757

