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Abstract—This paper discusses effect of bounded rationality on the 
systemic risks vs. economic performance tradeoff in large-scale 
networks operating under economic pressures.  Existence of 
systemic risks in economically incentivized networked systems is 
demonstrated by recent numerous systemic failures in various 
critical large-scale networked infrastructures.  Using “Complex 
System” perspective, we consider systemic risks due to overload 
experienced by a sizable portion of the network.  Economic 
pressures facilitate systemic overload by incentivizing (a) high 
level of dynamic resource sharing allowing the system to mitigate 
effects of inherently uncertain exogenous demand and limited 
system reliability, and (b) network operation on the stability 
boundary where all network resources are fully utilized.  However, 
in practice these economic incentives are counteracted by bounded 
rationality of the network operator(s), e.g., due to limited 
information on the uncertain exogenous environment.  We argue 
that bounded rationality reduces both the network operational 
region and risk of abrupt overload.  Due to higher performance 
losses and lower predictability of a discontinuous/abrupt overload 
as compared to a continuous/gradual one, our results suggest that 
bounded rationality may benefit the system performance by 
allowing system to operate closer to the stability boundary. 

Keywords-large scale network, economic efficiency, systemic 
risk, bounded rationality. 

I.  INTRODUCTION 
Economic and convenience benefits of interconnectivity 

drive current explosive emergence and growth of networked 
systems [1].  One of these benefits is ability of interconnected 
systems to support dynamic resource sharing allowing for 
sustaining certain level of resource demand/supply imbalances 
due to exogenous demand variability and limited reliability of 
system component.  This increase in the network “robustness” 
can be quantified by the corresponding enlargement of the 
network operational region.  However, numerous recent 
systemic failures in various “performance-oriented” networked 
infrastructures demonstrated existence of systemic risks 
associated with economic benefits of interconnectivity.  These 
systemic risks may be a result of the same economic incentives 
driving networked systems toward the stability boundary, 
where system resources are fully utilized. 

Our previous results [2]-[4] suggested that inherent tension 
between trends for (a) enlargement of the network operational 
region on the one hand and (b) keeping system close to the 
boundary of this region on the other hand is a form of “robust 

yet fragile” phenomenon [5].  Here robustness to “sufficiently” 
small resource supply/demand imbalances is due to 
enlargement of the operational region, while fragility is due to 
increased risk of discontinuous/abrupt systemic instability as 
the boundary of the operational region is breached in a case of 
“sufficiently” large resource demand/supply imbalances.  This 
interpretation is based on higher performance losses and lower 
predictability associated with abrupt/discontinuous as 
compared to gradual/continuous instabilities. 

This paper argues that bounded rationality may allow system 
operator(s) to manage this robustness/fragility tradeoff by 
reducing risk of abrupt instability at the cost of reduction of the 
operational region.  Thus bounded rationality may benefit the 
system performance by allowing system to operate closer to the 
stability boundary.  Despite our assessments are based on 
analysis of a homogeneous network, our previous results on 
Perron-Frobenius characterization of systemic instabilities [2]-
[4] indicate applicability of these assessments to heterogeneous 
networks.  The paper is organized as follows.  Section II 
introduces model of a networked system of shared resources.  
The system efficiency is controlled through pricing of the 
exogenous elastic demand, where bounded rationality of the 
controller(s) is due to uncertainties in the price-demand curve.  
Section III introduces a mean-field and fluid approximate 
performance models, and discusses effect of bounded 
rationality on the system performance. 

II. NETWORK: BOUNDED RATIONALITY 
Following [6] consider the following model of Cloud 

computing system [7].  The system includes I  classes of jobs 
(requests) and J  service groups, where group Jj ,..,1  

includes jN  servers and a buffer capable of holding up to jB  

jobs.  Jobs of class Ii ,..,1  arrive following a Poisson 

process of rate i .  Different service groups may include 
geographically distant resources and different types of 
resources, e.g., memory, CPUs, communication resources, etc.  
A job of class i  can be serviced on one of several resource sets.  
Service times are distributed exponentially with service group 
specific averages.  We assume a service strategy which either 
rejects or accepts an arriving job.  In the latter case the job stays 
until service is completed.  We also assume a work-conserving 
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service discipline which does not allow an idle server in a group 
with at least one buffered job. 

An arriving class Ii ,..,1  job has exponentially 

distributed service time with average ij1  on a class 

Ij ,..,1  server.  Static routing strategy is characterized by 

probabilities ijq  that an arriving request of class i  is routed to 

server group j , where rejection probabilities 
j iji qq 1:0  

characterize admission strategy.  Economically incentivized 
network operator attempts to maximize the generated revenue 
rate.  In particular, assuming that rates )( iii p  are 

decreasing functions of price ip , which provider charges a 

class i  request for service, and moreover demand is elastic [8], 
rational network operator attempts to maximize the aggregate 
revenue rate 

                 









i j
jijiii qpppR )1()()(                      (1) 

over the price vector )( ipp  .  It can be shown [9] that at this 
optimum, exogenous demand and system capacity are matched, 
i.e., system attempts to accommodate the entire demand: 

Iiq
j ij ,..,1,1   and system has no spare capacity: 

JjqN
i ijiijjj ,..,1,1)1(:    . 

We assume that the revenue maximization is subject to 
bounded rationality resulted from system operator(s) inability 
to completely control the exogenous demand through pricing, 
e.g., due to uncertainty in the price-demand curve )( pi .  We 

model this uncertainty by assuming that rates i  are random 

variables with averages i~  and standard deviations 

0)( i .  Network operator(s) being unable to control rates 

i , can control averages )(~~
iii p  by manipulating 

prices ip . 
In particular, often assumed form price-demand curve is [9]-

[10] ipp ii
 0)( , where 00 i  and 1i  are the 

demand potential and elasticity respectively.  Due to low 
reliability of numerical estimates of the demand potentials 0i  

it is natural to assume that 0i  are random variables with 

averages 0
~

i  and standard deviations 0)( 0 i .  In this 
model of bounded rationality, network operator(s) are only 
capable of controlling the expected exogenous demand 

i
iiii pp  0

~)(~
 with standard deviation 

i
iiii pp   )())(( 0 , by manipulating prices ip . 

III. EFFECT OF BOUNDED RATIONALITY 

Introduce vector ),( Jjj   , where 0j  if server 

group j  has available resources, i.e., a server, or buffering 

space, or both.  Otherwise 1j .   Since according to our 

assumptions 1][:  jj E  , Jj ,..,1 , the main effect of 

dynamic resource sharing can be described by conditional 
rerouting probabilities ijkq  that a class i  request initially routed 

to server group j  is immediately rerouted to server group k  in 

an unlikely case 1j .   

Assuming that exogenous demand has been already 
optimized over pricing, the system performance is characterized 
by loss probabilities.  For a dynamic resource sharing discipline 
allowing a single rerouting attempt with probabilities ijkq , loss 

probability for an arriving request of class i  is 

                   



j jk

jkijkjiji EqqL ]1[  ,                          (2) 

where ][: jj E    is the unconditional expectations of j , 

and ]1[ jkE   is the expectation of k , given 1j . 

Our analysis is based on a mean-field type approximation 
[2]-[4], which neglects correlations between blockings in 

different service groups: ][]1[ kjk EE   , and thus 

allows us to approximate loss (2) as follows: 

                    



j jk

kijkjijii qqLL ~
,                                    (3) 

Dynamic resource sharing results in additional load due to 
allowing requests a second attempt to obtain service.  The 
corresponding additional utilization for server group j  is 

                    
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,                                  (4) 

We propose to approximate probabilities j  by the Erlang 

formula with jS  servers, jB , and utilization jj    [2]-[4]: 

                    ),,( jjjjj BSErl                                        (5) 

where 
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Equations (4)-(6) form a closed mean-field approximation.  
Fluid approximation describes a limit of large service groups 

1 jj BS , when equation (5) takes the following form [6]: 
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                         ])(11[~
jjj  ,                                     (7)  

since ),,(lim)11( BSErlBS  
  , where 

),0max(:][ xx  .  Combining (7) with (4) we obtain a 

closed system of fixed-point equations for j
~

, Jj ,..,1 . 

Consider a particular case of symmetric system with 
“native services”, where NNi  , i ,  ii , 

)1(  ij ; Iji ,..,1,  , ji  , parameter 0  

characterizes inefficiency of a non-native service as compared 
to the native service, and dynamic resource sharing is 
characterized by probabilities qqijk  , jik , .  In this case 

 q)1(  , and thus (7) takes form:       

            

















]~)1(1[

11~
q

,                             (8) 

where exogenous utilization is )(:  N . 

Figures 1a and 1b sketch loss L~  in a case 1)1(  q  

of “soft” stability loss and in a case 1)1(  q  of “hard” 
stability loss respectively. 
 
 
 
 
 
 
 
Figure 1a.  1)1(  q             Figure 1b.  1)1(  q  
 
Bounded rationality is modeled by assuming that utilization   
is a random variable with average ~  and standard deviation 
 , and thus equation (8) is replaced with the following 
equation: 
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Figure 2 sketches phase diagram of equation (9) in 
variables ),~(  .  
 
 
 
 
 
 
 
 
 
Figure 2.  Phase diagram of equation (9). 

In region  21: FFF   operational equilibrium 0~
  of 

equation (9) is asymptotically stable.  In region 1F  equilibrium 

0~
  is globally stable, while in region 2F  this equilibrium 

is locally stable and coexists with “undesirable” locally stable 

equilibrium 0~*  .  Following accepted practice, we 
associate multiple locally stable equilibria with metastable, i.e., 
persistent system states.  Thus region 1F  represents “safe” 
operational region since breaching boundary DC results in 
“soft” stability loss similar to shown in Figure 1a.  

Lower values of   correspond to higher level of 
rationality resulting in widening operational region with respect 
to ~ , and thus to the expected serviced exogenous demand.  

However, this system robustness to variability of   within 2F  

comes at the costs of operational equilibrium 0~
  fragility 

due to metastability of this equilibrium and “hard” stability loss 
as stability boundary BC is breached, i.e., due to “sufficiently 
large” variability in the instantaneous or long-term exogenous 
utilization.  Figure 2 indicates that bounded rationality while 
reducing the stability region may also enlarge “safe” stability 
region with respect to ~ , and thus may benefit the system 
performance.  This phenomenon is consistent with results [11].  
Finally note that despite we analyzed a homogeneous network, 
our previous results on Perron-Frobenius characterization of 
systemic instabilities [2]-[4] indicate that our assessments can 
be extended to heterogeneous networks. 
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