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Abstract—This paper reports on quantification and management 
of inherent systemic risk/performance tradeoff in the cloud 
computing model.  We view Cloud as a Complex System and 
associate the systemic risks with a possibility of system phase 
transition to the undesirable persistent state.  Our analysis under 
mean-field and fluid approximations suggests a shift in cloud 
architecture design and operation paradigm from maximizing the 
economic benefits to management and optimization of the inherent 
systemic risk/benefit tradeoffs.  We argue that economics makes 
this tradeoff more pronounced by driving Cloud service providers 
towards the boundary of the operational regime, and thus 
increasing risk of overload when the system does not have
sufficient capacity for sustaining the exogenous demand.

Keywords-cloud computing model, dynamic resource sharing,
overload, systemic risk.

I. INTRODUCTION

The NIST definition lists the following five essential 
characteristics of the cloud computing model: on-demand self-
service, broad network access, resource pooling, rapid 
elasticity, and measured service [1].  While these traits are 
oriented towards maximization of the economic and user 
convenience benefits, they may also be a source of risks and 
drawbacks due to misuse of the allowed flexibility in resource 
provisioning [2].  This paper reports on quantifying and 
managing some of these systemic risk/performance tradeoffs of
dynamic resource sharing made possible by the high degree of 
resource interconnectivity.  These tradeoffs are due to the 
benefits of accommodating occasional resource demand/supply
imbalances being inherently associated with risks of local 
overload spreading over a sizable portion of the system.

Due to intractability of the conventional performance models 
of a realistic size Cloud, we employ methodology of Complex 
Systems [2].  As opposed to the conventional view of systemic 
overload as being continuous with respect to the exogenous 
utilization, our analysis under mean-field and fluid 
approximations [3]-[4] indicates a possibility of 
abrupt/discontinuous systemic overload, which results in the 
system transitioning to a persistent congested mode through 
cascades of local overloads.  This suggests quantification of the
systemic risk of overload by taking into account not only
“likelihood” of sustaining the exogenous demand, but also the 
gradual/continuous or abrupt/discontinuous nature of the
overload if the exogenous demand becomes unsustainable.

The paper is organized as follows.  Section II introduces 
operational and performance models of a system of shared
resources.  Section III analyzes a symmetric system under 
mean-field approximation and proposes a Perron-Frobenius 
based approach to analysis of non-symmetric systems under 
fluid approximation. Finally, Section IV concludes and outlines 
directions of future research.

II. RESOURCE SHARING MODELS

Subsection A introduces a performance model of statically
shared resources, and demonstrates that under broad 
assumptions economic pressures drive system towards full 
utilization. Subsection B introduces a performance model of
dynamically shared resources.

A. Operational Models
Consider a system with I classes of jobs (requests) and J

service groups, where group Jj ,..,1� includes jN servers

and a buffer capable of holding up to jB jobs.  Jobs of class 

Ii ,..,1� arrive following a Poisson process of rate i� , and 
have an exponentially distributed service time with average 

ij�1 on a class Ij ,..,1� server. We assume a service 

strategy which either rejects or accepts an arriving job.  In the 
latter case the job stays until service is completed.  We also 
assume a work-conserving service discipline which does not 
allow an idle server in a group with at least one buffered job.

Static routing strategy is characterized by probabilities ijq
that an arriving request of class i is routed to server group j ,

where 1�� j ijq and rejection probabilities  

���
j iji qq 1:0 characterize admission strategy. We assume 

that on average, demand for the resources and supply of these 
resources are matched, i.e., the system is capable of 
accommodating the entire demand:
                   Iiq

j ij ,..,1,1 ��� ,                                         (1)

and system has almost no spare capacity:
           JjqN

i ijiijjj ,..,1,1)1(: ���� � �	            (2)
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Despite conditions (1)-(2) appear to be restrictive, it can be
shown that in market economy they arises naturally as a result 
of market pressures. Assuming that service provider controls 
demand through service pricing in attempt to maximize the 
revenue, conditions (1)-(2) are the result of this revenue 
maximization, which also determines routing probabilities ijq .

In an important particular case of one-to-one correspondence 
between request classes and service groups, when “native” 
service is at least as efficient as “non-native”:

JI � , iiij �� � , Iji ,..,1, � , ji 
 ,                       (3)

it can be shown that under some natural assumptions on the 
model parameters, provider revenue maximization yields 
routing which allocates requests to native servers only:
             1�ijq if ji � , and 0�ijq otherwise.                        (4)

In practice, due to variability of the exogenous demand and
limited system reliability, system may not have sufficient
resources to accommodate occasional resource demand/supply 
imbalances, e.g., because delay requirements may limit buffer 
sizes. Cloud computing model is expected to mitigate these
imbalances with dynamic resource sharing made possible by
high degree of resource interconnectivity.  In this short paper 
we consider a generic model of dynamic resource sharing in a 
case of “small” demand/supply imbalances, when (1)-(2) hold
and probability that service group Jj ,..,1� has neither 
available servers nor buffering space, is small.

Introduce vector ),( Jjj �� �� , where 0�j� if server 

group j has available resources, i.e., a server, or buffering 
space, or both.  If however, server group j has neither a server 

nor buffering space available, then 1�j� .   Since according 

to our assumptions 1][: � jj E �� , Jj ,..,1� , the main 

effect of dynamic resource sharing can be described by
conditional rerouting probabilities ijkq that a class i request 

initially routed to server group j is immediately rerouted to 

server group k in an unlikely case 1�j� .  The effect of 

dynamic resource sharing of next order of magnitude with 
respect to j� can be described by the corresponding “second 

attempt rerouting probabilities,” etc.
For a dynamic resource sharing discipline allowing a single 

rerouting attempt with probabilities ijkq , loss probability for an 

arriving request of class i is

    � �



��
j jk

jkijkjiji EqqL ]1[ ��� ,                     (5)

where ]1[ �jkE �� is the conditional expectation of k� ,

given 1�j� .

B. Performance Models
Our analysis is based on a mean-field type approximation, 

which neglects correlations between blockings in different 

service groups: ][]1[ kjk EE ��� �� , and thus allows us to 

approximate loss (5) as follows:

                   � �



��
j jk

kijkjijii qqLL ��~
,                                  (6)

where ][: kk E �� � .  Dynamic resource sharing results in 
additional load due to allowing requests a second attempt to 
obtain service.  The corresponding additional utilization for 
server group j is

         � �



�
�

i jk
kikjik

ij

i

j
j qq

N
�

�
� 1

.                                  (7)

We propose to approximate probabilities j� by the Erlang

formula with jS servers, buffer size jB , and utilization 

jj �	 � [5]:

                    ),,( jjjjj BSErl �	� �� ,                                   (8)

where
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	 (9)

Substituting (7) into (8) we obtain a closed system of J non-

linear, fixed-point equations for j�
~

, Jj ,..,1� .

Fluid approximation describes a limit of large service 
groups 1��� jj BS , when equation (9) takes the following 

form [6]:

                   ���� ])(11[~
jjj �	�                        (10)

since

                 ),,(min)11( BSErl
BS

		
���

� �� ,                      (11)

where ),0max(:)( xx �� . Combining (10) with (7) we 

obtain a closed system of fixed-point equations for j�
~

,

Jj ,..,1� .
Following conventional interpretation of mean-field and 

fluid approximations [7], we interpret multiple solutions of the 
corresponding approximate systems as describing the 
metastable, i.e., persistent equilibria of the original Markov 
model.  When 1�j	 , Jj ,..,1� , system (7), (10) has trivial 

solution 0~
�j� , which describes the “normal/operational”

system regime without losses: 0�iL , Ii ,..,1� .
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In the rest of this paper we discuss the related questions of 
systemic overload due to short-term and long-term resource 
demand/supply imbalances.  The first question is related to 
existence of non-trivial solutions to (7), (10) for 1�j	 ,

Jj ,..,1� .  The existence of such a solution indicates a
possibility of the system transitioning to a persistently
congested mode despite long-term resource demand/supply is 
balanced. This transition occurs through cascades of local 
congestion spreading to other parts of the system due to
dynamic resource sharing.  The second question is related to 
whether overload emerges gradually/continuously or 
abruptly/discontinuously as long-term exogenous loads j	 exit 

the operational region 1�j	 , Jj ,..,1� .

III. SYSTEMIC RISK/PERFORMANCE TRADEOFF

Subsection A analyzes symmetric system under mean-field 
approximation (7), (8)-(9).  Subsection B discusses stability of 
the operational equilibrium under fluid approximation (7), (10).

A. Symmetric System under Mean-Field Approximation
Consider a particular case of symmetric system with native 

services (3)-(4), where NNi � , ���i , �� �ii ,

)1( ��� ��ij ; Iji ,..,1, � , ji 
 , parameter 0��
characterizes inefficiency of a non-native service as compared 
to the native service, and dynamic resource sharing is 
characterized by probabilities qqijk � , jik ,
 .

Figure 1 sketches the persistent loss L~ vs. exogenous 
system load )(: �	 N�� under mean-field approximation.

Figure 1.  Persistent loss vs. exogenous utilization.

Curve 00E sketches loss rate L~ for sufficiently low level of 
resource sharing � , when mean-field equation has unique 

solution �~ for all 	 .  For sufficiently large resource sharing 

level � , large service groups: 1��� BN , and sufficiently 
inefficient non-native service, i.e., small � , mean-field 

equation has two stable solutions  *
~� and *~� for intermediate 

load )()( *
* �		�	  .  As load 	 “slowly” increases, 

the loss L~ follows curve ���� EBAA )()()(0 **
* .  As 	

“slowly” decreases, the loss L~ follows curve 
0)()()( **

* ���� ABBE .  Curves )(0 * �A and )(* ��BE
correspond to the globally stable “normal” and “congested” 
system equilibria respectively.  Branches )()( *

* �� AA and 

)()( *
* �� BB correspond to the coexisting “normal” and 

“congested” metastable system equilibria respectively for 
intermediate load )()( *

* �		�	  .

Discontinuities at the critical loads )(* �	 and )(* �	 as 

well as the hysteresis loop )()()()( *
**

* ���� BBAA indicate 

discontinuous transition.  Curves *
*0 AA
��

and 1
*

* EBB
��

represent loss L~ in a case of complete resource sharing 1��
, when �		 �� )1(: *** and 1)1(: *** �� 		 .  Increase in 
the resource sharing increases “spread” between the normal and 
congested metastable regimes by reducing loss in the normal 
regime and increasing loss in the congested regime.

Figure 2, which sketches persistent loss vs. “slowly” 
changing level of resource sharing � , indicates a combination 
of positive and negative effects of the dynamic resource sharing 
on the system performance.

Figure 2.  Persistent loss vs. level of resource sharing.

As resource sharing � “slowly” increases (decreases), loss rate 

L~ follows curve EBAAA **
*0 )( 0**

* AABEB .

B. General System under Fluid Approximation
Figure 3 sketches persistent loss vs. exogenous utilization in a 
symmetric system under fluid approximation for 1)1( � q�

Figure 3.  Persistent loss: fluid approximation, 1)1( � q� .
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Figure 4 sketches persistent loss vs. exogenous utilization in a 
symmetric system under fluid approximation for 1)1( �� q�

Figure 4. Persistent loss: fluid approximation, 1)1( �� q� .

For 1�	 solution 0~
�� corresponds to the desirable 

“operational” system equilibrium with loss rate 0~ �L .  

Solution 0~~ * ���� , represented by curve CDE ,
corresponds to the “congested” system equilibrium with 

positive loss *** ~)~1( ��qqL ��� . Curve CB represents 
unstable equilibrium fixed point separating stable equilibrium 

points 0~
�� and *~~ �� � .  While the “operational” and 

“congested” equilibria are globally stable for “light” and 
“heavy” exogenous loads respectively, these equilibria are 
metastable for “intermediate” exogenous load. As exogenous 
load 	 “slowly” increases from 0 to � , system follows 

curve ABDE0 .  As exogenous load 	 “slowly” decreases 

from � to 0 , system follows curve 0EDCA .  Hysteresis 
loop BDCAB is indicative of the discontinuous “phase 
transition.”

While for a symmetric system, we characterized
continuous/discontinuous nature of overload by analyzing the 
entire system phase diagram, for a general, realistic-size 
system, high dimension of the mean-field and fluid 
approximations make quantitative evaluation of the system
phase diagram computationally infeasible.  In the rest of this 
subsection we suggest a computationally tractable criterion of 
continuous vs. discontinuous overload, which is based on type 
of bifurcation of the fluid approximation (7), (10) on the
boundary of the operational regime 1�i	 , Ii ,..,1� .

Consider linearized fixed-point system (7), (10) as 1�j	

    � �



��
�

�
��
�

� �
���

ij
j

k
kjikj

ki

k

i
ii qq

N
�

�
	� ~11~

, (12)

Ji ,..,1� .  Linear system (12) has solution 0~
�� as

1�i	 if 1)( A� , and does not have such a solution if 

1)( �A� , where )(A� is Perron-Frobenius eigenvalue of 

matrix J
jiijaA 1,)( �� with non-negative elements

                       ��
�

k
kjikj

ki

k

i
ij qq

N
a

�
1

, (13)

and matrix A is assumed irreducible [8].  
Thus, condition

                            1)( A�                                                          (14)
ensures gradual/continuous overload as exogenous utilizations

j	 , Jj ,..,1� cross unity from below, and is a generalization 

of the corresponding criterion 1)1( � q� for a particular 
case of a symmetric system. Due to inherent uncertainties in 
the system parameters, closeness )(A� to unity is one of 
indications of systemic risk of overload.

IV. CONCLUSION & FUTURE RESEARCH

This paper has suggested that the economic benefits of 
dynamic resource sharing are inherently associated with 
systemic risk of overload, which may be either 
gradual/continuous or abrupt/discontinuous.  The conventional 
economic efficiency maximization framework should be 
replaced with constrained optimization, which controls the 
systemic risk of overload. Future work should address the 
practicality of the proposed Perron-Frobenius based 
optimization framework at the system design and operational 
stages.  Of particular interest is a potential ability of online 
measurements of the corresponding Perron-Frobenius 
eigenvalue to provide “early warning signals” of the system 
approaching the instability/breaking point [9] for the purpose of 
initiating appropriate control actions. Since
abrupt/discontinuous overload takes the form of “congestion 
collapse,” this constrained optimization should give higher 
priority to mitigation of the systemic risk of congestion collapse 
identified with abrupt/discontinuous systemic overload.
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