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We propose a numerical method using the discrete variable representation (DVR) for constructing real-valued
Wannier functions localized in a unit cell for both symmetric and asymmetric periodic potentials. We apply these
results to finding Wannier functions for ultracold atoms trapped in laser-generated optical lattices. Following
S. Kivelson [Phys. Rev. B 26, 4269 (1982)], for a symmetric lattice with inversion symmetry, we construct
Wannier functions as eigenstates of the position operators x̂, ŷ, and ẑ restricted to single-particle Bloch functions
belonging to one or more bands. To ensure that the Wannier functions are real-valued, we numerically obtain the
band structure and real-valued eigenstates using a uniform Fourier grid DVR. We then show, by a comparison
of tunneling energies, that the Wannier functions are accurate for both inversion-symmetric and asymmetric
potentials to better than 10 significant digits when using double-precision arithmetic. The calculations are
performed for an optical lattice with double-wells per unit cell with tunable asymmetry along the x axis and a
single sinusoidal potential along the perpendicular directions. Localized functions at the two potential minima
within each unit cell are similarly constructed, but using a superposition of single-particle solutions from the two
lowest bands. We finally use these localized basis functions to determine the two-body interaction energies in the
Bose-Hubbard model and show the dependence of these energies on lattice asymmetry.
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I. INTRODUCTION

Ultracold atoms in optical lattices form highly tunable
systems and are increasingly used to simulate complex quan-
tum many-body Hamiltonians [1,2]. The now very commonly
used Bose-Hubbard (BH) model was first proposed in the
context of cold atoms in Ref. [3], and its interaction-driven
quantum phase transition in a cubic lattice was subsequently
observed in [4]. Since then, more exotic lattice geometries
such as double-well lattices [5–8], honeycomb, triangular,
and Kagome lattices [9,10], and artificial graphene [11,12]
have been experimentally realized. This has vastly expanded
the standard BH model to include additional terms ranging
from excited band contributions, to beyond-nearest-neighbor
tunneling, to richer on-site and off-site atom-atom interac-
tions [13–16]. In conjunction, there has been a growing need
to quantitatively model these systems with greater accuracy.

BH models are an approximation to the full many-body
Hamiltonian in the tight-binding (TB) limit and are written in
a single-particle basis of spatially localized wave functions,
generally referred to as Wannier functions. The parameters of
the BH model are obtained as integrals over these functions.
Thus, the key to accurately model these systems is to
first construct a set of properly localized orthonormal basis
functions. For simple cubic lattices with inversion symmetry,
the standard procedure is to construct Wannier functions as
“simple” superpositions of the Bloch functions belonging
to a single energy band [17,18]. For more complex lattice
geometries with either asymmetries or quasidegenerate energy
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bands, this procedure, however, does not lead to basis functions
localized at the potential minima within each unit cell.

A common approach to ensuring localized Wannier func-
tions for atoms in optical lattices is to use nonorthogonal
atomic orbitals, modeled as harmonic oscillator wave functions
near the potential minima [11,19]. This underestimates the
tunneling energies even for deep lattices where the harmonic
approximation is expected to work better. A more general
approach developed within the solid-state community is
due to Marzari and Vanderbilt [20,21], where maximally
localized Wannier functions are constructed by minimizing
its spread by a suitable gauge transformation of the composite
Bloch functions. This scheme has been adapted for atoms
in optical lattices [22–26]. Wannier functions obtained using
this method, however, are not guaranteed to be real-valued
and in turn depend on the choice of gauge transformation.
An alternate method for constructing Wannier functions is
by minimization of density-induced tunneling and density-
density interactions between neighboring unit cells [27].

In this paper, we propose an alternative numerical scheme
for constructing real-valued Wannier functions. Following
Kivelson [28], who showed that for an inversion-symmetric
lattice, Wannier functions are eigenstates of the position
operator, we construct Wannier functions by diagonalization
of the position operator expressed in the eigenstates of
the single-particle Hamiltonian. The localized functions are
remarkably accurate even for lattices with a large asymmetry.
To ensure that the Wannier functions are strictly real-valued,
we obtain the band structure and corresponding real-valued
eigenfunctions using a uniform Fourier-grid discrete variable
representation (DVR) [29]. General background on the DVR
method can be found in [30–33], and some of their uses
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in ultracold atomic systems can be found in [34] and [35].
Generalized Wannier functions localized at the potential
minima in a unit cell are similarly constructed using a
superposition of Bloch functions of multiple bands.

The proposed method does not suffer from the problems of
local minima, as is sometimes the case with the Marzari and
Vanderbilt approach of constructing Wannier functions [25].
In addition, using the DVR approach intrinsically ensures
that the Wannier functions are real-valued. This differs from
the alternative method, which uses time-reversal symmetry to
construct real-valued single-particle basis functions using a su-
perposition of Bloch functions of opposite quasimomenta [12].

The remainder of the paper is set up as follows. In Sec. II, we
introduce the asymmetric double-well optical lattice potential,
for which we describe the numerical procedure to obtain
real-valued DVR-based Wannier functions. The method can be
used for general lattices. For clarity, we focus on a particular
lattice potential. In Sec. III, we discuss how the single-particle
band structure for this lattice can be obtained using a DVR and,
also, how it compares with that of a plane-wave (PW) basis
calculation. We also describe how to extend our approach to
general lattices. In Sec. IV real-valued Wannier and localized
functions within a double-well potential are obtained using the
eigenvectors from the DVR calculations. In Sec. V, we discuss
the accuracy of these numerically obtained Wannier functions
by comparing the tunneling energies obtained using these
functions to those obtained using a Fourier transform of the
band dispersion. We use these DVR-based Wannier functions
in Sec. VI to compute the two-body interaction energies for
various asymmetries. We conclude in Sec. VII.

II. OPTICAL LATTICE POTENTIAL

We consider optical lattice potentials that have a double-
well structure along the x axis and a single-well structure
along the perpendicular y and z axes. Such a lattice can be
constructed using a laser with wave vector kL and its first
harmonic. The potential is given by

V (�x) = −V0 cos2(kLx) − V1 cos2[2kL(x + b)]

− V2[cos2(2kLy) + cos2(2kLz)], (1)

where V0,1,2 > 0 are lattice depths. The lattice has periodicity
a = π/kL along the x axis and a/2 along the perpendicular
directions. The displacement b determines whether the lat-
tice has an inversion-symmetric or asymmetric double-well.
It is inversion symmetric for kLb = π/4 and asymmetric
otherwise. Throughout, we express energies in units of the
recoil energy ER = �

2k2
L/(2ma), where ma is the atomic

mass. Figure 1(a) shows a contour plot of the optical lattice
potential in the xy plane for kLb = 0.21π , while Fig. 1(b)
shows the corresponding asymmetric double-well along the
x axis. We concentrate on the potential along the x axis in
subsequent sections. The perpendicular directions are needed
when estimating two-body interaction energies in Sec. VI.

III. BAND STRUCTURE USING A DISCRETE
VARIABLE REPRESENTATION

The single-particle band structure of a periodic potential is
generally numerically determined in a plane-wave basis. For
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FIG. 1. (a) Contour plot of the optical lattice potential in the xy

plane, where the potential minima are in dark blue. The white box
encloses a unit cell of length a and a/2 along x and y, respectively.
Each unit cell has a double-well along the x axis, labeled L and R,
and a single well along the y and z axes. (b) An asymmetric double-
well potential (black curve) as a function of x for V1/V0 = 1.3 and
kLb = 0.21π . Horizontal red curves in the L and R wells represent
the lowest two single-particle energy levels. The energy gap between
these levels is �. The separation between the black dots is the lattice
period a. The origin x = 0 of our coordinate system is indicated by
the dashed line. For a symmetric lattice, the origin lies at the top of
the barrier between the L and the R wells. The distance between the
origin and the left black dot is r .

asymmetric lattices, the eigenvectors or the Bloch functions in
this basis are complex-valued and the corresponding Wannier
functions are complex as well. We use a discrete variable
representation to obtain real-valued eigenfunctions.

We begin the procedure by discussing the one-dimensional
DVR along the x axis. We are interested in solutions that
have periodic boundary conditions over Mx unit cells. For
our double-well potential, it is convenient to apply the shift
x → x − r such that the origin of the x axis coincides with
the top of the potential barrier (see Fig. 1) and consider
the interval (0,Mxa). For a symmetric double-well r = a/2,
while, in general, it depends on the symmetry parameter b.
We now introduce the uniformly spaced Fourier grid [29],
based on 2Nx + 1 periodic orthonormal basis functions
φn(x) = exp[i2πnx/(Mxa)]/

√
Mxa for n = 0,±1, . . . ,±Nx .

Orthonormal DVR basis functions are fi(x) = 〈x|xi〉 =√
�x

∑Nx

n=−Nx
φ∗

n(xi)φn(x), labeled by grid points xi = i�x

with i = 1, . . . ,2Nx + 1 and �x = Mxa/(2Nx + 1). A func-
tion 〈x|xi〉 is localized around xi and can be simplified with
some trigonometry.

In this representation of grid points, the kinetic energy
operator is Tii ′ = 〈xi |T |xi ′ 〉, where

Tii ′ = (−1)i
′−iER

(
2π

MxkLa

)2

×
⎧⎨
⎩

Nx(Nx + 1)/3, i = i ′,
cos[π (i ′ − i)/(2Nx + 1)]

2 sin2[π (i ′ − i)/(2Nx + 1)]
, i 	= i ′, (2)

and to a good approximation the potential energy operator
is 〈xi |V |xi ′ 〉 = V (xi)δii ′ with Kronecker delta δij . In fact, it is
this approximation that will limit our numerical accuracy using
the DVR. On the other hand, the single-particle Hamiltonian
H0 = T + V is a real symmetric matrix for both symmetric
and asymmetric lattice potentials and its eigenfunctions can
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always be obtained using real arithmetic. We note that in a PW
basis, the Hamiltonian for an asymmetric lattice is a complex
Hermitian matrix. Typically, we require that 2Nx + 1 
 Mx ,
leading to many grid points per unit cell.

The eigenfunctions |λ〉 with dispersion energy ελ of H0

with λ ∈ {1, . . . ,2Nx + 1} can be grouped into Nband bands
containing Mx discrete quasimomenta. This implies that both
Nband and Mx must be odd, as MxNband = 2Nx + 1. In fact,
the lowest Mx eigenenergies correspond to the first band,
the next set corresponds to the second band, and so on. It
can be separately shown from the φn(x) that the allowed
quasimomenta are

kx = 2p

Mx

π

a
, p = 0,±1,±2, . . . ,±1

2
(Mx − 1), (3)

such that −π/a � kx � π/a and kx stays within the first
Brillouin zone. It is noteworthy that Nband also corresponds
to the number of grid points within each unit cell. For real
potentials V (x), the eigenenergies for ±kx are degenerate.
Consequently, the single eigenstate with zero quasimomentum
can be easily located from the dispersion ελ. For other quasi-
momenta, we can locate the pair of real eigenfunctions with
degenerate ελ and compute the 2×2 matrix of the momentum
operator. The eigenvalues of the momentum operator give the
quasimomentum kx , thus leading to the assignment of the band
dispersion ελ → εα(kx) with band index α. (Diagonal elements
of the momentum operator are strictly 0, as the eigenfunctions
of H0 are real and periodic in interval [0,Mxa]).

Figure 2(a) shows numerical results for the double-well
band dispersion at kx = 0 for the lowest two bands using the
PW basis. We find that energy differences become “noisy”
beyond NPW > 25 basis vectors and convergence is reached
with uncertainties of 2×10−12ER independent of the lattice
asymmetry and band. This uncertainty should be compared
with the band gap, ≈�, between the two bands, which is
of the order of ER for typical lattice depths and is close to
the numerical accuracy to be expected using double-precision
arithmetic. Figure 2(b) shows similar data, but obtained for
the DVR calculations as a function of Nband and Mx = 3. The
integers Nband and NPW can be directly compared, as they both
correspond to the number of energy bands obtained within the
corresponding calculation. We find that convergence is reached
for Nband > 25 with uncertainties of 2×10−11ER independent
of the lattice asymmetry and band. For PW calculations with
NPW > 25 and DVR calculations with Nband > 25, the largest
uncertainty is independent of the quasimomentum.

Figure 2(c) compares the kx = 0 band dispersion computed
with the DVR and PW basis, respectively. It shows that for
symmetric lattices, the DVR and PW results agree to within the
uncertainty of the DVR calculation. For asymmetric lattices,
however, they converge to different values. The inset further
highlights the difference between symmetric and asymmetric
lattices by studying the difference of the band dispersion as a
function of the lattice asymmetry kLb. We find that the value of
εα(kx = 0) for the DVR is always larger than the PW result and
the difference is symmetric around kLb = π/4. The two results
only agree infinitesimally close to kLb = π/4. Furthermore,
we find that the discrepancy is the same independent of the
quasimomentum. As we show in Sec. V, this constant offset,
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FIG. 2. (a) Convergence of the energy dispersion εα(kx) at
quasimomentum kx = 0 computed with a plane-wave (PW) ba-
sis as a function of NPW, the number of PWs. We plot the
difference δPW(NPW) = εα(kx = 0; NPW) − εα(kx = 0; Nmax

PW ), where
Nmax

PW = 151. (b) A similar convergence plot using a discrete variable
representation (DVR) basis as a function of Nband, the number of grid
points in a unit cell. Plotted is δDVR(Nband) = εα(kx = 0; Nband) −
εα(kx = 0; Nmax

band), where Nmax
band = 151 and Mx = 3. (c) Comparison

of εα(kx) at kx = 0 obtained using the DVR and PW basis. We
plot δ(Nband) = εα(kx = 0; DVR) − εα(kx = 0; PW) as a function of
Nband. PW results are obtained with 151 basis vectors. In all panels
black and blue curves are for a symmetric lattice with kLb = π/4
and an asymmetric lattice with kLb = 0.275π , respectively. Solid
and dashed lines correspond to bands α = 1 and 2, respectively, and
lattice depths are V0 = 35ER and V1/V0 = 1.3, where ER is the recoil
energy. Inset in (c) DVR and PW results as a function of the lattice
asymmetry kLb for fixed Nband = NPW = 51.

nevertheless, leads to tunneling energies that are more accurate
than might naively be expected.

Although we have focused on DVR-based band structure
calculations for a one-dimensional lattice, the method can be
extended to higher-dimensional nonseparable lattices, such as
graphene. The simplest approach is based on the realization
that it is always possible to construct a nonprimitive unit cell
with orthogonal unit vectors such that the higher-dimensional
kinetic-energy operator is separable along the unit vector
directions and Eq. (2) can be directly used. Alternatively, we
construct DVR basis functions from PWs that are periodic
over a multiple of the primitive lattice vectors. In this case,
the kinetic energy is not separable but can still be expressed in
terms of trigonometric functions. We note, however, that for
a d-dimensional lattice the matrix size of the single-particle
Hamiltonian in the DVR method will be Md times the size
of the corresponding PW matrix, where M is the number of
discrete quasimomentum points along an axis. This implies
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that the determination of the eigenpairs with the DVR method
is computationally more intensive but is guaranteed to lead to
real-valued eigenvectors.

IV. DVR-BASED WANNIER FUNCTIONS

In this section we numerically construct real-valued Wan-
nier functions localized within unit cells and generalized
Wannier functions localized near the potential minina in
each double-well from superpositions of our real-valued DVR
eigenfunctions. Here, we describe a method for constructing
these Wannier functions based on Refs. [28] and [12].

Kivelson [28] showed that for symmetric lattices with
inversion symmetry, real-valued Wannier functions for band
α are eigenstates of the projected position operator x̂α =
Pα x̂ Pα , wherePα is the projection operator on the eigenstates
of band α. The spacing between neighboring eigenvalues of
this projected operator is a lattice constant.

We extend this approach for constructing real-valued
Wannier functions to both symmetric and asymmetric lat-
tices lacking inversion symmetry, even though there is no
formal proof that for asymmetric lattices eigenfunctions of
the position operator are Wannier functions. We term our
functions “DVR-based” Wannier functions. Following the
previous section, the DVR eigenfunctions |λ〉 can be grouped
into bands α. In fact, we have |λ〉 = |m,α〉, with m ∈
{1, . . . ,Mx} and projector Pα = ∑

m |m,α〉〈m,α|. We con-
struct the matrix 〈m,α|x̂|m′,α〉 over all m and m′ in the same
band α using that 〈xi |x̂|xi ′ 〉 = xiδii ′ to good approximation.
Diagonalization leads to real DVR-based Wannier functions
wj,α(x) for unit cell j = {1, . . . ,Mx}, and as we show in
Sec. V, they reproduce the tunneling energies with great
accuracy.

Generalized Wannier functions vj,η(x) localized in the
η = L and R wells in Fig. 1 can be constructed by creating
superpositions of DVR functions from multiple bands. In our
case, we restrict the bands to α ∈ {1,2} and compute the
eigenfunctions of the projected position operator P x̂P , where
P = ∑

m,α=1,2 |m,α〉〈m,α|. This approach is used for both
symmetric and asymmetric lattices.

Figures 3(a) and 3(d) show numerical Wannier functions
wj,α(x) for a symmetric lattice with band index α ∈ {1,2}
on a linear and logarithmic scale, respectively. The Wannier
function is localized in the unit cell at the center of the
lattice with j = jc ≡ (Mx + 1)div2 and xc = Mxa/2. For the
symmetric lattice, both wjc,1(x) and wjc,2(x) are, however,
spread over the two wells in the unit cell. Figures 3(b) and 3(e)
show similar plots for an asymmetric lattice, while Figs. 3(c)
and 3(f) show generalized Wannier functions vjc,η(x) with
η ∈ {L,R} based on the first two bands for the same lattice
parameters. Owing to the large asymmetry for the latter four
panels, the band gap between the two lowest bands is large.
We thus expect wjc,1(x) ≈ wjc,R(x) and wjc,2(x) ≈ wjc,L(x),
as is indeed observed when comparing Figs. 3(b) and 3(c). It
is, however, interesting to note that the vjc,η(x)’s and wjc,α(x)’s
are not exactly the same. In fact, vjc,η(x) is more localized
within the L and R wells compared to wjc,α(x). For even larger
asymmetries, this difference in localization persists and the
“tail” of wjc,α(x) does not approach vjc,η(x), leading to marked
differences in the calculated BH parameters, as shown in
Sec. VI.

Figure 4 shows a comparison of Wannier functions for a
symmetric lattice computed at different unit cells. We find
that the difference between the Wannier functions at the edge
and the center is of the order of 10−5/

√
Mxa for all x. For

all other unit cells, the difference from the central Wannier

−1 −1/2 0 1/2 1
−1

0

1

w
(x

)

(a)

Band 1

Band 2

−1 −1/2 0 1/2 1
−1

0

1
(b)

Band 1

Band 2

−1 −1/2 0 1/2 1
−1

0

1
(c)

R

L

−3 −2 −1 0 1 2 3
(x − xc)/a

10−10

10−8

10−6

10−4

10−2

100

|w
(x

)|

−3 −2 −1 0 1 2 3
(x − xc)/a

10−10

10−8

10−6

10−4

10−2

100

−3 −2 −1 0 1 2 3
(x − xc)/a

10−10

10−8

10−6

10−4

10−2

100

(d) (e) (f)

FIG. 3. Plots of normalized Wannier functions wjc,α(x) and generalized Wannier functions vjc,η(x) in the center of the lattice as a function
of x. Here, wave functions and position are in units of 1/

√
Mxa and lattice period a, respectively. (a, d) The α = 1,2 Wannier functions for a

symmetric lattice on a linear (a) and a logarithmic (d) scale. For clarity, we have shifted the x axis by xc, such that the center of the interval is
at the origin. Here, Mx = 21, Nband = 53, kLb = 0.25π , V0/ER = 35, and V1/V0 = 1.3. Solid and dashed blue curves represent the first and
second bands, respectively. The gray line represents the symmetric double-well potential. (b), (e) Similar plots, but for an asymmetric lattice
with kLb = 0.275π and other parameters unchanged. (c), (f) Generalized Wannier functions at the L and R wells within a double-well for the
same lattice as used in (b) and (e). Solid and dashed blue lines represent vjc,R(x) and vjc,L(x), respectively.
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FIG. 4. Graphs of the difference between the (shifted) Wannier
functions wj,α(x) and that at the center of the lattice. Plotted
are �wα(x) = |wj,α(x − [j − jc]a)| − |wjc,α(x)| for unit cells j =
(3Mx)div4 (black curves) and Mx (blue curves) as a function of x in
units of lattice period a. The argument x − [j − jc]a is computed
assuming modular arithmetic in interval Mxa. Solid and dashed
lines correspond to bands α = 1 and 2, respectively. The plot is
for a symmetric lattice with kLb = 0.25π , V0 = 35ER , V1/V0 = 1.3,
Mx = 21, and Nband = 53.

function is of the order of 10−13/
√

Mxa, which is close to our
numerical accuracy. One such difference with j = (3Mx)div4
is shown in the figure. Hence, the shapes of our DVR-based
Wannier functions are mostly independent of the unit cell. This
observation remains true for asymmetric lattices.

V. TUNNELING ENERGIES BASED ON DVR-BASED
WANNIER FUNCTIONS

In Sec. IV we showed that the Wannier functions and
generalized Wannier functions within a double-well can be
constructed from DVR eigenvectors. In this section we use
these functions to compute tunneling energies and discuss
their accuracy. In particular, the accuracy of the single-band
Wannier functions are ascertained in Sec. V A by comparing
band tunneling energies, as they depend only on the band
dispersion and should be independent of the choice of Wannier
functions. Tunneling energies between neighboring L and
R wells are computed in Sec. V B and a corresponding
tight-binding model is shown to have significant contributions
from tunneling energy terms between next-nearest neighbors
and beyond.

A. Band tunneling energies

Tunneling energies are defined by the matrix elements Jα =
〈wj,α|H0|wj ′,α〉 over the Wannier functions of band α localized
in unit cells j and j ′. Here, H0 is the single-particle Hamil-
tonian. We mainly focus on nearest-neighbor tunneling with
j ′ = j ± 1. Formally, the Jα should depend only on |j − j ′|.

There are three ways to obtain tunneling energies. The first
is to use our DVR-based Wannier functions for band α as
computed in Sec. IV and calculate the matrix element. We label
them J W

α . The other two methods rely on the usual definition
of a Wannier function as a “Fourier transform” of Bloch
functions of the corresponding band. With this definition, the
tunneling energies depend only on the band dispersion εα(kx)
and between nearest-neighbor unit cells (|j − j ′| = 1) is given

by

Jα = a

2π

∫ π/a

−π/a

cos(kxa)εα(kx)dkx, (4)

independent of j . The tunneling energy can now be determined
either by substituting εα(kx) calculated using the PW basis
or by using the band dispersion obtained from the DVR
method. We refer to these tunneling energies as J PW

α and
J DVR

α , respectively.
Figure 5 shows a comparison between tunneling energies

J PW
α , J DVR

α , and J W
α as a function of the number of unit

cells. The energy J W
α has been computed using “DVR-based”

Wannier function for the central unit cell. We find that for a
symmetric lattice Fig. 5(a)] convergence is reached for Mx > 9
unit cells, with uncertainties of 2×10−13ER for all methods.
This confirms the central idea of Ref. [28], that Wannier
functions are eigenstates of the x̂α operator for symmetric
lattices. Figure 5(b) shows that J DVR

α − J PW
α and J W

α − J PW
α

converge to 2×10−11ER for band 1 and 1×10−10ER for band
2, far above the value reached for the symmetric lattice. Within
the DVR calculation, however, J W

α and J DVR
α agree much

better. The discrepancy between the PW and the DVR results
can be attributed to the difference in the band dispersion shown
in Fig. 2. Nevertheless, even an uncertainty of 10−10ER is
sufficient for all practical purposes.
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FIG. 5. Comparison of the nearest-neighbor tunneling energies
J PW

α , J DVR
α , and J W

α for bands α = {1,2}, as computed using
the Fourier transform of the band dispersion from the PW and
DVR calculations and the DVR band Wannier functions wα(x),
respectively. (a) Tunneling energy comparison for a symmetric lattice
with kLb = 0.25π . Plotted are �Jα = J DVR

α − J PW
α (black curves

labeled “DVR”) and �Jα = J W
α − J PW

α (blue curves labeled “W”) in
units of ER as a function of the number of unit cells Mx . Solid and
dashed lines correspond to bands α = 1 and 2, respectively. We used
V0 = 35ER , V1/V0 = 1.3, and NPW = Nband = 35. (b) Similar plot
for an asymmetric lattice with kLb = 0.275π and other parameters
unchanged.
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We have numerically ascertained that J W
α does not vary

with the unit cell index j to better than 10−13ER apart from
the two edge unit cells, consistent with our observations on the
shape of Wannier functions in Fig. 4. In fact, the difference
in the tunneling energies at the central versus the edge unit
cell is only 10−8ER . Consequently, the value of J W

α obtained
from the central unit cell is better than that from the edge unit
cells and agrees better with J PW

α . In other words, a comparison
with the tunneling energies J PW

α gives a good estimate of the
accuracy of our real-valued Wannier functions.

We have also determined the next-nearest-neighbor tunnel-
ing energies. For typical lattice depths, its value is two orders
of magnitude or more lower than that of nearest neighbors. Its
uncertainty in units of ER is the same as for nearest-neighbor
tunneling energies. Hence, we conclude that the DVR-based
Wannier functions can be used to compute tunneling energies
between distant neighbors.

B. Tight-binding tunneling energies

It is often useful to write down a TB Hamiltonian in
terms of L and R wells defined in Fig. 1 with hopping
parameters computed from our generalized Wannier functions
with the lowest on-site energies 〈vj,η|H0|vj ′,η〉. Figure 6
defines tunneling energies between adjacent unit cells and
the energy gap � between the on-site energies based on the
lowest two bands of our H0. The largest parameters are given
by t = 〈wj,L|H0|wj,R〉 and J = 〈wj,R|H0|wj+1,L〉, where j is
the unit cell index. Similar expressions can be written for other
parameters. The value of these tunneling energies depends on
the definition of the generalized Wannier functions and cannot
be extracted from a transformation of the band dispersion
energies. Finally, we note that all coefficients are real-valued.

Figure 7 shows the seven largest hopping parameters of
our TB model as a function of the lattice depth V0 for
an asymmetric lattice. As expected, the tunneling energies
decrease with the lattice depth, while simultaneously �

increases. For a fixed lattice depth the tunneling energies are
lower the farther the atom has to hop.

Δ

a

L L LR R R

tt J J

J
L

J
R

J
LR

JRL

j j+    1 j+2    

FIG. 6. Tight-binding Hamiltonian based on the lowest two bands
for an asymmetric double-well optical lattice. Various tunneling
energies t , J , JL, JR , JLR , and JRL between three neighboring unit
cells are shown. The energy gap between the two on-site energies is
� and the lattice has period a.
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FIG. 7. Log-linear plot of the absolute value of tunneling energies
t , J , JL, JR , JLR , and JRL and energy gap � in units of ER as a
function of the lattice depth V0. The plot is for an asymmetric lattice
with kLb = 0.275π and V1/V0 = 1.3.

The TB Hamiltonian for two modes within a unit cell
can be diagonalized analytically by a transformation to
quasimomentum space. In fact, the eigenenergies are

εTB
α (kx) = −(JR + JL) cos kxa

∓
√

[(JR − JL) cos kxa − �/2]2 + |f (kx)|2, (5)

where ∓ corresponds to bands α = 1 and 2, respectively,
and f (kx) = t + Je−ikxa + JLReikxa + JRLe−2ikxa . The band
tunneling energies J TB

α can be obtained by substituting εTB
α (kx)

into Eq. (4) and performing the Fourier transform.
We can now compare the band tunneling energies of our TB

simulations with those of the exact band structure calculations
using the PW basis. We find that the difference between the
TB and PW result is within approximately 50% for both bands
when we only include nearest-neighbor tunneling energies
t and J and 5% when, in addition, next-nearest-neighbor
tunneling energies JL and JR are included, and this stays nearly
the same upon including the next-to-next-nearest-neighbor
hopping terms JLR and JRL. These differences are almost
independent of the lattice depth and consistent with results
in Ref. [23], where the calculations were based on complex-
valued maximally localized Wannier functions. The TB result
can be improved if we include more tunneling energies and
allow atoms to hop even further.

VI. INTERACTION ENERGIES

We have shown the excellent accuracy of the DVR-based
Wannier functions in Sec. V. In this section, we use these
functions to study the two-body atom-atom interaction terms in
the Hubbard model. So far, we have focused on the double-well
lattice along the x axis. We can extend the calculations to
the perpendicular directions and obtain the corresponding
Wannier functions. Owing to the large band gap between
the first and the second bands along perpendicular directions
compared to that along the x direction, only the ground band
is considered. Thus, the full three-dimensional-band Wannier
functions are wα(�x) = wjc,α(x)w(y)w(z), where band index
α ∈ {1,2} and w(y) and w(z) are the ground-band Wannier
functions at the center of the lattice along the perpendicular
directions. We note that the y and z Wannier functions
have the same functional form as, for simplicity, we have
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assumed the same lattice depth along the perpendicular
directions. Similarly, the generalized Wannier functions are
vη(�x) = vjc,η(x)w(y)w(z), where η ∈ {L,R}.

In the Hubbard model and band basis, the two-body on-site
interaction energies are

Uα1α2α3α4 = g

∫
wα1 (�x)wα2 (�x)wα3 (�x)wα4 (�x)d �x, (6)

where g = 4π�
2as/ma , as is the s-wave scattering length

and we use that the w(�x) are real. There are five distinct
coefficients: U1111, U1112, U1122, U1222, and U2222. On-site
interaction energies Uη1η2η3η4 in the LR basis using the
generalized Wannier functions vη(�x) can be similarly defined.
The five distinct interactions coefficients are ULLLL, ULLLR ,
ULLRR , ULRRR , and URRRR .

Figures 8(a) and 8(b) show the two-body interaction
energies Uα1α2α3α4 and Uη1η2η3η4 , respectively, for 87Rb with
as = 5.3 nm as a function of the lattice asymmetry b, with other
lattice parameters kept fixed. Figure 8(a) is symmetric around
kLb = π/4. At the symmetry point kLb = π/4, U1111 �
U1122 � U2222, while U1112 and U1222 are strictly 0 due to
parity. As the lattice becomes asymmetric, U1111 and U2222

double their strength, U1122 rapidly decreases, and U1112 and
U1222 have a maximum but remain relatively large.

Figure 8(b) shows that the Uη1η2η3η4 have a much smoother
dependence on the asymmetry than the Uα1α2α3α4 . For all
asymmetries, we observe that ULLLL and URRRR are much
higher than the other energies. Moreover, ULLLL = URRRR for
a symmetric lattice, and URRRR > ULLLL for kLb > π/4. This
behavior is reversed for kLb < π/4. This is a consequence of
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U2222
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U1112 U1112

U1222 U1222
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U1122

(a)

0.15 0.20 0.25 0.30 0.35
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|/

E
R

ULLLL URRRR

ULLRR

ULRRR ULLLR

(b)

L R L R L R

FIG. 8. Two-body interaction energies in the Hubbard model for
87Rb in units of ER as a function of the lattice asymmetry kLb/π . We
use V0/ER = 35, V1/V0 = 1.3, V2/ER = 70, and scattering length
as = 5.3 nm. (a) Interaction energies Uα1α2α3α4 in the band basis with
α ∈ {1,2}. (b) Interaction energies Uη1η2η3η4 in the LR basis with
η ∈ {L,R}. Insets: From left to right, schematic of a double-well
potential for lattice asymmetries kLb < 0.25π , kLb = 0.25π , and
kLb > 0.25π , respectively.

the fact that vR(�x) is more confined than vL(�x) for kLb > π/4,
and vice versa. Interestingly, the density-induced tunneling
energies ULRRR and ULLLR are, in general, higher than the
density-density term ULLRR . The former coefficients lead to
terms in a Hubbard model where an atom hops from one well to
the other in a unit cell, while the latter coefficient leads to either
a long-range density-density interaction or pair hopping. The
relative size of these energies highlights the limits of Hubbard
models that do or do not include specific two-body terms [13].

The two-body interaction energies within the two bases
can be compared in several limits of the lattice asymmetry.
For kLb > π/4 and very large asymmetries where U1122 �
U1111 the Wannier functions w1(�x) approach vR(�x) [similarly,
w2(�x) approaches vL(�x)], and thus, U1111 → URRRR and
U2222 → ULLLL. In fact, for as low as kLb = 0.26π , U1111 ≈
0.95 URRRR . On the other hand, for a symmetric lattice we can
write w1,2(�x) ≈ (vL(�x) ± vR(�x))/

√
2 and ULLLL = URRRR ,

which leads to U1111, U1122, U2222 ≈ ULLLL/2. The additional
realization that ULLLL and URRRR are nearly insensitive to
asymmetry also explains the doubling in value of U1111 and
U2222 near kLb = π/4.

Even though the Wannier functions w1(�x) and vR(�x)
approach each other for large asymmetries and kLb > π/4,
the function vR(x) is always more confined than w1(x). Conse-
quently, the cross-terms U1122, U1112, and U1222, which depend
on the tail of the Wannier functions, are always larger than the
corresponding cross-terms ULLRR , ULLLR , and ULRRR .

VII. CONCLUSION

We have shown that real-valued Wannier functions can be
efficiently constructed for both symmetric and asymmetric
periodic potentials or optical lattices. The first step involves
obtaining the single-particle band structure and real-valued
eigenvectors using a discrete variable representation (DVR).
A Fourier grid DVR based on basis functions with periodic
boundary conditions is shown to have excellent numerical
accuracy compared to a direct calculation based on plane
waves. In the next step, restricted to eigenvectors within the
subspace of band α, Wannier functions wα(x) localized within
a unit cell are obtained as eigenstates of the position operator.
By using eigenvectors corresponding to the two lowest bands,
generalized Wannier functions wη(x) localized to L and R

wells within a double-well can also be constructed. By a
comparison of the tunneling energies, the Wannier functions
are shown to reproduce the Hubbard parameters with excel-
lent accuracy. Tunneling energies are subsequently obtained
between the L and the R wells using the generalized Wannier
functions, and the limits of a tight binding containing only
nearest-neighbor tunneling energies are discussed. Finally,
we use these functions to study the two-body interaction
energies in the BH model and discuss the relative importance of
the various interaction energy terms. The numerical methods
developed are general and can be applied to a wide array of
optical lattice geometries in one, two, or three dimensions.
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[33] V. Szalay, G. Czakó, A. Nagy, T. Furtenbacher, and A. G.

Császár, J. Chem. Phys. 119, 10512 (2003).
[34] N. Nygaard, G. M. Bruun, B. I. Schneider, C. W. Clark, and

D. L. Feder, Phys. Rev. A 69, 053622 (2004).
[35] M. L. Wall, K. R. A. Hazzard, and A. M. Rey, Phys. Rev. A 92,

013610 (2015).

033606-8

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevA.73.033605
http://dx.doi.org/10.1103/PhysRevA.73.033605
http://dx.doi.org/10.1103/PhysRevA.73.033605
http://dx.doi.org/10.1103/PhysRevA.73.033605
http://dx.doi.org/10.1103/PhysRevLett.99.020402
http://dx.doi.org/10.1103/PhysRevLett.99.020402
http://dx.doi.org/10.1103/PhysRevLett.99.020402
http://dx.doi.org/10.1103/PhysRevLett.99.020402
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1038/nature10871
http://dx.doi.org/10.1103/PhysRevLett.108.045305
http://dx.doi.org/10.1103/PhysRevLett.108.045305
http://dx.doi.org/10.1103/PhysRevLett.108.045305
http://dx.doi.org/10.1103/PhysRevLett.108.045305
http://dx.doi.org/10.1103/PhysRevA.80.043411
http://dx.doi.org/10.1103/PhysRevA.80.043411
http://dx.doi.org/10.1103/PhysRevA.80.043411
http://dx.doi.org/10.1103/PhysRevA.80.043411
http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://dx.doi.org/10.1103/PhysRevLett.111.185307
http://dx.doi.org/10.1103/PhysRevA.86.043623
http://dx.doi.org/10.1103/PhysRevA.86.043623
http://dx.doi.org/10.1103/PhysRevA.86.043623
http://dx.doi.org/10.1103/PhysRevA.86.043623
http://dx.doi.org/10.1088/1367-2630/14/3/033021
http://dx.doi.org/10.1088/1367-2630/14/3/033021
http://dx.doi.org/10.1088/1367-2630/14/3/033021
http://dx.doi.org/10.1088/1367-2630/14/3/033021
http://dx.doi.org/10.1103/PhysRevA.86.023617
http://dx.doi.org/10.1103/PhysRevA.86.023617
http://dx.doi.org/10.1103/PhysRevA.86.023617
http://dx.doi.org/10.1103/PhysRevA.86.023617
http://dx.doi.org/10.1103/PhysRevA.92.023602
http://dx.doi.org/10.1103/PhysRevA.92.023602
http://dx.doi.org/10.1103/PhysRevA.92.023602
http://dx.doi.org/10.1103/PhysRevA.92.023602
http://dx.doi.org/10.1103/PhysRev.115.809
http://dx.doi.org/10.1103/PhysRev.115.809
http://dx.doi.org/10.1103/PhysRev.115.809
http://dx.doi.org/10.1103/PhysRev.115.809
http://dx.doi.org/10.1103/RevModPhys.34.645
http://dx.doi.org/10.1103/RevModPhys.34.645
http://dx.doi.org/10.1103/RevModPhys.34.645
http://dx.doi.org/10.1103/RevModPhys.34.645
http://dx.doi.org/10.1103/PhysRevA.88.033615
http://dx.doi.org/10.1103/PhysRevA.88.033615
http://dx.doi.org/10.1103/PhysRevA.88.033615
http://dx.doi.org/10.1103/PhysRevA.88.033615
http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1088/1367-2630/9/7/221
http://dx.doi.org/10.1088/1367-2630/9/7/221
http://dx.doi.org/10.1088/1367-2630/9/7/221
http://dx.doi.org/10.1088/1367-2630/9/7/221
http://dx.doi.org/10.1088/1367-2630/14/5/055004
http://dx.doi.org/10.1088/1367-2630/14/5/055004
http://dx.doi.org/10.1088/1367-2630/14/5/055004
http://dx.doi.org/10.1088/1367-2630/14/5/055004
http://dx.doi.org/10.1103/PhysRevA.88.033631
http://dx.doi.org/10.1103/PhysRevA.88.033631
http://dx.doi.org/10.1103/PhysRevA.88.033631
http://dx.doi.org/10.1103/PhysRevA.88.033631
http://dx.doi.org/10.1103/PhysRevA.87.043613
http://dx.doi.org/10.1103/PhysRevA.87.043613
http://dx.doi.org/10.1103/PhysRevA.87.043613
http://dx.doi.org/10.1103/PhysRevA.87.043613
http://dx.doi.org/10.1103/PhysRevA.87.011602
http://dx.doi.org/10.1103/PhysRevA.87.011602
http://dx.doi.org/10.1103/PhysRevA.87.011602
http://dx.doi.org/10.1103/PhysRevA.87.011602
http://dx.doi.org/10.1103/PhysRevA.90.013614
http://dx.doi.org/10.1103/PhysRevA.90.013614
http://dx.doi.org/10.1103/PhysRevA.90.013614
http://dx.doi.org/10.1103/PhysRevA.90.013614
http://dx.doi.org/10.1103/PhysRevB.26.4269
http://dx.doi.org/10.1103/PhysRevB.26.4269
http://dx.doi.org/10.1103/PhysRevB.26.4269
http://dx.doi.org/10.1103/PhysRevB.26.4269
http://dx.doi.org/10.1063/1.462100
http://dx.doi.org/10.1063/1.462100
http://dx.doi.org/10.1063/1.462100
http://dx.doi.org/10.1063/1.462100
http://dx.doi.org/10.1063/1.465258
http://dx.doi.org/10.1063/1.465258
http://dx.doi.org/10.1063/1.465258
http://dx.doi.org/10.1063/1.465258
http://dx.doi.org/10.1103/PhysRevA.57.4257
http://dx.doi.org/10.1103/PhysRevA.57.4257
http://dx.doi.org/10.1103/PhysRevA.57.4257
http://dx.doi.org/10.1103/PhysRevA.57.4257
http://dx.doi.org/10.1063/1.1473811
http://dx.doi.org/10.1063/1.1473811
http://dx.doi.org/10.1063/1.1473811
http://dx.doi.org/10.1063/1.1473811
http://dx.doi.org/10.1063/1.1621619
http://dx.doi.org/10.1063/1.1621619
http://dx.doi.org/10.1063/1.1621619
http://dx.doi.org/10.1063/1.1621619
http://dx.doi.org/10.1103/PhysRevA.69.053622
http://dx.doi.org/10.1103/PhysRevA.69.053622
http://dx.doi.org/10.1103/PhysRevA.69.053622
http://dx.doi.org/10.1103/PhysRevA.69.053622
http://dx.doi.org/10.1103/PhysRevA.92.013610
http://dx.doi.org/10.1103/PhysRevA.92.013610
http://dx.doi.org/10.1103/PhysRevA.92.013610
http://dx.doi.org/10.1103/PhysRevA.92.013610



