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ABSTRACT: Neutron reflectometry (NR) is uniquely suited for studying protein
interaction with phospholipid bilayers along the bilayer normal on an angstrom scale.
However, NR on its own cannot discern specific membrane-bound regions due to a lack
of scattering contrast within a protein. Here we report the successful coupling of native
chemical ligation (NCL) and NR to study α-synuclein (α-syn), a membrane-binding
neuronal protein central in Parkinson’s disease. Two α-syn variants were generated
where either the first 86 or last 54 residues are deuterated, allowing for region-specific
contrast within the protein and the identification of membrane interacting residues by
NR. Residues 1−86 are positioned at the hydrocarbon/headgroup interface of the outer
leaflet, whereas the density distribution of the 54 C-terminal residues ranges from the
hydrocarbon region to the aqueous environment. Coupling of NCL and NR should have
broad utility in studies of membrane protein folding.

While neutron reflectometry (NR) is a widely used
scattering technique to characterize interfacial thin-film

properties,1,2 its utility in membrane protein structure and
biophysics is only developing. NR measurements are uniquely
suited to evaluate the architecture of membrane proteins on
lipid membrane bilayers and are able to provide information
that is not available by other techniques. Using NR, the protein
position and distribution profile normal to the membrane
surface as well as the bilayer thickness changes upon protein
binding can be measured on the angstrom scale.3,4 Because of
continued improvements in modeling approaches,5 NR has
been successfully applied to both peripheral and integral
membrane proteins6−14 and even protein complexes.15,16

The scattering length of neutron varies greatly between the
isotopes of hydrogen, protium (1H), and deuterium (2H), with
a much greater coherent scattering cross section for 2H.17 Thus
deuteration of the protein of interest enhances contrast against
the lipid bilayer membrane in an NR experiment.3 However,
protein perdeuteration does not provide spatial resolution of
specific residues within the bilayer. The ability to assign specific
polypeptide region within a protein distribution has yet to be
realized by NR.
Here, through the coupling of native chemical ligation

(NCL), we overcame this limitation in NR. This combined
method allowed us to determine the location of membrane-
bound residues within a sparsely tethered bilayer lipid
membranes (stBLM)18 for α-synuclein (α-syn), a membrane-
binding neuronal protein central to the etiology of Parkinson’s
disease (PD). The ligation of uniformly deuterated portion (1−
86 or 87−140) to the respective protiated segment (87−140 or

1−86) allowed for scattering contrast within the full-length α-
syn. α-Syn serves an excellent example because its membrane
interaction has been intimately associated with its biological
and pathological function and elucidating its membrane
interaction is crucial in understanding the cause of PD.19−21

NCL has been used in site-specific and isotopic labeling22,23

of proteins as well as in installing posttranslational
modifications.24−27 The previously reported NCL constructs
of α-syn, utilizing a short synthetic peptide (6−34 amino acids)
and a larger fragment,22,24−28 are not ideal for α-syn-membrane
studies because the membrane binding region of α-syn
encompasses the first 100 residues. Therefore, we created a
new α-syn construct using recombinant protein fragments
expressed from E. coli, which is advantageous by lowering cost
and increasing yield. An NCL reaction requires an N-terminal
Cys residue and a C-terminal thioester. Because α-syn has no
native cysteine residues, site-directed mutagenesis was needed.
To minimize change, Ser sites were considered and, out of the
four native sites (9, 42, 87, 129), Ser87 was chosen to yield
suitable peptide fragments (1−86 and 87−140) for E. coli
expression with the 1−86 portion containing most of the lipid
binding residues. Scheme 1 shows the NCL reaction of the
segmentally deuterated α-syn. To avoid the spontaneous
mutation Y136C in E. coli,29 a silent codon change (TAC to
TAT) was made at position 136. The deuterated portion was
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also uniformly labeled with 15N for nuclear magnetic resonance
(NMR) studies and is hereafter denoted as 2H15N, and the
protiated portion is denoted as 1H14N. Experimental details
regarding expression, purification, and ligation are provided in
the Supporting Information. From a 1-L deuterated cell growth,
the yield of ligated α-syn was 3−5 mg.
α-Syn membrane binding properties have been investigated

by various biophysical techniques,30−37 including NR.6−8 Upon
binding to membranes, the N-terminal 100 residues form an
amphipathic α-helix, leaving the acidic C-terminal 40 residues
unstructured and flexible in solution.32,38−40 α-Syn has a
preference for negatively charged membranes due to the
electrostatic attraction from multiple lysine residues found in
the N-terminal region, and the binding affinity is also
modulated by the specific anionic phospholipid headgroup.41

For this work, we chose an lipid composition of equimolar 1-
palmitoyl-2-oleoyl-sn-3-glycero-phosphocholine and 1-palmito-
yl-2-oleoyl-sn-3-glycero-phosphate (noted as PC/PA) because
PC is the most abundant mammalian phospholipid, PA is the
most strongly bound anionic lipid by α-syn,30 and PC/PA has
been well-studied in our lab.6,7,35 Circular dichroism (CD)
spectroscopy, which is highly sensitive to the presence of α-
helical structure,30,35 was used to confirm membrane binding by
the segmentally deuterated α-syn. CD titrations were
performed with PC/PA lipid vesicles made by extrusion
(average diameter ∼90 nm). Extruded vesicles were employed
because they have lower curvature and exhibit similar properties
(e.g., comparable diffusion rate and defect density) to that of
stBLM for NR experiments.42 Figure 1A inset shows
representative data for ligated α-syn with N-terminal
deuteration (2H15N(Syn1−86)-1H14N(S87C−140)), where
upon adding PC/PA vesicles, characteristic features for α-
helical conformation develop. An isodichroic point at 202 nm
indicates a two-state transition. Nearly identical binding profiles
were observed for the isotopically labeled ligated variants
compared with the WT protein, indicating similar membrane-
binding affinities (Figure 1A).
In addition to CD spectroscopy, 1H/15N HSQC solution

NMR spectra were acquired to examine the segmentally
deuterated portions of α-syn, which were also 15N-labeled. As

expected, the HSQC spectra for the ligated variants showed
small perturbations around residue 87 due to the Cys mutation
compared with fully deuterated α-syn (Figure S1). The
backbone amide (15N) resonance intensity (I) in the presence
of low (L/P = 3) and high (L/P = 300) concentrations of lipids
was normalized to the intensity in the absence of lipids (I0), and
results are shown in Figure 1B. As α-syn associates with the
slowly tumbling PC/PA vesicles, the NMR resonances of the
vesicle-bound residues decrease in intensity, becoming
undetectable.40 The normalized 15N intensity profiles are the
same within error for deuterated full-length (red) and ligated
N- (blue) and C-terminal (green) deuterated samples. At L/P
= 3, minimal binding was observed, whereas at L/P = 300 the
backbone amide intensity was reduced significantly for residues
1−100, and additional interaction was observed for residues
100 to 120, in accord with previous work.39,40 Thus both CD
and NMR data support the fact that segmental deuteration of
α-syn does not change its membrane binding affinity and
interacting residues.
NR measurements were performed on stBLM composed of

equimolar PC/PA prepared by a vesicle fusion method,7 where
extruded vesicles were first adsorbed onto the self-assembled
monolayer of tether molecules and then stBLM formation was
induced by vesicle rupture and fusion through a rapid change of

Scheme 1. Segmental Deuteratation of α-Syna

aN-terminus (Syn1−86) and C-terminus (S87C−140) were expressed
in either D2O- or H2O-based media. The N-terminus construct
contains a C-terminal Intein and Chitin binding domain (CBD). The
C-terminus construct has an N-terminal Cys mutation. The purified
N- and C-termini were chemically ligated to produce segmentally
deuterated α-syn.

Figure 1. Binding of segmentally deuterated α-syn to equimolar PC/
PA vesicles probed by CD and NMR spectroscopy. (A) Mean residue
ellipticity at 222 nm ([Θ]222nm) is plotted against lipid-to-protein
molar ratio (L/P) for fully protiated α-syn (1H14N(1−140), gray),
ligated N-terminal (2H15N(Syn1−86)-1H14N(S87C−140), blue), and
C-terminal (1H14N(Syn1−86)-2H15N(S87C−140), green) deuterated
α-syn. The peptide portion containing isotopic labeling is colored red
in the legend text. Inset: Representative CD titration of 5 μM
2H15N(Syn1−86)-1H14N(87−140) with increasing PC/PA vesicles (0
to 3 mM, red-to-purple). (B) Comparison of HSQC intensity profiles
of fully deuterated 2H15N(1−140) α-syn (red), 2H15N(Syn1−
86)-1H14N(S87C−140) (blue), and 1H14N(Syn1−86)-2H15N(S87C−
140) (green). Vesicles were made through extrusion (50 nm pore size)
and measurements were taken at 25 and 15 °C for CD and NMR,
respectively.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.6b02304
J. Phys. Chem. Lett. 2017, 8, 29−34

30

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.6b02304/suppl_file/jz6b02304_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.6b02304/suppl_file/jz6b02304_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.6b02304
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpclett.6b02304&iName=master.img-001.jpg&w=239&h=148
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpclett.6b02304&iName=master.img-002.jpg&w=239&h=254


buffer osmolality (see SI for more details). To obtain the
greatest contrast between phospholipids and membrane-bound
residues, we first examined the ligated N-terminal deuterated α-
syn. Representative reflectivity curves collected in the absence
and presence of ligated N-terminal deuterated α-syn with two
buffer contrasts from multiple measurements are shown in
Figure 2A (top panel). Significant differences are observed in
the Fresnel normalized reflectivity curves (ΔR/RF) upon the

addition of ligated N-terminal deuterated α-syn up to 10
standard deviations (σ) at low momentum transfer Qz values
≤0.15 Å−1 (lower panel in Figure 2A). Fitting the reflectivity
curve with a monotonic Hermite spline yields the cross-section
area distribution (volume occupancy) normal to the membrane
and hence the membrane-associated protein density profile.
Figure 2B shows the simplified molecular distributions for each
interfacial layer of the stBLM obtained from the best global fit
of all four reflectivity data. Consistent with previous NR results
on full-length α-syn,6,7 this profile shows that the majority of
the protein resides in the outer leaflet, with some penetration
into the hydrocarbon region of the bilayer. See Table S1 for all
fit parameters.
Because of segmental deuteration, the protein distribution

(Figure 3A) can be separated into the deuterated (residues 1−
86, red) and protiated (residues 87−140, blue) portions
(Figure 3B). As expected, the membrane-binding residues 1−
86 have a relatively narrow distribution, with a maximum
around the hydrocarbon-headgroup interface of the outer
leaflet with negligible distribution in the bulk. In contrast, the
density distribution of the 54-residue C-terminus is diffuse and
ranges from the hydrocarbon region and up to ∼60 Å into the
bulk solvent. The presence of the protiated density in the
bilayer could be due to binding of residues 87 to 100 and even
possibly extending to residue 120.40 There is greater
uncertainty associated with the protiated portion due to its
low volume occupancy of <2% at any given distance from the
membrane. In addition to the protein distribution profile, NR is
also able to provide membrane information, including thickness
change upon protein binding. With the addition of ligated N-
terminal deuterated α-syn, a small membrane thickening was
detected (Table S1). Previous studies have shown that α-syn
can induce small to moderate bilayer thinning or thickening.6,7

An explanation of this variability has to await a comprehensive
study on the effects of protein surface coverage, solution pH,
and bilayer preparation.
To validate our assignment of membrane-interaction

residues, NR measurements were performed on (1) the
unligated deuterated N-terminal peptide (Syn1−86) and (2)
the reverse segmentally deuterated α-syn construct (i.e.,
deuterated C-terminus with a protiated N-terminus, 1H14N-
(Syn1−86)-2H15N(S87C−140)). The reflectivity curves were
collected (Figures S2 and S3), and the resulting membrane-
associated protein density profiles are shown in Figure 3C−E.
It is evident that the deuterated truncated Syn1−86 (Figure
3C) agrees well with the 2H15N(Syn1−86) region of the
segmentally deuterated α-syn (Figure 3B, red curve). The
ligated C-terminal deuterated α-syn shows a smaller volume
occupancy compared with that of N-terminal deuterated variant
(∼4 vs 6%), which results in greater uncertainty of the profile.
The distribution profile is consistent with that obtained from
the N-terminal deuterated protein. Colocalization of the C- and
N-terminal regions is observed within the outer leaflet of the
bilayer, albeit more prominently for the C-terminal deuterated
protein (Figure 3E). For the two distributions, the amount of
surface-associated protein is very close (∼3 Å3/Å2) and so is
the fraction of protein on the membrane (∼64% including both
hydrocarbon and headgroup regions). While the profile of
ligated C-terminal deuterated α-syn shows more insertion into
the hydrocarbon region of the bilayer, as indicated by the peak
position at the membrane region compared with that of N-
terminal deuterated form (5 vs 13 Å from the bilayer center
(Figure 3A,D)), they are within error. Furthermore, it is not

Figure 2. Ligated N-terminal deuterated α-syn membrane binding
probed by NR. (A) Top panel shows neutron reflectivity (R/RF) for
equimolar PC/PA stBLM in the absence and presence of ligated α-syn
with N-terminal deuteration (2 μM) in H2O (blue) and D2O (green)
buffer (pH 7.0). Reflectivity curves in H2O buffer are offset by five
units for presentation clarity, marked as offset +5. Error bars represent
68% confidence intervals for the measured reflectivity based on
Poisson statistics. Lower panel shows the differences between
reflectivity curves (ΔR/RF) plotted in units normalized to the SD
value (σ) of the experimental error. (B) Simplified molecular
distributions for each interfacial layer of the PC/PA stBLM and
ligated N-terminal deuterated α-syn. Median protein envelope is
shown with 68% confidence interval (dark dashed lines). From left to
right: gold (yellow), tether (brown), first layer lipid headgroups
(cyan), first layer hydrocarbons (blue), second layer hydrocarbons
(blue), and second layer lipid headgroups (cyan). Data for the Si
substrate and the SiOx, Cr, and Au layer are partially omitted for
simplicity.
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feasible to directly compare their exact penetration depths as
variations have been observed from individually prepared
bilayers. Thus we consider the overall profiles of the two ligated
α-syn as quite similar to each other, with most of the protein
penetrating into the bilayer, while some protein density is
observed in the bulk surrounding.
For completeness, we also examined the deuterated full-

length WT (Figure S4), and unexpectedly we did not find any
protein density in the proximal bulk solvent (>40 Å from
bilayer center, Figure S4B), as we previously found for the
protiated full length protein at pH 7.4,6 but instead, it is similar
to deuterated truncated Syn1−86 (Figure 3C) and previously
reported deuterated full-length protein bound to PC/PA at pH
5.5.7 In comparison with the segmentally deuterated samples,
fully deuterated WT shows similar occupancy at the hydro-

carbon region of the bilayer, but its protein density is moved
from the bulk solvent into the headgroup region (Table S1),
which implies that the C-terminal portion is residing much
closer to the water/membrane interface. However, the
differences between fully and segmentally deuterated α-syn
were not observed by either CD or NMR spectroscopy. It is
possible that the changes revealed by NR are too subtle to be
detected by CD and NMR spectroscopy, as these methods
inform on protein structure and are not sensitive to the context
of relative bilayer position. However, with the current
uncertainties and state of the technique, the density for the
C-terminal portion for either ligated variants is not resolved
with high enough confidence.
In summary, by using segmentally deuterated α-syn, we have

for the first time identified region-specific protein−membrane
interaction by NR. Our NR results reaffirm that NR is sensitive
and well-suited for structural studies of membrane-associating
proteins at the lipid/water interface. Not only is NR excellent in
obtaining protein structural information along the z direction,
normal to the membrane interface, but also by integrating the
strategy of NCL, we believe that this will start an exciting new
chapter on the applications of NR. We envision the ability to
define both region-specific protein−lipid and intermolecular
protein−protein interactions on a membrane surface. Fur-
thermore, while the method of NCL has existed, it is not widely
used because of the cost of peptide synthesis and inability to
produce sufficient material for biophysical studies. Thus our
detailed method to produce proteins by NCL with milligram
yields not only is highly desirable for α-syn and NR but also
applies to other intrinsically disordered proteins and techniques
such as Raman, FTIR, and NMR spectroscopy.
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