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ABSTRACT 

In computational materials science, predicting the yield strain of crosslinked polymers remains a 
challenging task.  A common approach is to identify yield via the first critical point of stress-
strain curves produced by molecular dynamics simulations.  However, the simulated data can be 
excessively noisy, making it difficult to extract meaningful results.  In this work, we discuss an 
alternate method for identifying yield on the basis of residual strain computations.  Notably, the 
associated raw data produce a sharper signal for yield through a transition in their global 
behavior.  As we show, this transition can be analyzed in terms of simple functions (e.g. 
hyperbolas) that admit straightforward uncertainty quantification techniques.   

1. INTRODUCTION 
 In computational materials science, estimating the yield strain 𝜀𝜀𝑦𝑦 of thermoset polymers 
remains a challenging task.  Key difficulties arise from the general observations that: (I) these 
systems exhibit a continuous spectrum of relaxation times [1]; and (II) atomistic models are often 
necessary to capture the relevant physics of such relaxations [2].  As a result, it is becoming 
common for research groups to use molecular dynamics (MD) simulations in an effort to balance 
competing length and time-scale requirements [2].   

 While this approach offers a compromise that is often acceptable in R&D settings, it has 
nonetheless forced modelers to confront the inherent limitations of MD.  In particular, high-
throughput applications generally require the use of small (e.g. 5000 atom) systems, which exhibit 
large fluctuations in simulated data.  In the case of yield, this means that standard estimation 
procedures (e.g. based on critical points of stress-strain curves) suffer from high levels of 
uncertainty that diminish the usefulness of the associated predictions (see, for example, Ref. [3]).   
This observation has led us to consider alternative methods of computing this quantity. 

 In this work, we propose to estimate yield strain through analysis of simulated residual-
strain data.  Analogous experimental results were obtained as far back as 1996 by Quinson et al., 
who showed that residual strain of linear polymer chains (I) is zero up to yield, and (II) 
subsequently grows linearly with applied strain beyond yield [1].  Motivated by these results, we 
show how a global hyperbola analysis can be used to identify the onset of this linear behavior, and 



consequently yield.  Moreover, we demonstrate how a bootstrap-style analysis of the resulting fit 
can be used to estimate uncertainties in the associated predictions, thereby quantifying our 
confidence in the simulations. 

 We emphasize that this analysis is limited to predicting yield and estimating uncertainties 
within the context of a single simulation.  This is important insofar as finite-size and -time 
averaging can introduce an additional between-simulation uncertainty associated with under-
sampling of crosslinked structures [4].  In the case of the glass-transition temperature, an analysis 
has been devised to quantify this additional “dark” uncertainty [4].  However, a comparable 
treatment for yield is complicated by the structure of the underlying stress and strain tensors.  We 
leave further analysis for later work.  Moreover, we do not rigorously pursue validation (or 
comparison with experiment), since open questions remain about verification (or estimation of 
uncertainties within the context of simulations alone).   

 

2. OVERVIEW OF RESIDUAL STRAIN SIMULATIONS 
 In 1996, Quison et al. showed that deformation-relaxation experiments can be used to 
quantify the rate-dependence of relaxation modes in linear polymers such as polystyrene [1]. As a 
byproduct of this work, they generated plots of residual strain data εr as a function of the applied 
strain ε, where 

𝜀𝜀𝑟𝑟 =
𝑙𝑙𝑓𝑓(𝜀𝜀) − 𝑙𝑙0
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 𝑙𝑙0 is the initial length in the loading direction, and 𝑙𝑙𝑓𝑓 is the final length after applying a strain 
and then allowing the system to relax.  Interestingly, they observed that yield (or the onset of 
plastic deformation) occurred at the first value of 𝜀𝜀 for which the material exhibited a non-zero 
residual strain.  Although not discussed by the authors, it is also noteworthy that in all of their 
results, εr is approximately a linear function of the applied strain beyond yield.  Critically, this 
observation holds irrespective of either the deformation rate, temperature, or relaxation time.  Such 
results have since been experimentally reproduced for thermosets commonly found in aerospace 
applications [5]. 

 Given the inherent length and time-scale limitations of MD, these observations are 
encouraging, since they suggest the possibility of a rate-independent method for determining yield 
in silico.  We thus attempted to reproduce results in Ref. [5] using MD simulations of a roughly 
5000 atom, 50/50 mixture of 4,4-diaminodiphenyl sulfone (44DDS) and digycidyl ether of 
Bisphenyl A (BisA), a two-functional epoxy.  We refer to this system as 44BA.  Details of the 
system preparation are provided in another manuscript [4,6], and we omit such a discussion here. 



 Figure 1 shows the results of a simulated residual-strain measurement, which is analogous 
to Fig. 4 in Ref. [5].  In order to generate this plot, we first strained the system by fixed, volume 
conserving increments at a variable rate determined by a convergence criterion on the running 
average stress; see Refs. [4,6] for details of how the convergence criterion works.  After each strain 
increment, we saved the final structure for later analysis.  Each simulation was a minimum of 20 
ps long, with an average on the order of 60 ps to 80 ps.  All strain simulations were performed 
using an NVT constraint with the Andersen thermostat at 300 K.  Residual strains were then 
estimated (as a function of applied strain) by relaxing the saved unit cells with an NPT simulation 
and computing  
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where 𝑙𝑙𝑓𝑓,𝑖𝑖  and 𝑙𝑙0,𝑖𝑖  are the final and initial lengths of the ith side of the unit cell.1  These latter 
simulations used the Parrinello barostat to ensure that the unit cells reached a well equilibrated, 
stress-free state.  Analogous to before, a convergence criterion on the system dimensions was used 
to determine the simulation duration needed to reach an equilibrated state.   

                                                 
1 We use a modified definition of residual strain (relative to Refs. [1] and [5]) because 
simulations provide additional information about deformation in three independent directions. 

 
Figure 1: Simulated residual strain data showing a hyperbola fit and bounds on yield.  The 
bounds are taken as the minimum and maximum values of yield computed via the synthetic 
dataset approach described below. 

 



 Several remarks are in order.  Although noisy, the simulated residual strains show a bilinear 
character observed in experiments.  In contrast to experiments, however, the  simulated residual 
strains never fully go to zero for small applied strains.  This occurs because the absolute values in 
our definition of εr transform thermal fluctuations into one-sided noise in εr.  Moreover, the 
transition in εr associated with yielding is relatively smooth and occurs over a modest range of 
applied strains.  Physically, we speculate that this arises from the fact that the anelastic relaxation 
mechanisms near yield have timescales that are poorly sampled by MD.  In the next section, we 
show how hyperbola asymptotes can be used to estimate yield despite this lack of a sharp 
transition. 

3. HYPERBOLA ANALYSIS AND UNCERTAINTY QUANTIFICATION 
 Given the data in Fig. 1, we estimate yield by first fitting a hyperbola H to our simulated 
applied and residual strains, εj and εr,j (which are indexed by j).  We find that it is convenient to 
use the parametrization  
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where a, b, c, and 𝜀𝜀𝑦𝑦 are free parameters that are determined by a least-squares procedure.  We 
generically denote this collection of parameters as φ.  Given these, we identify the yield strain 𝜀𝜀𝑦𝑦 
with the hyperbola center, or equivalently the intersection of the hyperbola asymptotes.  Physically 
we adopt the interpretation that these asymptotes characterize an “idealized” behavior of the 
simulation were it not to suffer from finite-size and -time effects.   

 In general, we find that a non-weighted least squares often gives reasonable estimates of 
yield, but not universally so.  In particular, it is known that individual torsions in small-scale 
simulations can introduce large fluctuations into simulated quantities when a system is under 
high-strain [5].  Consequently, noise has a tendency to increase with the applied strain.  In order 
to account for this, it is reasonable to determine 𝜀𝜀𝑦𝑦 via a weighted least-squares fit of the data to 
a hyperbola.  Figure 1 shows a fit obtained from the following iterative procedure: (I) compute 
an unweighted estimate of the hyperbola H; (II) estimate a power law P(ε) for the residual data 
H(φ, 𝜀𝜀𝑗𝑗) - 𝜀𝜀𝑟𝑟,𝑗𝑗; (III) compute a weighted least-squares estimate of H with a weight-factor 1/P(ε).  
As the figure shows, this procedure allows for some flexibility in interpretation of the high-strain 
data while returning a reasonable estimate of yield. 

 To estimate uncertainties associated with our yield calculation, we perform a bootstrap-
style analysis using repeated noise sampling of our model for the residual data.  In particular, we 
define  
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 as a statistical model of residual strain data, where 𝑃𝑃�𝜀𝜀𝑗𝑗� is determined according to the procedure 
described above, j indexes strain increments, and Nj(0,1) are uncorrelated Gaussian random 
variables with mean zero and variance 1.  Realizations of 𝜀𝜀�̃�𝑟,𝑗𝑗 are inexpensive to compute using 
random number generators.  Hence, we use this noise model to generate thousands of synthetic 
datasets, which in principle have the same statistical structure as the original dataset.  Applying 
the hyperbola analysis to these datasets then generates a distribution of yield values associated 
with our uncertainty in the fit procedure; see Fig. 2.   

 

 

4. CONCLUSIONS 
Motivated by experimental work showing that the bilinear character of residual strain data is 
independent of strain rate, temperature, and relaxation times, we investigated how an analogous 
simulation protocol can be used to estimate yield.  By analyzing the resulting data in terms of 
hyperbolas, we also showed how to (I) estimate the transition in residual strain that is associated 
with yield; and (II) quantify uncertainties in this procedure.  We emphasize that in general, the 
methods discussed here only quantify uncertainties within the context of a single simulation.  As 

 
Figure 2: Histogram of yield values computed from repeated noise sampling of synthetic datasets. 

 



previous work has shown, multiple simulations and comparison thereof may be necessary to 
construct a more complete picture of the computational predictions.  However, qualitative 
agreement with experimental results warrants further investigation into the usefulness and validity 
of the method. 
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