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1. Introduction

Colloidal systems exist in various products in our daily life, 
such as shampoo, detergent, paint, food, microemulsions [1], 
therapeutic drugs [2], and biological systems [3–5]. One of 
the widely studied model systems is the depletion attraction 
system where there is no attraction between the added small 

polymers (or small colloidal particles) and the large solute 
colloidal particles [6–20]. Due to the osmotic pressure, the 
small solvent particles can introduce an effective attraction 
between large colloidal particles. Depletion attraction systems 
with spherical particles have been widely used as model sys-
tems to study many of the fundamental problems in complex 
colloidal systems, such as gelation and glass transition [6, 14].
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Abstract
There has been much recent research interest towards understanding the phase behavior of 
colloidal systems interacting with a bridging attraction, where the small solvent particles and 
large solute colloidal particles can be reversibly associated with each other. These systems 
show interesting phase behavior compared to the more widely studied depletion attraction 
systems. Here, we use Baxter’s two-component sticky hard sphere model with a Percus–
Yevick closure to solve the Ornstein–Zernike equation and study the size effect on colloidal 
systems with bridging attractions. The spinodal decomposition regions, percolation transition 
boundaries and binodal regions are systematically investigated as a function of the relative 
size of the small solvent and large solute particles as well as the attraction strength between 
the small and large particles. In the phase space determined by the concentrations of small 
and large particles, the spinodal and binodal regions form isolated islands. The locations and 
shapes of the spinodal and binodal regions sensitively depend on the relative size of the small 
and large particles and the attraction strength between them. The percolation region shrinks 
by decreasing the size ratio, while the binodal region slightly expands with the decrease of the 
size ratio. Our results are very important in understanding the phase behavior for a bridging 
attraction colloidal system, a model system that provides insight into oppositely charged 
colloidal systems, protein phase behavior, and colloidal gelation mechanisms.
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However, there are also a wide range of colloidal sys-
tems in which small solvent particles (or polymers) can be 
reversibly associated with large colloidal particles. When the 
attraction between small and large colloidal particles is strong 
enough, small particles can serve as bridges to connect neigh-
bouring particles. This type of bridging attraction is common 
in many colloidal systems, such as oppositely charged col-
loidal systems [21, 22] and concentrated protein solutions 
with counter ions [23, 24]. Much less attention has been paid 
to study model colloidal systems with bridging attractions.

Recently, a system consisting of poly N-isopropylacrylamide 
(PNIPAM) and polystyrene (PS) has been studied [25–27] in 
which the size ratio of small PNIPAM particles to large PS 
particles is about 0.14. It was found that there is an attrac-
tion between PNIPAM and PS particles [25], resulting in a 
bridging attraction. In these experiments [25, 26], the addi-
tion of small PNIPAM particles drive the system through a 
liquid–gel–liquid–gel phase transition. By assuming that both 
PNIPAM and PS particles can be approximated as spherical 
particles [28], we have recently calculated the theoretical 
equilibrium phase diagram for this system using Baxter’s 
multi-component sticky hard sphere (SHS) model [29, 30]. 
The spinodal decomposition regions, percolation transitions, 
and binodal regions are calculated using the parameters 
reported in the experimental data, and show good agreement 
with most experimental observations [28].

One of the most interesting features of bridging attraction 
systems is that the spinodal and binodal regions can form 
isolated islands in the phase space of small particle and large 
particle concentrations [28]. Therefore, by controlling the 
particle size ratio and the attraction strength between small 
and large particles, the phase diagrams can be finely tuned. 
While it is sometimes difficult to alter the surface chemistry 
that determines the attraction between the small and large 
particles, the particle size is, in general, easier to control. 
Hence, we may control the phase behavior of a system by 
simply changing the particle size ratio. Therefore, it is very 
useful to understand how the relative size ratio affects the 
equilibrium phase diagrams of bridging attraction systems. 
In addition, it is known that different types of counter-
ions sometimes have different effects on protein solution 
structures and phase diagrams [2, 23, 31, 32]. The detailed 
reasons for many of these observations are still under invest-
igation. However, the bridging attraction is believed to play 
an important role in some cases [24, 28]. Since the size ratio 
between counterions and proteins can vary for different 
systems, the investigation of the size ratio effects is hence 
important to understand the protein behavior in concentrated 
solutions.

In this paper, we systematically study the phase behavior of 
bridging attraction systems for a very wide range of the size 
ratio and attraction strength between small and large particles 
with a focus on the size ratio effect. Using Baxter’s multi-
component model, we find that the equilibrium phase diagram 
of a bridging attraction system is very sensitive to the size 
ratio and the attraction strength. These results significantly 
expand the parameter space investigated by a previous paper, 
which focused mainly on the comparision of the theoretical 

calcul ations and experimental observations of one model 
system [28]. And our results thus provide important physical 
insights to help guide the design of future experimental sys-
tems and understand the complex phase behaviors of systems 
with different particle size ratio and attraction strength.

2. Sticky hard sphere model

The analytical solution of the inter-particle structure factor, 
S(Q), of a SHS system was first provided by Baxter, by 
solving the Ornstein–Zernike (OZ) equations with Percus–
Yevick(PY) closure [29, 33]. He also extended the solu-
tion to the multi-component case later [34] using the ‘Q 
method’ [30]. For a SHS system, the interaction between 
hard spheres is modeled as an attraction of an infinitesimal 
range with an infinitely strong attraction strength. The pair 
potential of a multi-component SHS system between comp-
onents i and j is expressed as:
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Here, k T1 B/( )β = , kB is the Boltzmann constant, and T is 
the absolute temperature. iσ  is the diameter of component i, 

ij i j( )σ σ σ= + , and dij ijσ−  is the attraction range between the 
component i and j. The sticky limit is achieved for dij ij⟶σ , 
where the attraction strength is infinitely large. And hereafter, 
we will use di for the diameter. ijτ  is the stickiness parameter 
that directly reflects the attraction strength, and can be consid-
ered as an effective temperature. When ijτ  is large, the attrac-
tion is weak while for small ijτ , the attraction is strong. For a 
one-component SHS system, 1τ τ= . In this case, there is a 
simple relationship between τ and the reduced second virial 
coefficient as B 1 1 42 /( )τ= −∗  [35]. The procedures and equa-
tions to solve the OZ equations for multi-component SHS sys-
tems have been given in details in the literature [28, 36–38]. A 
key step is to solve N(N  +  1)/2 quadratic equations where N 
is the number of components. The solution is non-trivial for a 
two-component system for a general case.

However, for bridging attraction systems, the analyt-
ical solution of the OZ equation  can be easily obtained. In 
a bridging attraction dominated system [28], there are two 
comp onents. One is the large solute colloid particle, the other 
is the small solvent particle. There is no attraction between the 
like components, which means ,SS LLτ τ= ∞ = ∞. (The sub-
scripts ‘S’ and ‘L’ represent small solvent particles and large 
solute particles respectively.) The only stickiness parameter 
with nonzero attraction is SLτ  and will simply be expressed 
as τ hereafter. This simplifies tremendously the work to solve 
the OZ equation. As a result, it is now very straightforward 
to obtain analytical solutions with the PY closure [28]. For 
this special case, the set of quadratic equations  reduces to 
only one linear equation and analytical solutions exist for all 
the parameters [28], which provides the basis for theoretical 
analysis. The size ratio of the small to large particle is defined 
as x d dS L/= .

J. Phys.: Condens. Matter 28 (2016) 455102



J Chen et al

3

3. Results and disucssions

Using previously developed methods [28, 30], we have thus 
systematically explored the effect of the size ratio, x, and the 
stickiness parameter, τ, on the phase diagrams of bridging 
attraction systems. The spinodal regions are directly studied 
with Baxter’s two-component SHS theory. Therefore, the 
results are valid for all the size ratios, x. Hence the results are 
applicable not only for small x, but also for the cases where 
small particles have a comparable size with the large parti-
cles and cannot be considered as solvent molecules anymore. 
For the percolation transitions and binodal regions, we have 
focused on small x, where small particles can be treated as 
solvent molecules. For these cases, we can study the effect of 
small particles on the structure of large particles by consid-
ering an effective potential for a one component SHS system 
for which the phase behavior of this one-component system is 
the same as the phase behavior of the large particles in our two 
component systems.

3.1. Spinodal phase transition

The spinodal transitions are important to the solution sta-
bility and physical mechanisms of colloidal gelation. It has 
been shown that for a bridging attraction system, the gela-
tion is still driven by the frustrated arrested spinodal decom-
position transition, when the volume fraction is less than 

10%  [27]. This is similar to depletion attraction systems [39]. 
The spinodal decomposition regions of large particles in our 
two-component systems can be identified by calculating the 
inter-particle structure factor, S QLL( ), for large colloidal par-
ticles. By allowing S1 0LL/ ( ) to approach zero, we can identify 
the spinodal phase separation boundaries [37]. The spinodal 
decomposition line (SDL) for systems with a bridging attrac-
tion can be calculated using the following equation within the 
framework of two-component SHS model as [28, 37, 40]
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where Sφ , Lφ  are the volume fractions of small and large col-
loidal particles, respectively, and S Lφ φ φ= +  is the total 
volume fraction.

The effects of x and τ on the SDLs are summarized in 
 figures 1(A) and (B). The volume fraction of large particles 
and small particles are chosen to be the horizontal and ver-
tical axis, respectively, to be consistent with the previous 
experimental and theoretical results [25–28]. The volume 
fraction of large particles is truncated below 40%, near 
which the demixing spinodals between uniform phases 
could be preempted by a fluid–solid transition/demixing. 
Before adding small particles, large colloidal particles are 
stable in solution. Adding small particles increases the 
effective attraction between large colloidal particles [28]. 
And once reaching a maximum attraction strength, adding 
even more small particles decreases the effective attraction 
strength. Hence, adding a small amount of small particles 
favors the formation of aggregates. When Lφ  is larger than 
a certain threshold value, the system can enter the spinodal 
region immediately. If more small particles are added, the 
effective attraction between the large particles becomes 
weak enough that the system can exit the spinodal region. 
Hence, the spinodal region in these systems can form an 
isolated island.

Figure 1. Spinodal decomposition island in the volume fraction 
plane for (A) different stickiness parameters with fixed size ratio 
x  =  0.05 and (B) different size ratios with fixed stickiness parameter 

0.01τ = .

Figure 2. The critical stickiness parameter for different size ratio 
(blue open circles), where the red solid line is the fit to an emprical 
function. The horizontal axis is in logarithmic scale.

J. Phys.: Condens. Matter 28 (2016) 455102
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As shown in figure  1(A), increasing τ (decreasing the 
attraction strength) at a given size ratio (x  =  0.05 in this case) 
shrinks the area of the spinodal island while the center of the 
island remains at almost the same position. When τ is large 
enough to reach a critical value, Cτ , the isolated spinodal 
region shrinks to a singular point. For τ larger than Cτ , there is 
no spinodal region any more based on our theor etical calcul-
ations. For these cases, the system remains in a liquid state 
without gas-liquid phase separation as a function of Sφ  and 

Lφ . The size effect on the SDLs is summarized in figure 1(B). 
For a given τ value, increasing the size ratio also shrinks the 
spinodal island. However, the center of the spinodal island 
moves to a much smaller total volume fraction.

Cτ  is determined solely by the size ratio. By knowing the 
value of Cτ , we then know the minimum attraction strength 
needed to destabilize a solution. Figure 2 shows Cτ  as a func-
tion of the size ratio, x, with a logarithmic scale of the hori-
zontal axis to show more details in the small size ratio range. 
For a given size ratio, if the attraction between the small and 
large particle is weak enough that τ is larger than Cτ , no phase 
separation will be observed in this system. Cτ  simply decreases 
when increasing the size ratio. Physically, it means that when 
decreasing the size difference (increasing the size ratio, x), 
a stronger attraction (smaller stickiness parameter) between 
small and large components is required to introduce a phase 
separation. When the size ratio reaches x  =  1, Cτ  is almost 

zero (corresponding to infinitely strong attraction), which 
means the system will never show phase separation within the 
framework of the current theory.

The relationship of the critical stickiness parameter with 
the size ratio can be fitted to an empirical function as

τ =− × +
+ ×

−
−x

5.390 10
4.030

1 4.160 10
.C

3
3 1.433[ /( )] (3)

This type of functional form has been commonly used in 
pharmacology and chemistry. Equation  (3) can help exper-
imentalists decide the attraction strength needed to introduce 
or prevent the systems’ phase separation according to the size 
of the colloidal and additive small particles.

At Cτ τ= , the spinodal region reduces to one single 
point in the phase diagram as well as the binodal region. 
The concentrations for small and large particles for this sin-

gular point are denoted as C
Sφ  and C

Lφ . Figure 3(A) shows the 

values of C
Sφ  (blue open circles) and C

Lφ  (red open squares) as 
a function of the size ratio, x. Note that the vertical axes on 

the left and right indicate the values for C
Sφ  and C

Lφ , respec-

tively. C
Lφ  decreases monotonically to zero with increasing 

size ratio, while C
Sφ  has a small increase at very small size 

ratio and then also gradually decreases to zero when the 
size ratio approaches 1. Figure 3(B) shows how the singular 
phase separation point moves in the ( Lφ , Sφ ) plane. The arrow 

Figure 3. (A) The critical volume fraction of small particles (blue 
open circles, left vertical axis) and large particles (red open squares, 
right vertical axis) for the critical point with increasing size ratio. 
The solid lines are their fitting results with expressions in the text. 
(B) The trace of critical point when increasing size ratio (arrow 
direction).

Figure 4. (A) The upper boundary (maximal volume fraction of 
the small component, blue open circles, left vertical axis) and right 
boundary (maximal volume fraction of the large component, red 
open squares, right vertical axis) of the spinodal island for fixed 
size ratio x  =  0.1, changing with inverse stickiness parameter. The 
horizontal axis is logarithmic scale. (B) The maximum spinodal 
island for different size ratios. These are the asymptotic values from 
(A). The symbols are the same, and the solid lines are the emperical 
fits.
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in the figure  indicates the direction of its movement when 
increasing the size ratio. C

Lφ  for large particles can be fitted 

by an empirical function as

( ) ( )

( )

φ = × − + × −

+ × − − × −

x x

x

0.246 exp
0.04

0.223 exp
0.01

0.235 exp
0.176

1.17 10 .

C
L

3
 (4)

And for C
Sφ , it can be fitted by a 6th-order polynomial as:

φ = × + − × + ×

− × + × − ×

− x x x

x x x

1.846 10 0.136 1.337 4.478

7.390 5.954 1.860 .

C
S

2 2 3

4 5 6

 (5)

Both fitting lines are shown in figure 3(A).
Based on the results of figure  1, we see that decreasing 

τ or decreasing the size ratio, x, make the spinodal island 
bigger. To characterize the change of the spinodal island, 
we study the change of the upper boundaries of the spinodal 
decomposition region as a function of the size ratio, x. The 
upper boundary values of the small and large particle’s 
volume fractions for the spinodal region are denoted as S,UBφ  
and L,RBφ . Figure 4(A) shows how S,UBφ  and L,RBφ  change as 
a function of the inverse stickiness parameter for a fixed size 
ratio of x  =  0.1. The left vertical axis is the upper boundary 
for S,UBφ , which is the maximal volume fraction of the small 
component and is represented by blue open circles. The right 
vertical axis is the upper boundary of L,RBφ , which is the max-
imal volume fraction of the large particles, and is represented 
by red open squares. The horizontal axis is a logarithmic 
scale to include a large enough range to show the asymptotic 
properties. When increasing the inverse stickiness parameter 
(increasing the attraction strength between small and large 
particles), both S,UBφ  and L,RBφ  increase very quickly at the 
beginning, and then reach a plateau value when the attrac-
tion strength is very large. The increase of S,UBφ  and L,RBφ  is 
associated with the increase of the spinodal decomposition 
region. Hence, the area of the spinodal island increases first 
and then reaches a saturation value. Increasing the attraction 
strength further results in little additional motion of the phase 
boundary.

We can define the asymptotic value of S,UBφ  and L,RBφ  at 
large attraction strength as the values at which the area of the 
spinodal decomposition island changes less than 1% when the 
stickiness parameter changes 10%. Since they are the asymp-
totic values of S,UBφ  and L,RBφ , a superscript ‘Asymp.’ is 
used to describe the value. These asymptotic values show the 
largest possible spinodal region when increasing the attrac-
tion strength at a fixed value of x. Their changes with the size 
ratio, x, are shown in figure 4(B). The symbols are the same 
with figure 4(A) and the solid lines are the empirical fitting 

results. Both S,UB
Asympt.φ  and L,RB

Asympt.φ  simply decrease with the 
increasing size ratio, meaning when the size ratio is large (the 
size of two types of particles become closer to each other), it 
becomes more difficult to seperate the system phase. When 
the size ratio approaches 1, the spinodal region disappears. 

S,UB
Asympt.φ  can be fitted by a 3rd-order polynomial as

φ = − + −x x x0.080 0.228 0.234 0.088 .S,UB
Asympt. 2 3 (6)

And L,RB
Asympt.φ  can be fitted by a two-decay factor exponential 

function as

φ = × −

+ × − − × −

x

x

0.533 exp
0.167

0.449 exp
0.042

2.120 10 .

L,RB
Asympt.

3

( )

( )
 

(7)

These two equations quantitatively explain how large the 
spinodal island could be for a given fixed size ratio if the 
attraction strength is strong enough. If the volume fraction of 
small or large colloidal particles is larger than its asymptotic 
value, the system will be out of the spinodal region no matter 
how strong the attraction is.

We have tried to obtain analytical solutions for theoretical 
results shown above (equations (3)–(7)) since the spinodal 
transition boundary has an analytical expression (equation 
(2)). To do this, we need to express Sφ  as a function of Lφ , 
which is the solution of a 4th-order polynomial function with 

Sφ  and Lφ  coupled with each other. It is very difficult to obtain 
the analytical solution by solving this equation. To simplify 
the effort for readers to use our results, the empirical functions 
are used with enough precision to help guide the design of 
future experimental systems.

When calculating the spinodal transition boundaries, the 
theory can accomodate any particle size ratio. In the fol-
lowing two sections, we will focus on the cases where x is 
small enough that small particles can be treated as solvent 
molecules.

3.2. Pair distribution function and effective inter-particle 
potential

The partial structure factor (PSF) is the Fourier transform of 
the pair distribution function (PDF) as [41]:

S q n n r g rd e 1ij ij i j
q r

ij
1 2 3 i( ) ( ) ( ( ) )/ ∫δ= + −⋅→ →

 (8)

where Sij(q) is the PSF between component i and j, gij(r) 
is their PDF, and ni is the number density of component i 
and ijδ  is Kronecker delta function. This theory provides the 
method to calculate the PDF from PSF through an inverse 
Fourier transform while the PDF can be calculated using 
the multi-component SHS framework [28, 34]. In a rela-
tively dilute system, the PDF can be simply related to the 
effective pairwise potential U(r) between large particles as 
[42]:

( ) ( )= β−g r e .U r (9)

We thus can estimate the effective interaction potential 
between large colloidal particles by calculating its PDF 
similar to that studied by a recent work [40]. Figure 5(A) 
shows the PDFs of large colloidal particles as a function 
of small particle volume fraction with fixed parameters 

x0.001, 0.1, 0.01Lφ τ= = = . The horizontal axis is the 
inter-particle distance between large particles normalized by 
dL. Since the colloids are hard spheres, they cannot overlap 
in space and g(r) is zero when the distance is smaller than its 

J. Phys.: Condens. Matter 28 (2016) 455102
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diameter. With the addition of small particles, a plateau with 
a value larger than one shows up in the range defined by the 
diameter of small particles, indicating a large probability 
for the connection of two large colloidal particles through a 
small particle. This increased intensity is due to the forma-
tion of clusters introduced by the bridging attraction.

When the concentration of small particles increases at the 
beginning, the probability of connection increases dramati-
cally as shown by the increased g(r) at ≈r d 1/ . For the current 
example, this increasing trend continues until the volume frac-
tion of small particles reaches 0.004Sφ =  (red open triangles), 
up to the point where the effective pair attraction reaches a 
maximum that has been designated as the maximum bridging 
attraction point [28]. Further increasing the small particle con-
centration decreases the effective attraction.

Using equation (9), the effective potential between large 
particles can be evaluated using g(r). The results are shown 
in figure  5(B). Clearly, due to the existence of small par-
ticles, there is a primary attraction close to the large par-
ticle surface, with an attractive range exactly the size of 
small particles as depicted by the vertical green dashed line. 
Hence, the interaction range for the bridging attraction is 

determined by the size of the small particles. The strength 
of this effective attraction is a function of the small particle 
concentration. It first increases to a maximum at 0.004Sφ =  
and then decreases, following the decrease in g(r). Besides 
the strong short-range attraction, there are oscillations for 
r/d  >  1  +  x. This is due to the packing of the small particles 
on the large particle surface, which introduces an effective 
repulsive potential.

Our previous work [28] showed that the effective poten-
tial between the large particles in this two component SHS 
system can be mapped to an effective one-component SHS 
interaction, as long as we are only concerned with the phase 
behavior of the large particles. This immediately implies that 
the detailed oscillations of the effective interaction between 
large particles are not important in the two component sys-
tems. As long as the calculated normalized B2

∗ is the same, 
the equilibrium phase diagram of the colloidal particles is 
the same, so long as their interactions are all short ranged. 
This conclusion is very interesting. Noro and Frankel have 
studied different types of purely attractive potentials with dif-
ferent ranges and shapes, and pointed out that the equilibrium 
phase diagram close to the critical point is not sensitive to 
the ranges and shapes of the short-range attraction [35]. The 
reduced second virial coefficient, B2

∗, uniquely determines the 
phase diagram of a system with a short-ranged potential. Our 
results here together with our previous work [28] show that 
the extended law of the equation of state works not only for 
many different types of purely attractive potentials, but also 
for the short-range interaction systems even when they have 
complicated small repulsive features in the effective interac-
tion potential as indicated in our case. As long as the calcu-
lated B2

∗ is overall attractive and the overall interaction range 
is short ranged, the equilibrium phase diagram still follows 
the extended law of the equation of state proposed originally 
by Noro and Franekel [35].

3.3. Percolation and binodal region

Previously, we proposed a method to understand the phase 
behavior of a binary SHS system by an equivalent one-comp-
onent SHS system where the structures and the phase behavior 
of the large colloidal particles in the binary system are iden-
tical to those from an equivalent one-component system [28] 
as long as the small particles in this binary system are small 
enough. For a given conditions of the two-component systems, 
we need to determine three parameters, effτ , dL

eff, and L
effφ , for 

the equivalent one-component SHS system. Once the three 
parameters are determined with the method, many results for 
pure one-component SHS systems, including the calculations 
of percolation and binodal transitions, can be applied to systems 
with the bridging attraction [28]. We briefly present the final 
results of this method here about how to determine these three 
parameters. The details were given in our previous work [28].

The equivalent stickiness parameter is calculated by 
equating the PSF of the large colloidal particles S qLL( ) at 
q  =  0, and is expressed as [28]:

Figure 5. (A) Pair distribution function of colloidal particles for 
systems with x0.001, 0.1, 0.01Lφ τ= = =  and different volume 
fractions of the small component, the horizontal axis is the inter-
particle distance normalized to dL. The results are plotted in a 
limited range to show the details of properties in a small range 
of interaction distance, while the inset shows overall results. (B) 
The effective pair potential for the same systems are shown for the 
cases presented in (A). The vertical green dashed line is drawn at 
r d d d1 s L/ /= + .
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The effective diameter, dL
eff, is simply related to the size ratio 

by the following equation [28]:

d

d
x

x

2

3
1

1

2
L
eff

L
( )= + +

+
 (11)

And the effective volume fraction, L
effφ , is given by [28]:

d

d
L
eff

L

L
eff

L

3( )
φ

φ
= (12)

This method works effectively when x  <  0.15 and 2τ<  
(please check the supplementary information for more details 
(stacks.iop.org/JPhysCM/28/455102/mmedia)). With equa-
tions (10)–(12), the binodal transition and percolation of large 

particles in our two-component system can be calculated by 
comparing to the literature results of one component SHS 
system.

The percolation line of the pure one-component SHS 
system is calculated analytically by Chiew and Glandt with 
the PY approximation as [43]:

( )
τ

φ φ

φ
=

− +

−

19 2 1

12 1
.L

eff L
eff 2

L
eff

L
eff 2

 (13)

The binodal transition line has been calculated by Miller and 
Frenkel through the grand canonical MC simulation [44]. 
Based on these results, we have estimated the size effects on 
the percolation and binodal transitions, which are shown in 
figures 6(A) and (B), respectively. Here, the stickiness param-
eter is fixed at 0.012τ = , which is the value we previously 
used to calculate the theoretical phase diagram of Zhao’s 
experimental system [28].

Figure 6(A) shows the upper percolation transition lines 
(filled symbols) together with the spinodal lines (open sym-
bols) when decreasing the size ratio from 0.15 to 0.01 (arrow 
indicates the direction of decreasing the size ratio). When Lφ  
is large enough, adding small particles introduces a bridging 
attraction to form percolated clusters in solution. When adding 
too many small particles, the attraction becomes weak and 
the system enters a non-percolated liquid region. Therefore, 
similar to the spinodal transitions, there are two percolation 
transition volume fractions for small particles at a given Lφ . 
We term them as the lower percolation transition line and the 
upper percolation transition line. The lower percolation trans-
ition line, in general, has very small values (smaller than that 
of spinodal decomposition lines shown in the sam figure), and 
is very sensitive to small changes of small particle volume 
fraction, Sφ , and is not shown in the figure. Usually, it is chal-
lenging to control the sample behavior near the lower perco-
lation transition boundary. On the other hand, the effective 
bridging attraction changes near the upper percolation trans-
ition line is not so sensitive to Sφ . Hence, it is easier to control 
the effective potential close to the upper percolation transition 
line, so we focus on discussing the size effects on this trans-
ition line.

It is noted that for 0.2Lφ < , the upper percolation transition 
line is not very sensitive to the change of the size ratio. For 

0.2Lφ > , increasing size ratio shifts down the upper percola-
tion line. For 0.1Lφ < , the upper percolation transition line 
is very close to the spinodal decomposition region, which is 
consistent with a recent experimental result [27].

Figure 6(B) shows the binodal lines when changing the 
size ratio. The binodal line is expected to form an isolated 
island similar to the spinodal island. However, since the 
system is close to the instability line, the calculated structure 
factor from Baxter’s method for a one component system is 
not very accurate at small φ [28, 29]. Hence, data smaller than 

0.05Lφ =  are not reported. At large volume fractions, we are 
limited by the available values from the computer simulations 
to determine the binodal line in a one-component SHS system 
[44]. Differing from the percolation region, the binodal trans-
ition region expands when decreasing the size ratio. This is 

Figure 6. (A) Upper percolation transition line (filled symbols) 
when decreasing size ratio (arrow direction), along with spinodal 
islands (open symbols) in the volume fraction plane. (B) Binodal 
transition regions change with decreasing size ratio (arrow 
direction), the lower boundary is in open symbols and the upper 
boundary in filled symbols. The stickiness parameter is fixed to be 

0.012τ =  and the corresponding size ratios can be found in the 
legend of (A). A combination of the upper boundaries of percolation 
and binodal transition can be found in the supporting information.
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consistent with the change of the spinodal decomposition 
region.

We have also studied the attraction strength effect at 
a given fixed size ratio on the percolation transitions and 
binodal transitions. (Please see the supporting information for 
details.) Increasing attraction strength expands the percolation 
region by shifting up the upper percolation transition line and 
shifting down the lower percolation transition line. However, 
it seems that there are larger shifts at smaller volume fractions 
rather than at larger volume fractions. This differs from what 
is observed for the change of the size ratio, where the large 
shift for the change of size ratio mainly happens at large Lφ . 
As for the binodal regions, they also expand when increasing 
the attraction strength with the center position of the binodal 
region staying in almost the same position. This is consistent 
with what is observed for the change of the spinodal islands 
due to the variation of the attraction strength.

The fluid-solid transition is more difficult to predict. It is 
well known that for a hard sphere system, the liquid-solid 
transition occurs when the height of the first peak of the 
static structure factor reaches about 2.85 [45]. This is called 
Hansen–Verlet criterion. However, for a system with a deple-
tion attraction, the Hansen–Verlet criterion is found to work 
only for large volume fraction of big particles. [19, 46] Even 
though it is not clear how it may work in a bridging attraction 
system, we have calculated the boundary lines at which the 
peak height of the static structure factor is 2.85. The details 
are shown in the supporting information.

4. Conclusion

Adding small particles to a system is a common method to tune 
the inter-particle interaction of colloidal particles and control 
the phase behavior of large colloidal particles. Colloidal sys-
tems based on both depletion attraction and bridging attrac-
tion can be considered as binary systems. In the depletion 
attraction case, small particles are not attracted to the surface 
of large particles while for the bridging attraction systems, 
small particles can be strongly, but reversibly, attracted to the 
surface of large particles. Hence, the depletion attraction and 
bridging attraction are two extreme cases of binary hard sphere 
systems. Compared to the well-studied depletion attraction 
system, there are very few studies on bridging attraction sys-
tems. Here, we successfully apply Baxter’s multi-component 
theory and previously proposed methods to study the phase 
behavior of bridging attraction systems with a focus on the 
size effects on the spinodal trans ition, effective interaction, 
binodal transition and percolation transition.

When decreasing the attraction strength (increasing τ), 
the spinodal island shrinks. And it eventually shrink to a sin-
gular point when cτ τ= . Hence, there is a minimum attrac-
tion strength that is needed to introduce a phase separation. 
For cτ τ> , the systems are stable. cτ  is a function of the size 
ratio, x, and its dependence on x is estimated and fitted with 
an empirical formula. Knowing this value of cτ  is critical to 
tune the stability of a binary SHS system. Future experimental 
work is necessary to check the accuracy of our theoretical 
results. The volume fractions for the small and large particles 

for this singular point are also studied as a function of the size 
ratio.

For a fixed size ratio, the spinodal decomposition island 
expands its area when the attraction strength is increased. 
When the attraction strength is large enough, the spinodal 
island reaches a saturation boundary. The asymptotic value of 
the spinodal island at infinitely strong attraction strength is very 
sensitive to the size ratio between small and large particles.

The pair distribution function of colloidal particles, g(r), 
is also calculated for different small particle concentrations, 
from which the effective pair potential is estimated at small 
concentrations of large particles. The main feature of the 
effective pair potential is a square well hard sphere interac-
tion, where its range is the size of the small particles. Its attrac-
tion strength is determined by the volume fraction of small 
particles. When increasing the small particle concentration, 
repulsive barrier in a certain range of the interaction distance 
can appear in the effective potential even though the overall 
interaction is still attractive. However, despite the complex 
details of the effective potential obtained from the binary sys-
tems with the bridging attraction, the structure factor of large 
colloidal systems can be always approximated by an equiva-
lent one-component system where the inter-particle potential 
can be simplified to Baxter’s SHS potential. This immediately 
implies that the Noro–Frankel’s extended law of the equa-
tion of state is not only valid for purely attractive potentials, 
but also for more complex potentials including repulsive fea-
tures as long as the overall interaction is still short-ranged and 
B2
∗ is still dominated by the attractive potential.

The percolation and binodal transitions are studied for our 
binary systems by using a mapping method proposed previ-
ously, which works quite well when x  <  0.15 and 2τ< . The 
percolation region shrinks with size ratio decreasing. The 
binodal transition region expands when the size ratio 
decreases.

There are many systems that can be approximated by a 
bridging attraction model, such as oppositely charged colloidal 
particles and proteins with counterions of large valency. Our 
results here can aid the design of new colloidal systems with 
desired stability or instability, and support the understanding 
of complex phenomena in concentrated protein solutions.
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