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The full 3-D scattered field above finite sets of fea-
tures has been shown to contain a continuum of spa-
tial frequency information, and with novel optical
microscopy techniques and electromagnetic modeling,
deep-subwavelength geometrical parameters can be de-
termined. Similarly, by using simulations, scattering
geometries and experimental conditions can be estab-
lished to tailor scattered fields that yield lower para-
metric uncertainties while decreasing the number of
measurements and the area of such finite sets of fea-
tures. Such optimized conditions are reported through
quantitative optical imaging in 193 nm scatterfield mi-
croscopy using feature sets up to four times smaller in
area than state-of-the-art critical dimension targets. ©

2016 Optical Society of America
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Continuous advances in photolithographic technology, pro-
cesses, and materials have led to a downward scaling of the
critical dimensions (CDs) of semiconductor devices. These CDs,
often correlating to the line width of the features of interest,
are presently below 20 nm and given current trends will likely
reach the atomic scale in the mid-2020s [1]. Current metrology
techniques are being refined to meet the challenges presented
by such small features.

The industrial workhorse for CD metrology is optical scat-
terometry [2], as optics provides lower cost, greater areal cover-
age, and non-destructive measurements. The measurement of
the CDs for features of interest is interpolated by evaluating the
optical scattering from several multi-line arrays positioned on
the scribe lines, outside the active device area. When the incident
light underfills the target, the array in simulations can be treated
as a grating. When the beam overfills the target, "spurious"
scattering and reflections arise that must be dealt with, although
some metrology systems collect not only the 0th order-scattering
but also the ±1st orders to augment their CD measurements [2].
Research is leading to reductions in the size of scatterometry

targets, with some recent projections of targets as small as 12 µm
x 12 µm in area for CD scatterometry [3] and 10 µm x 10 µm for
diffraction-based overlay metrology [4].

A recent paper [5] published by our group has demonstrated
quantitative critical dimension measurements as small as 16 nm
with parametric uncertainties as small as 1 nm or less. Three
30-line arrays with deep-subwavelength dimensions were mea-
sured quantitatively, with the narrowest of these lines being
approximately 30 times smaller than the wavelength of the
light, λ = 450 nm, used to measure them. Quantitative measure-
ment of these features was enabled by choosing a geometrical
model from limited prior information, completing several elec-
tromagnetic simulations, using an in-house implementation of
the rigorous coupled-wave analysis (RCWA) [6], as functions of
the parameters of that model, normalizing the simulated scat-
tered fields using the observed tool functions, calculating images
from those normalized fields, and estimating the model param-
eters and their uncertainties, including potential correlations,
using nonlinear regression. Innovations in structured illumina-
tion [7], tool characterization and Fourier domain normaliza-
tion [8], systematic error estimation, a priori information, and
3-D scattered light field analysis were all critical to unlocking
deep-subwavelength information from sets of images acquired
through-focus.

In this Letter we optimize this alternative optical method-
ology for λ = 193 nm, the shortest wavelength used with the
National Institute of Standards and Technology’s (NIST) scatter-
field microscopes [7]. This technique uses the broad continuum
of scattered spatial frequencies that is inherent to a finite grat-
ing in order to parametrically determine the CDs of a finite
array of features. The software used in the present study is the
commercially available JCMsuite[9], a solver for time-harmonic
Maxwell’s equations and other applications using the finite el-
ement method (FEM). The FEM approach together with the
use of perfectly matched layers as absorbing boundaries makes
it possible to investigate the scattering from a variety of non-
periodic 2-D and 3-D geometries. For these simulations Köhler
illumination is assumed, hence the source can be treated as a su-
perposition of 12 plane waves, reducing simulation complexity.
With real space imaging, pairing a low illumination numerical
aperture (INA) with a high collection numerical aperture (CNA)
(here, INA = 0.1, CNA = 0.95) yields spatially resolved intensity
variations that are essential for determining the subwavelength

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Letter Optics Letters 2

dimensions of subfield-of-view targets with this methodology.
Key considerations in choosing the geometric models for

the simulation studies were simplicity and applicability to the
semiconductor industry, as presented in Fig. 1. The first model is
a rectangular, pure Si (n=0.85, k=2.61) cross-section with a native
SiO2 (n=1.56, k=0.0) coating, and only two geometry parameters,
the rectangle’s width and height. However, since that geometry
is not reflective of actual manufacturing geometries, a second,
more realistic, geometry model with fins buried in a SiO2 layer
was used. In the interests of simplicity again a single height and
single width parameter were floated with the sidewall angle of
the buried structure, the optical constants, and the SiO2 oxide
height all fixed. Generally speaking the parametric correlation
between the height and width parameters should be low in both
cases.

Subsequent imaging of the scattering structures requires tak-
ing only the far field data into account. Here, the Fourier trans-
form corresponding to the returning part of the total field is
determined and the Fourier spectrum falling within the CNA is
used as input to propagate the field and calculate the images at
different focus heights relative to the substrate. The sampling
rate in the x direction corresponds to a pixel size of 25 nm with
an overall range of 3 µm between -1.5 µm to 1.5 µm relative to
the center of the structure. Together with the above specifica-
tions this configuration leads to an individual data set for each
simulated intensity profile, at a given focus height that consists
of 120 data points. A representative scattering intensity profile is
shown as Fig. 1 (d). A library containing input files for JCMsuite
and example data for the above simulation setup are shown in
Code File 1 [10].

Often an experimental measurement of linear arrays is sim-
ulated using a 2-D geometry for faster computation, which im-
plicitly assumes the target to be infinitely long. Optimizing the
length of these subfield scattering targets requires testing of this
approximation. Figure 2 shows the root-mean square deviation
(RMSD) between the scattering intensity profiles for an infinite
structure and four finite structures. For Fig. 2, we assume no
natural oxide to be present for either structure to keep the 3-D
simulations within our memory constraints (512 GB). The varied
parameter in this study is the length of the finite line array, i.e.,
the extension in y direction (cf. Fig. 1), of 10 rectangular lines
at two orthogonal polarizations and 21 equally spaced focus
heights. Out-of-focus data were used in Ref. [5] over a 9 λ range
which leads here to a focal range -0.86 µm to 0.86 µm for an
infinite structure and four finite structures. The 3-D line lengths
ly vary from 1 µm to 4 µm.

Note that the distinctions for the finite line lengths are more
apparent as the focus height increases. This is due primarily to
an increase in the scattering interactions between the two ends
of these finite lines that obscure the scattered intensity profile
from the centers of the lines with increased defocus. One must
consider ly in determining the focal range z(ly)max over which
a finite length target can be used. Based on the simulation data
from Fig. 2, for length ly = 2 µm, the similarity between the
finite and the infinite model is sufficient for simulations of the
rectangular structure for |z(ly)max| < 0.5 µm, using a threshold
for the RMSD of around 0.04. As a consequence we restrict the
focal range in the simulations to 11 focus heights between -0.5
µm and +0.5 µm, leading to a total of 1320, i.e. 11·120, data
points per polarization state.

Experimental data collected using NIST’s 193 nm Microscope
support that ly can be as short as 2 µm at this wavelength. Fig-
ure 3 shows experimental images for a 2 µm and a 6 µm long
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Fig. 1. Cross-sectional views of single lines in the geometry
models used in the simulation studies. The coordinate sys-
tem is defined at the far left. (a) the “rectangular” model with
floated parameters w, h. (b) the “fins” model with floated pa-
rameters w, h. (c) 3-D schematic of the "rectangular" structure
with 10 lines without an oxide layer. (d) An intensity profile
for a single focus height and polarization perpendicular to the
lines.
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Fig. 2. Root-mean square deviation between the profiles of in-
finite line and finite line for different line lengths ly and focus
heights. (a) light polarized perpendicular to the lines, (b) light
polarized along the lines.

structure and the RMSD of the 2 µm profile going through fo-
cus as compared to that of the 6 µm array. Here the physical
microscope has a cadioptric objective lens (0.11 < NA < 0.74)
and slit illumination (INAx < 0.15, INAy < 0.7) measuring a
Si-on-Si sample (cf. Fig. 1 (a)) with nominally 80 nm pitch, thus
comparison to Fig. 2 is qualitative as the precise role of the
INA upon defocused images requires further study. As RMSD
decreases with increasing ly through 4 µm in Fig. 2, this 6 µm
line is expected to yield an intensity profile resembling that of
an infinite line, while the 2 µm line may show a focal depen-
dence. The distinction however between 2 µm and 6 µm is not
as pronounced in this experiment, which may indicate that even
smaller ly or a larger z

(
ly
)

max than those determined from the
simulations may be possible.

Quantitative analyses of parametric uncertainties from sim-
ulation data are now used to study the capability of scatter-
field microscopy to determine the geometrical parameters of
the line/fin structures described above and more importantly,
address the question of what an optimized combination of target
and experimental conditions would be that would require the
least area on the wafer while being sized large enough for an
accurate determination of the CDs using scatterfield microscopy.
Since in the regime where λ � CD metrology is only possible
using a model-based approach, we will review some basic facts
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Fig. 3. (a) xy-plane images of two 30 line structures with dif-
ferent line lengths taken acquired using the NIST 193 nm Mi-
croscope, close to best focus with light polarized along the
lines and spot size 30 µm in diameter, (b) root-mean square
deviation between the intensity profiles going through focus.

about regression, before investigating the effects of changes in
the measurement setup and in the measured targets. Note that
the approach to these simulation studies can be generalized and
is by no means tied to a particular instrument.

Following the nomenclature as provided in Ref. [11], the
number of geometric parameters and the optical properties of
the materials involved can be expressed mathematically as a vec-
tor of parameters a = {a1, . . . , ak}. In model-based metrology
the parameters of interest, e.g., the height (h) and width (w) of a
line structure, are determined by nonlinear regression. Given a
vector of measurement data {y1, . . . , yN} and a physical model
that yields simulation data {y(xi, a)} , i = 1, . . . , N that depend
on the parameters of interest a = {w, h}, and the conditions
xi under which the data has been taken, we have a nonlinear
regression for yi and y(xi, a) given by yi = y(xi, a) + εi, with
εi being the corresponding error on the i-th data point. The
error model will be reduced to a simplified, uncorrelated ran-
dom error that is scaled to the incident intensity, I0, as there
is no systematic error in the ideal microscope. Therefore, the
3σ uncertainties (coverage factor k=3) shown may be well be-
low what is experimentally achievable. We assume the random
vector ε = {ε1, . . . , εN} to be Gaussian with zero mean and di-
agonal covariance matrix V. Once the best fit value â is found,
its uncertainty can be estimated using the covariance matrix

Cov [â] =
(

D (0)T V−1D (0)
)−1

, with D (0) =

(
∂y (xi, â)

∂aj

)
,

(1)
denoting the Jacobian matrix of the model function at the best fit
value. The best fit value is usually found using gradient based
optimization algorithms. Depending on the initial guess and the
nonlinearity of the model function this might be a cumbersome
process, for each step requires the rigorous simulation of the
scattering process. We therefore generate a grid on which we
interpolate the model function, decreasing the computation time
to 0.05 s for a single evaluation of the interpolation. In order to
prevent inverse crimes [12] we both generate the input data on a
finer grid than the one we use for the regression and also add
a 0.03 · I0 uncorrelated random background noise to it, hence
V = (0.03)2 · IN , with IN denoting the N-dimensional identity
matrix. Note that for the sake of simplicity and reduction of
computation time this error model is slightly less complicated
compared to the full V matrix approach used in Ref. [5] that has
been used to account for correlated errors.

We can now investigate how the parametric uncertainties
change with respect to the structure itself. More precisely the to-

tal number of lines or fins is varied in this next simulation study.
From an industrial point of view this directly addresses how
large the target needs to be for metrological purposes. Several
libraries were generated for increasing numbers of lines and fins,
from 2 to 20 in steps of 2. The input data corresponds to a nomi-
nal line width of 20 nm and a height of 35 nm for the rectangular
structure and a nominal line width of 25 nm and a height of 40
nm for the fins, with random background noise added in both
cases. Once the best fit values were found their uncertainties
were estimated using Eq. (1). From the results, found in Fig. 4,
one can see the target size can be reduced to 12 lines or 12 fins
without losing too much accuracy. Therefore from these simula-
tions, the patterned area of an optimized, 193 nm target could be
as small as 0.7 µm x 2 µm, however an unpatterned buffer area
around the target would increase the actual size closer to 5 µm x
5 µm to minimize optical interactions with its surroundings. A
more conservative estimate of 6 µm x 6 µm would still result in
a four-fold reduction in area compared to the 12 µm x 12 µm CD
scatterometry target from Ref. [3]. However there is a possible
trade off in time as real space images are collected at multiple
focus heights, compared to a single image of the pupil plane for
that CD scatterometry target.

5 10 15 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Lines

3
 σ

 [
n
m

]

Rectangles λ=193 nm

 

 

3 σ
width

3 σ
height

5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Fins

3
 σ

 [
n
m

]

Fins λ=193 nm

 

 

3 σ
width

3 σ
height

(a) (b)

Fig. 4. Dependence of the estimated uncertainties on the num-
ber of lines (a) and fins (b) of the investigated structure.
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Fig. 5. Dependence of the estimated uncertainties on the num-
ber of focus heights for rectangular profiles (a) and fins (b)
using both polarizations, error bars based on 10 different per-
mutations for the drawing order of the focus heights.

Thus, we must investigate the dependence of the parametric
uncertainties on the number of focus heights. The resulting para-
metric uncertainties as a function of the number of focus heights
are presented in Fig. 5. Compared to using only a single focus
height, uncertainties can be dramatically improved by adding
as few as three or four focus heights. Of course the estimated
uncertainties do not only depend on the number, but also on the
actual focus heights selected, especially in the early stages of this
process, when only one or two positions are considered. Since
there are (n

k) possibilities to choose k focus heights from a total
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of n available focus heights it is nearly impossible to determine
the optimal order for all possible permutations. We therefore
report the mean and the standard deviation of the estimated
uncertainties based on 10 different permutations of the drawing
order. The general trends with respect to the number of focus
heights appear to hold independent of the order in which they
are drawn.

Underlying reasons that lead to these estimated uncertainties
can be seen by examining the corresponding χ2 surfaces, i.e.,
the difference between yi and y(xi, a) in dependence on a, of
the different setups. The differences in the shapes in Fig. 6
illustrate the complex interplay of the parametric uncertainty,
the sensitivity (slope) and parametric correlation (skewness),
and as can be seen in the differences between fins and rectangles,
defies generalization for arrays of arbitrary features, however a
decrease in skewness, i.e. a smaller parametric correlation, with
increasing number of lines/fins can be observed here.
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Fig. 6. Resulting χ2-surfaces corrected for the minimum χ2

value for three different numbers of lines and fins, note the in-
creasing steepness due to a higher sensitivity, and decreasing
skewness, due to decreasing parametric correlation.

The presented methodology can be applied to smaller critical
dimensions, as are expected from the semiconductor industry,
though is uncertainty in the design of future semiconductor
generations, e.g. sub-7 nm nodes may include concepts such as
gate-all-around structures [13]. As an example we present how
the accuracy scales with a smaller CD using the fin geometry.
Figure 7 shows the χ2-surface for a scaled-down 12 fin structure
with w = 7 nm, h = 11 nm, ∆top = 2 nm, ∆bot = 2.5 nm, r = 0.5
nm and a pitch of 16 nm. Without modifications to the simulated
microscope setup, the parametric accuracy is almost identical
even for a decrease in CD from 20 nm to 7 nm.

These simulation studies demonstrate that combinations of
reduced line lengths, and reduced numbers of lines in a finite
set of features can yield target sizes comparable to those in use
in nanoelectronics manufacturing with a potential for up to a

10
11

12

6

7

8

0

500

1000

Height [nm]

#Fins=12

Width [nm]

χ
2

Height [nm]

W
id

th
 [
n
m

]

 

 

10 11 12
5.5

6

6.5

7

7.5

8

8.5

0

500

1000

Fig. 7. Resulting χ2-surfaces corrected for the minimum χ2

value for the 7 nm wide fin structure.

four-fold decrease in target area. For favorable quantification of
even smaller deep-subwavelength features, these optimization
methods should be repeated to enable more thoughtful choices
in geometrical layout and experimental design.
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