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Despite more than 40 years of research in condensed-matter physics, state-of-the-art approaches for simu-
lating the radial distribution function (RDF) g(r) still rely on binning pair-separations into a histogram.
Such methods suffer from undesirable properties, including subjectivity, high uncertainty, and slow rates
of convergence. Moreover, such problems go undetected by the metrics often used to assess RDFs. To
address these issues, we propose (I) a spectral Monte Carlo (SMC) quadrature method that yields g(r) as an
analytical series expansion; and (II) a Sobolev norm that assesses the quality of RDFs by quantifying their
fluctuations. Using the latter, we show that, relative to histogram-based approaches, SMC reduces by orders
of magnitude both the noise in g(r) and the number of pair separations needed for acceptable convergence.
Moreover, SMC reduces subjectivity and yields simple, differentiable formulas for the RDF, which are useful
for tasks such as coarse-grained force-field calibration via iterative Boltzmann inversion.
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I. INTRODUCTION

In simulations of condensed matter systems, one can
barely overstate the importance of the radial distribution
function (RDF) g(r). To name only a few applications,
g(r) is used to (i) link thermodynamic properties to
microscopic details;1–3 (ii) compute structure factors for
comparison with X-ray diffraction;4,5 and more recently,
(iii) calibrate interparticle forces for coarse-grained
(CG) molecular dynamics (MD).6–11 Indeed, the RDF
is such a key property that in the past few years, much
work has been devoted to estimating g(r) via parallel
processing on GPUs.12 Given these observations, it
is thus surprising that state-of-the-art techniques still
construct g(r) by binning simulated pair-separations
into histograms, with little thought given to developing
more efficient methods.3,13

In this article, we address this issue by proposing a
spectral Monte Carlo (SMC) method for computing sim-
ulated RDFs. The key idea behind our approach is to
express g(r) in an appropriate basis set and determine
the mode coefficients via Monte Carlo quadrature esti-
mates. Relative to binning, we show that this approach
decreases subjectivity of the analysis, thereby reducing
both the noise in g(r) and the number of pair separa-
tions needed to generate useful RDFs. To support these
claims, we also discuss how traditional L2 (or sum-of-
squares) metrics are insufficient for assessing convergence
of g(r) and propose a Sobolev norm14 as an appropriate
alternative.

The motivation for this work stems from the fact that
g(r) is increasingly being used in settings in which the
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details of its functional form play a critical role. For
example, scientists now routinely simulate untested ma-
terials in an effort to tailor their structural properties
without the need for expensive experiments;15,16 in such
applications, objectively computing RDFs is a key task.
Along related lines, structural properties are increasingly
being used to calibrate coarse-grained force-fields.6–11 In
iterative Boltzmann inversion (IBI) for MD, for example,
this is achieved by updating the ith correction to the CG
forces F (r) and energies U(r) via

Ui+1(r) = Ui(r) + kBT ln [gi(r)/gt(r)] (1)

Fi(r) = −∇Ui(r), gi(r) = gi(r, S[Fi]), (2)

where kBT is the temperature, U0(r) = −kBT ln [gt(r)]
for a target RDF gt, and gi(r) is computed from a CG
MD simulation S that uses Fi(r) as the CG force.6–11

Ultimately, the success of this strategy relies on being
able to differentiate g(r), which requires that simulated
RDFs be accurate and relatively noise-free.

In this light, we therefore emphasize that histogram-
based RDFs suffer from an inability to objectively con-
trol uncertainties. This arises for several reasons. For
one, histogram bin-sizes are subjective parameters that
limit the resolution of small-scale features, and often one
must trade this resolution for reduced noise. Smoothing
is sometimes used as an alternative to increasing bin-
sizes, but this introduces difficult-to-quantify uncertain-
ties that depend on the choice of method. Moreover,
finite differences and/or derivatives are known to am-
plify noise, which renders tasks such as CG force-field
calibration more difficult. Given that (i) a correspond-
ing experimental RDF may be unavailable for compari-
son, and (ii) simulation resources are often at a premium,
histogram-based approaches therefore place undue bur-
den on modelers to obtain accurate results.

Conceptually, SMC overcomes these limitations by
generalizing the notion of a histogram bin to include or-
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thogonal functions, such as cosines and Legendre polyno-
mials. As a result, the corresponding RDFs are virtually
guaranteed to be well-behaved because the underlying
functions are smooth. Moreover, this approach allows
us to invoke known results that (i) establish conditions
for the convergence of an orthogonal expansion to g(r),
and (ii) estimate decay rates of the associated spectral
coefficients. Armed with this, we can ultimately assess
the accuracy of our reconstructions by determining when
noise (associated with the finite system size) inhibits our
ability to determine these coefficients, thereby providing
an objective measure of the quality of an RDF.

In order to better place our method in the context
of the computational physics literature, we note that
“Monte Carlo quadrature” (our main analytical tool)
refers to a method of evaluating integrals, not a simu-
lation method per se. In more detail, SMC defines the
relevant spectral coefficients in terms of integrals that
cannot be evaluated analytically. However, these inte-
grals can be well-approximated via random evaluations
of their integrands, which is essentially the definition of
Monte Carlo quadrature. In our case, the points at which
we perform these evaluations are given to us by the sim-
ulation, irrespective of its underlying algorithm. There-
fore, the method we propose can be suitably adapted to
Monte Carlo simulations, etc., although our main focus
here is MD.

While the concept of “Monte Carlo quadrature” may
be unfamiliar to some readers, we point out, however,
that the method is common in computational science.
One has only to note that expectation values (which are
often integrals) of continuous physical quantities are typ-
ically estimated by averaging a fixed number of random
realizations thereof. What is more, this can be done
without recourse to histograms; e.g. volumes need not
be binned before computing an average density in an
NPT simulation. In this light, SMC is therefore a nat-
ural extension of methods already employed within the
community. To further strengthen this point, we bring
the discussion full circle by showing that histogram-based
approaches are actually a specific form of SMC that use
indicator functions as the spectral basis; see Sec. IV.

Because a central theme of this paper is to compare
SMC and histogram-based methods, the reader should
be aware that we do not seek to “optimize” the latter in
an effort to sharpen the discussion. While this may be a
minor deficiency of our presentation, it is worth noting
that numerous authors in the statistics community have
proposed different criteria for what constitutes an “opti-
mal” bin size, with little consensus among them; see, e.g.
Refs. 17–20 and references contained therein. Alone, this
observation reinforces one of our central themes, namely
that histograms are subjective. What is more, many of
these approaches make strong assumptions that are not
always valid for RDFs. Given the vastness of this litera-
ture, we therefore feel that an in-depth review obscures
our overall message. As a compromise, we have chosen
examples that we feel explore the realities of histograms

while being faithful to the benefits of SMC.
The rest of the manuscript is organized as follows. In

Sec. II, we formulate SMC and discuss practical issues
related to its implementation. Section III compares a
variety of SMC calculations with histogram-based coun-
terparts, highlights the relative efficiency of the former,
and motivates the usefulness of Sobolev norms for com-
paring RDFs. Section IV discusses the deeper connec-
tions between SMC and histogram-based approaches and
considers potential complications that sometimes arise in
practice.

Finally, upon request, we are willing to provide sample
Matlab scripts that show how to use SMC and perform
associated computations on benchmark systems.2122

II. SPECTRAL MONTE CARLO

A. Formulation

Given that typical RDFs are smooth functions, we pro-
pose to express g(r) via the expansion

g(r) ≈ gM (r) =

M∑
j=0

ajφj(r) (3)

where φj(r) are orthogonal basis functions on the domain
[0, rc], rc is a cutoff radius beyond which we do not model
g(r), aj are coefficients to-be-determined, and M is a
mode cutoff. Formally, the aj are determined by invoking
the orthogonality relationship of φj(r), viz.∫ rc

0

dr φj(r)φk(r) = δj,k, (4)

where δj,k is the Kronecker delta. This yields

aj =

∫ rc

0

dr φj(r)g(r) =

∫ rc

0

dr φj(r)
N(r)

4πr2ρ
, (5)

where ρ is the bulk number density and N(r)dr is the
expected number of particles in a spherical shell with
radius r, thickness dr, and a particle at the origin.

In practice, Eq. (5) cannot be evaluated analytically,
since N(r) is unknown. However, MD simulations yield
random pair-separations23 distributed according to
N(r)dr. Thus, we replace Eq. (5) by its Monte Carlo
quadrature estimate24

aj ≈ āj =
N (rc)

npairs

npairs∑
k=1

φj(rk)

4πr2
kρ
, (6)

where N (rc) is the expected number of particles in a
sphere of radius rc (given a particle at the origin), rk is
the kth pair separation, and npairs is the total number
of such separations. Conceptually, Eq. (6) can be un-
derstood by noting that (1/n)

∑n
k=1 Φ(rk) is the stan-

dard formula for the sample average of the function
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Φ(rk) = φj(rk)/(4πr2
kρ) given n simulated outputs rk.

Thus, the prefactorN (rc) simply adjusts for the fact that
the normalization of g(r) is not one, but instead depends
on the number of particles in a sphere of radius rc.

In order to simplify Eq. (6), note that npairs = ncnppc,
where nc is the number of MD configurations (i.e.
timesteps or “snapshots”) used to compute g(r), and nppc

is the number of pairs-per-configuration. The latter is
well approximated by

nppc ≈ N (rc)Ntot/2, (7)

when Ntot (the number of particles per configuration)
and rc are large. This identity arises as follows. First,
the total number of pair separations is

(Ntot

2

)
≈ N 2

tot/2
when Ntot → ∞. Only considering pairs separated by
r ≤ rc, we reduce the total number of pairs by a factor
of N (rc)/Ntot. We require rc to be large enough so that
the relative fluctuations in N (rc) are small.

Given this, we next substitute Eq. (7) into Eq. (6) to
find25

āj =
2

Ntotnc

npairs∑
k=1

φj(rk)

4πr2
kρ
, (8)

which is the desired estimate of the spectral coefficients.
As opposed to histogram-based approaches, this expres-
sion provides more objective control over uncertainties
in simulated RDFs. Specifically, for many choices of
φj(r), the mode coefficients decay as |aj | < Cj−p (or
even e−pj), where the constant C and rate p depend on
the smoothness of g(r).26 Furthermore, for such bases,
gM (r) converges to g(r) uniformly in M .27 This implies
that in principle, the maximum error in gM (r) is con-
trolled through M . However, Monte Carlo sampling also
introduces uncertainty in aj , which can be estimated via

σ2
j =

4

(Ntotnc)2

∑
k

[
āj − φj(rk)/4πr2

kρ
]2
. (9)

This suggests that the largest meaningful mode cutoff
M? can be estimated from |a?M | = O(σ?

M ), which corre-
sponds to the noise-floor of āj (cf. Sec. II B for a practical
algorithm to estimate M?). Given the uniform conver-
gence of Eq. (3), we then conclude that: (i) the error
in gM (r) is the greater of either O(σM ) or O(aM ) for
any cutoff; and (ii) gM (r) can model all features whose
characteristic size is greater than rc/M .

B. Practical considerations about the basis and mode
cutoff

Generally speaking, the task of choosing a suitable ba-
sis is straightforward. It is well known, for example,
that if g(r) is twice differentiable and g′(0) = g′(rc) = 0
(which should approximately hold if rc is large enough),

then φj(r) =
√

2/rc cos(jπr/rc) converges uniformly
and yields a series whose derivative converges to g′(r).28

FIG. 1. Two RDFs computed using a cosine basis and Legen-
dre polynomial basis. The latter has been shifted vertically by
1 since it would otherwise obscure the cosine reconstruction.
Differences between the reconstructions are on the order of
10−3. The inset shows the behavior of the SMC reconstruc-
tions with and without the patching function described in
Eq. (10).

Moreover, aj ≤ O(j−2), although exponential conver-
gence is expected when g(r) is infinitely differentiable
(cf. Fig. 2).26 Orthogonal polynomials (e.g. Legendre or
Chebyshev) are also reasonable choices, as they provide
uniform approximations and similar rates of convergence,
irrespective of boundary conditions.26 For RDFs whose
slopes do not vanish as r → 0 or r → rc (e.g. due to
long-range correlations), such bases may behave better
than trigonometric functions; see also the discussion on
patchy particles below.

To illustrate these properties, we tested SMC on a
1000-frame simulation of 1000 TIP4P water molecules
in LAMMPS.29–31 To generate the underlying data, we
first equilibrated the system for 0.1 ns at 300 K using an
NPT simulation. Then, we ran a 1 ns NVT simulation
(Nosé-Hoover thermostat) on the final equilibrated sys-
tem, which had a density of ρ = 0.996 g/cm3. Configura-
tions were output every 1 ps. Figure 1 shows two separate
O-O RDFs computed using 101 cosine modes and 145
Legendre polynomials (see below for discussion of choos-
ing M). The latter is shifted up since the curves would be
indistinguishable if superimposed. Notably, both RDFs
are smooth and generally well behaved.

Although not visible in the main figure, the inset shows
that the reconstructions oscillates slightly about zero as
r → 0, which is typical of spectral expansions. In all
of our applications (e.g. IBI), we have found that this
behavior is not problematic for practical computations
and is reduced by simultaneously using more data and
larger mode cutoffs. Moreover, if necessary one can lo-
cally replace the spectral expansion with an exponential
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(or similar) patching function of the form

g = b exp(−c/rp), r < r̃ (10)

where r̃ is a user-defined separation to the right of the
last negative value of gM (r). The free parameters b, c,
and p can be determined by matching g(r̃), g′(r̃), and
g′′(r̃) to gM (r̃), g′M (r̃), and g′′M (r̃), respectively, which
yields

p = r̃

[
g′M (r̃)

gM (r̃)
− g′′M (r̃)

g′M (r̃)

]
− 1

c =
g′M (r̃)r̃p+1

pgM (r̃)

b = gM (r̃) exp[c/r̃p].

We typically choose r̃ to be the smallest value r̂ for which
gM (r̂) = 0.02 and gM (r) ≥ gM (r̂) when r > r̂.

Figure 2 illustrates an automated method for estimat-
ing the largest meaningful mode cutoff M?. We first
define a function of the form

α(j) = be−pjΘ(j−c)−pcΘ(c−j), (11)

where b, p, and c are positive free parameters and Θ(x)
is the Heaviside step function. Conceptually, α(j) is mo-
tivated by the observation that for an infinitely differen-
tiable g(r), the mode weights go as |aj | ∼ e−pj (for some
power p > 0) until they hit the noise floor, at which point
they should be approximately constant. Thus, fitting the
logarithm of Eq. (11) (via, e.g. least-squares) to log |aj |
yields an estimate c of the first mode at which |aj | no
longer decays exponentially. This is illustrated in Fig. 2
at the point where the two lines intersect. Rounding the
corresponding c to the nearest integer thereby produces
an estimate M?.

Figure 3 shows an example of how SMC can recon-
struct RDFs with discontinuities due to, e.g. excluded
volume effects. The underlying system is described in
Ref. 32. Interestingly, each particle is a hard sphere (ra-
dius r = 1/2, dimensionless) with 5 attractive or “sticky”
patches; thus, in addition to the discontinuity associated
with the excluded volume, we also expect correlations
to be large for values of r immediately to the right of
the discontinuity. To illustrate this, we analyze a tra-
jectory with 800 particles and 500 frames and a (cubic)
box-length of 10 (dimensionless) units.33 In order to cor-
rectly account for the discontinuity, we only decompose
g(r) on the interval 1 ≤ r ≤ 5 and use a Legendre ba-
sis (which we map from [−1, 1] to [1, 5]). For r < 1 we
set g(r) = 0. Notably, the SMC reconstruction is able to
successfully predict a sharp transition in the correlations.
For comparison purposes, we also show histogram recon-
structions having a bin widths of 0.1, 0.025, and 0.001 in
Fig. 4.

When compared to Figs. 1 and 2, the inset to Fig. 3
reveals an interesting feature of the shifted Legendre rep-
resentation. Notably, the RDFs for both water and the

FIG. 2. A method for estimating the largest meaningful mode
cutoff M? by finding the noise floor. Here we fit log[α(j)] to
log |aj | to estimate the mode c at which the weights no longer
obey the power law discussed above Eq. (9). For the cosine
modes applied to 1000 frames of a 1000-molecule TIP4P water
simulation, we find that only 101 modes are required to hit
the noise floor.

FIG. 3. SMC radial distribution function for patchy, hard-
sphere particles discussed in Ref. 32. See main text for details
of the spectral reconstruction.

patchy system have roughly the same number of oscilla-
tions, whereas far fewer modes are required for the latter.
Heuristically, we can understand this observation by ap-
pealing to the rule of thumb that a mode φj(r) has j os-
cillations. Thus, if the smallest characteristic length scale
of interest (associated with a feature of the RDF) has a
length ` < 1 (taking rc = 1 non-dimensional), then at a
minimum we need 1/` modes to adequately reconstruct
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FIG. 4. Comparison of SMC versus three different histogram
reconstructions for the RDF of the patchy system. The insets
further resolve the first and second peaks. The 0.1 and 0.025
bin-width histograms under-resolve the RDF relative to SMC,
especially at the peak, whereas the 0.001 bin-width RDF is
noisy.

that feature. In this light, large sub-domains where
g(r) ≈ 0 (i.e. for small r) followed by a sharp rise require
many modes to accurately reconstruct, since the char-
acteristic length-scale of the transition is small. How-
ever, by limiting the spectral reconstruction to the do-
main [1, 5], the analysis of Fig. 3 eliminates the first and
most rapid transition due to the discontinuity, thereby
allowing us to decrease M . While we do not pursue this
observation further, it nonetheless suggests that shifted
spectral representations may be useful for addressing the
oscillatory behavior in the inset of Fig. 1.

III. MOTIVATING SOBOLEV NORMS THROUGH
SAMPLE COMPUTATIONS

Figure 4 illustrates an issue that first motivated SMC;
without a priori knowledge of the system at hand, it may
be difficult to accurately reproduce an RDF using his-
tograms. Furthermore, the figure makes it obvious that
increasing the bin width trades uncertainty along the ver-
tical axis for uncertainty along the horizontal axis, which
may be unacceptable in practical settings. To further
explore this issue, we consider a few benchmark systems
and sample computations that are often performed with
RDFs. Using this discussion, we highlight another key
theme of our work: traditional sum-of-squares methods
for comparing and assessing RDFs may be inadequate in
practical settings.

FIG. 5. RDF of atomistic polystyrene (PS) in CG coordi-
nates using the histogram method (black, rough curves) and
SMC (red, smooth curves). The upper and lower pairs are
calculated with nc = 500 (shifted up by 0.05) and nc = 104

snapshots. The inset displays the spectral coefficients aj (left
scale) and log |aj | (right scale) for the first 60 modes.

To begin, we compute the RDFs of a CG molecular
dynamics polystyrene (PS) model run in LAMMPS. We
first run a 10 ns, atomistic NVT simulation of amor-
phous, atactic PS (10 chains of 50 monomers) interact-
ing through the pcff forcefield at 800 K and ρ = 0.758,
with configurations output every 1 ps.34 This trajectory
is then mapped into CG coordinates at a resolution of 1
CG bead per monomer (located at the center of mass),
so that Ntot = 500. Each bead is roughly 0.5 nm in
diameter. Next, we calculate CG RDFs via (i) a his-
togram with 1400 bins, each having a width of 1 pm on
the interval 0 ≤ r ≤ 1.4 nm, and (ii) SMC with a cosine
basis. Figure 5 shows the results of these computations
for nc = 500 and nc = 104. The benefits of the spectral
approach are readily apparent, especially when nc = 500.
For nc = 104, noise in the histogram method decreases
by roughly a factor of 4 or 5 (as expected from the central
limit theorem), but SMC is still dramatically smoother.

To further illustrate the smoothness of gM (r), we use
iterative Boltzmann inversion [cf. Eq. (2)] to calibrate
CG MD forces for PS using first the histogram method
and then SMC. For the former, we used a central finite-
difference scheme to approximate the Fi on a grid with
a 1 pm resolution.35 For SMC, we took M = 60 and
computed all forces Fi analytically. More specifically,
note that when Eq. (3) is differentiable [and more impor-
tantly, when the derivative converges to the derivative of
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g(r)], one can rewrite Eqs. (2) as

Ui+1(r) = Ui(r) + kBT ln

[∑
j ai,jφj(r)

gt(r)

]
(12)

Fi+1(r) = Fi(r) + F0(r)− kBT
∑

j ai,jφ
′
j(r)∑

j ai,jφj(r)
, (13)

where ai,j is the jth mode for the ith IBI update.36 Here
we took the respective nc = 104 RDFs in Fig. 5 as the
target gt; that is, we do not mix binning and SMC com-
putations. Figure 6 shows the results of these compu-
tations. Notably, the top subplot shows that after five
iterations of IBI, the histogram-based force has extreme,
high-frequency noise (despite taking nc = 104), whereas
the SMC force does not.

To make this comparison more quantitative, we define

||g||2L2 =
1

rc

∫ rc

0

dr g(r)2 ≈
nbins∑
j=1

g2
j∆rj

rc
(14)

where the sum is used for the histogram reconstructions,
gj is the RDF evaluated in the jth bin, nbins is the
number of bins, and ∆rj is the width of the jth bin.
Many works invoke ||g − gt||L2 (or variants thereof) to
assess when a given RDF is sufficiently converged to
gt.

6,37,38 However, Fig. 6 shows that both the histogram
and SMC RDFs converge in L2 to their respective gt at
about the same rate, suggesting that this norm is not
strongly affected by high-frequency fluctuations. More-
over, ||g − gt||L2 does not assess the extent to which the
force F (r) converges when using algorithms such as IBI.
To account for such effects, we instead invoke a Sobolev
norm14

||g||2H1 = ||g||2L2 + ||g′(r)||2L2 , (15)

where we approximate g′(r) ≈ (gj+1−gj−1)/(rj+1−rj−1)
for the histogram reconstructions (rj are the bin cen-
ters). Physically, the second term of Eq. (15) assesses
how smoothly g → gt; equivalently, ||g − gt||2H1 deter-
mines when CG forces (as opposed to just energies) are
converging in Eq. (2). This extra information reveals a
stark difference between the histogram and SMC recon-
structions insofar as the former does not improve in an
H1 sense (i.e. the IBI forces never converge). Moreover,
given that the H1 and L2 norms of the SMC reconstruc-
tion quickly overlap, it is clear that the difference with
the H1 norm of the histogram reconstruction is due to
its high-frequency content.39

To test the robustness of SMC and compare with
smoothing techniques, we also used 120 cosine modes
to construct the O-O g(r) for a 5000-molecule TIP4P
water simulation; cf. Fig. 7. After 0.6 ns of equilibra-
tion, we ran a 0.2 ns NVT production run and output
configurations every 1 ps (nc = 200). We take the cor-
responding 120-mode SMC reconstruction as a baseline
for comparison, given its known convergence properties.
For histogram-based approaches, we first partitioned the

FIG. 6. Top: CG force for PS calculated via IBI with nc =
104. The black curve (rough) is the histogram method result,
whereas the red (smooth) curve is the SMC result. Bottom:
||gi− gt||2L2 (open symbols) and ||gi− gt||2H1 (closed symbols)
norms for the histogram (triangle) and SMC (circle) methods
as a function of IBI iteration. Note that ||g − gt||2H1 for the
histogram method uses the right axis and is off the scale of
the left axis. The inset shows the corresponding RDFs. The
black curve is the target RDF; it0 (red) and it5 (blue) denote
the initial CG RDF and the RDF after 5 IBI iterations.

domain 0 ≤ r ≤ 0.9 nm into 1800 intervals. After bin-
ning pair-separations from the first 20 frames, we used
two separate smoothing algorithms to reduce noise: (i)
a n-point moving mean with n = 5 and n = 15; and
(ii) a Gaussian-kernel that convolves the histogram with
K(x) = exp[−0.5(x/h)2] for h = 1 pm and h = 5 pm.
Figure 7 illustrates the key problem tied to the subjec-
tivity of such methods: too little smoothing yields noisy
RDFs (bottom inset), whereas too much washes out rel-
evant features (top inset).

This figure also suggest that as a function of nc, SMC
converges to g(r) more quickly than histogram-based ap-
proaches. To quantitatively test this, we estimated g(r)
for CG PS (cf. Figs. 5 and 6) as a function of nc and
computed the corresponding L2 and and H1 norms rela-
tive to the nc = 104 case (which now acts as gt). Figure
8 shows the results of this exercise. Most apparent, ev-
ery norm decays as roughly 1/nc. Intuitively we expect
this from the central limit theorem, since the variance in
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FIG. 7. Comparison of RDFs constructed using 20 frames of a
5000-molecule water simulation. The main figure shows that
SMC captures both the sharp peak and the rapid transition
around r = 0.25 nm. The insets compares the 20-frame SMC,
kernel-smoothed, and moving-average RDFs relative to a 200-
frame SMC RDF (dark purple). See main text for discussion.

an average of N independent, identically distributed ran-
dom variables should decay as the inverse of N . However,
the SMC norms (circles) are at least an order of magni-
tude or more smaller than their histogram counterparts
(squares and triangles). This suggests that the overhead
required to generate pair separations can be reduced by
a factor of 10 or more simply by using SMC.

IV. CONCLUDING DISCUSSION

A. Limitations of SMC

As discussed previously, the inset of Fig. 1 illustrates a
problem that can arise when spectral expansions attempt
to represent functions that behave like typical RDFs at
small r, e.g. as exp(−1/rp) for p > 0. Thus, SMC may
not be useful for representing the small-separation be-
havior of g(r). Such problems, however, are not nec-
essarily unique to SMC. In more detail, the condition
g(r) = O[exp(−1/rp)] as r → 0 implies that the proba-
bility of finding two particles separated by a small dis-
tance is a exceedingly small, and therefore a rare event.
Thus, particle-based methods that return finite collec-
tions of pair separations do not provide enough data
to adequately sample such regions, irrespective of the
method for estimating g(r).

FIG. 8. ||g − gt||2L2 and ||g − gt||2H1 as a function of nc for
the 5th IBI update to the PS model in Fig. 6. Here gt is the
nc = 104 RDF. Squares denote histogram estimates computed
using 280 bins. All other symbols correspond to 1400 bins and
have the same meanings as in previous figures.

B. Limitations of the H1 norm

Figure 8 shows that increasing the histogram bin-width
leads to seemingly smoother reconstructions of g(r). This
arises from the fact that more data points contribute to
any given bin, thereby decreasing fluctuations. However,
this does not necessarily improve the accuracy of such
reconstructions, since bin counts are then averages taken
over increasingly large domains. Thus, the H1 norm we
propose should be used with caution, since it is likely
not a valid assessment of histograms when the number of
bins becomes too small. Along similar lines, we do not
pursue quantitative comparison with convergence rates
of smoothed histograms; such an analysis would require
quantification of the uncertainties induced by smoothing,
which can be highly non-trivial to estimate.

C. Connection between SMC and histograms

Analytically, the connection between SMC and his-
tograms can be understood by framing the latter in the
context of Eq. (8). Specifically, Eq. (8) reduces to a his-
togram bin count when the φj(r) are indicator functions
I[rj ,rj+1], i.e. constants on an interval (i.e. bin) [rj , rj+1]
and zero otherwise. These observations suggest that the
φj act as a generalized histogram “bin.” The fact that
φj(rk) may be non-zero for multiple j indicates that each
pair separation rk contributes to multiple “bins,” albeit
in unequal amounts. Stated differently, SMC bins data
according to the characteristic wavelengths with which
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the rk fall on the domain [0, rc].

D. Typical computation times and associated benefits

The aforementioned connection between SMC and his-
tograms suggests that both methods should be compa-
rable in terms of computation times, which we gener-
ally find to be true. The 1000-molecule system dis-
cussed in Figs. 1 and 2 provides a good benchmark with
M = 200. Using a highly vectorized code (which is
available upon request) on a 16-core machine, we can
serially analyze 1000 frames in less than five minutes
with Legendre polynomials and about 75 seconds using
cosines. Given that the total number of pair separations
is
(

1000
2

)
× 1000 ≈ 500, 000, 000, the script handles be-

tween 100 million and 400 million pair separations per
minute. If we parallelize over frames, the total compu-
tation time drops for both methods drops to roughly 45
seconds, or 750 million pair separations per minute. It is
also likely that typical computation times can be further
reduced, since SMC can be parallized on GPUs. Given
that we never needed more than 145 modes to faithfully
reconstruct an RDF, it is reasonable to assume that SMC
is competitive with binning in terms of computational
cost-per-pair-separation.40

It is also worth noting that cost-per-pair-separation
may underestimate the true savings of SMC. Figure 8
shows that in order to reach the same level of conver-
gence (in either L2 or H1) SMC requires roughly 1/10
to 1/100 as many frames as the corresponding binned
RDFs. Considering that atomistic MD simulations may
take days to run, the real savings in our approach may
come from needing fewer frames (and thus a shorter sim-
ulation) to generate an acceptably RDF.41

Finally, we note that that this computational speed
may nonetheless require large amounts of RAM. For a
typical 1000-molecular simulation, we frequently require
on the order of several GB of free memory to construct
relevant matrices of pair separations and mode-weights.
On a 15,625 molecule system, we have seen that 30 GB
or more RAM may be required to run a fully vectorized
version of our SMC code. In the sample scripts that are
available upon request, we attempt to indicate poten-
tial memory pitfalls and suggest methods for overcom-
ing them. Moreover, we emphasize that these issues are
specific to our programming style and can easily be cir-
cumvented through appropriate modifications. Thus, we
do not feel that this issue poses a serious problem to the
adoption of SMC.

E. Extensions

It is straightforward to generalize SMC to arbitrary
distribution functions. For example, assume that x is
a continuous random variable with mean zero and unit
variance.42 Denoting its probability density as P (x), we

can express this quantity in terms of a spectral expansion
analogous to Eq. (3). Choosing the φj(x) to be normal-
ized Hermite functions (not Hermite polynomials!), for
example, would be suitable for densities whose shapes
somewhat resemble Gaussian distributions. Noting that
realizations of x are drawn from P (x) directly, this yields

aj =

∫
dx φj(x)P (x) ≈ 1

N

N∑
i=1

φj(xi), (16)

where the xi are the N realizations of the random vari-
able x. Related ideas and extensions are currently being
written in another manuscript.
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