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Abstract. The ability to control nonlinear interactions of suspended mechanical structures offers a unique 

opportunity to engineer rich dynamical behavior that extends the dynamic range and ultimate device 

sensitivity.  We demonstrate a displacement sensing technique based on resonant frequency monitoring of 

curved, doubly clamped, bistable micromechanical beams interacting with a movable electrode. In this 

configuration, the electrode displacement influences the nonlinear electrostatic interactions, effective 

stiffness and frequency of the curved beam. Increased sensitivity is made possible by dynamically 

operating the beam near the snap-through bistability onset. Various in-plane device architectures were 

fabricated from single crystal silicon and measured under ambient conditions using laser Doppler 

vibrometry. In agreement with the reduced order Galerkin-based model predictions, our experimental 

results show a significant resonant frequency reduction near critical snap-through, followed by a 

frequency increase within the post-buckling configuration. Interactions with a stationary electrode yield a 

voltage sensitivity up to ≈ 560 Hz/V and results with a movable electrode allow motion sensitivity up to 

≈ 1.5 Hz/nm. Our theoretical and experimental results collectively reveal the potential of displacement 

sensing using nonlinear interactions of geometrically curved beams near instabilities, with possible 



applications ranging from highly sensitive resonant inertial detectors to complex optomechanical 

platforms providing an interface between the classical and quantum domains. 

 

1. Introduction 

In many sensors based on micro- and nanoelectromechanical systems (MEMS/NEMS) various 

physical stimuli are converted into displacements, which are in turn transduced into electrical signals. For 

instance, pressure sensors monitor deflection of a membrane [1], force sensors measure displacement of a 

structure acting as a spring [2], and inertial sensors extract angular acceleration from a proof mass 

displacement [3,4]. Whatever the application, small forces, that yield sub-nanometer displacements, 

present particular measurement challenges. Efforts are generally devoted to robust design of signal 

processing circuitry to overcome stringent displacement sensing requirements. 

One of the more promising and intensively researched approaches for sensitivity enhancement of 

miniaturized mechanical systems is based on monitoring device spectral characteristics instead of direct 

quasi-static displacement measurements. For example, with atomic force microscopy-based frequency (or 

phase) sensing, non-contact interactions allow topographic, localized-charge and electromagnetic-field 

imaging at the nanoscale [5,6]. While most of the current resonant MEMS/NEMS architectures are 

devoted to biochemical mass sensing [7–10]  with mass sensitivities ranging from attogram [11] to 

zeptogram [8], several configurations of resonant accelerometers [12–23], pressure [24] and angular rate 

[25–28] sensors were reported. Recently, monitoring modal amplitudes [29] and mode localizations of 

coupled resonating elements [30] showed an increased displacement sensitivity of resonant force and 

acceleration sensors. 

The most common resonant accelerometers consist of a beam connected to a movable proof mass. 

The beam is either stretched [14,19,24] or compressed axially [28,31,32] by the moving proof mass. 

These axial forces affect the effective stiffness of the beam and, as a result, its resonant frequency. 

However, generally small forces induce negligible effective stiffness changes, where the resulting 



minimal frequency changes are difficult to detect. In this scenario, required device sensitivity is often 

achieved using complex force amplification mechanisms [14,16,18,19]. Reduction of the resonant sensing 

element dimensions to the nanoscale represents an alternative method for sensitivity 

enhancement [32,33]. 

Another approach allowing effective stiffness reduction and therefore enhancement of the 

frequency sensitivity to the applied forces is based on electrostatic softening. This is a well-known 

phenomenon in MEMS that stems from the nonlinear electrostatic force dependence on the distance 

between the structure and an electrode. Since the electrostatic force also depends on the applied voltage, 

electrostatic softening is widely used for voltage-based frequency tuning and for structural stress 

compensation [12,33–36]. The softening effect manifests itself through a decrease of the device’s 

resonant frequency with an increasing applied voltage [30,33]. The voltage-controlled frequency method 

is routinely implemented in high-end sensors such as micromachined angular rate sensors (micro 

gyroscopes) [3,4]. The use of the electrostatic softening for scale factor enhancement in accelerometers 

was reported by several authors [13,17]. One of the distinguishing features of electrostatic actuation by a 

close-gap electrode is the presence of the pull-in instability. This buckling instability occurs at a critical 

voltage above which the device collapses to the electrode. Near the critical point, a region where effective 

device stiffness and frequency changes are extremely steep, maximal loading sensitivity is achieved. 

Device operation in close proximity to the pull-in instability is therefore attractive [30,33]. However, the 

possibility of device collapse and consequent irreversible damage cannot be ignored. For this reason, the 

operating regime should be chosen far enough from the instability to provide an acceptable dynamic 

displacement range [21]. Sensing based on critical instability fields was suggested for accelerometers 

[37,38] and threshold sensors [39,40]. 

In this work, we demonstrate an approach for safely exploiting electrostatic softening effects 

while eliminating the dangers of the pull-in collapse. Our approach is based on a combination of 

electrostatic and intrinsic mechanical nonlinearities of curved, doubly-clamped, bistable micromechanical 

beams. In-plane curved beam is lithographically-defined from a stress-free, single-crystal silicon 



structure. In general, the behavior of such a beam is controlled by the initial elevation, which is defined as 

the distance between the midpoint of the beam and an imaginary straight line connecting the ends of the 

beam [41–43]. Specifically, the beam is bistable when the initial elevation exceeds a certain threshold 

value, referred hereafter as the bistability onset or threshold. In contrast to an electrostatically actuated 

straight beam prone only to a pull-in instability, a curved beam actuated with a stationary, close-gap 

electrode could manifest two sequential instabilities: snap-through and pull-in instabilities ]41,44[ . The 

effective stiffness and consequent resonant frequency of such a beam are influenced by the electrostatic 

loading.  

Device actuation using a steady state DC voltage that is quasi statically increasing from zero to 

the snap-though value is accompanied by a resonant frequency decrease, reaching zero at the critical 

snap-through point. Actuation above the critical value gives rise to a sharp frequency increase within the 

post-buckling state [41,42,44]. Our results show a similar behavior when the DC voltage is held constant 

while the distance between the beam and the movable electrode decreases. Since snap-through switching 

to a second stable equilibrium configuration does not involve contact with the electrode, the process is 

fully reversible. Furthermore, by choosing the initial elevation at the bistability onset, the snap-through 

collapse is completely eliminated. In this scenario, the slope of the voltage-deflection curve can be 

tailored such that frequency sensitivity to electrode displacement is optimized. Unlike complex comb-

type electrode architectures [45,46], our devices can be easily scaled to the nanometer regime or, if 

necessary, combined into large arrays of sensors. 

In this work we explore, theoretically and experimentally, the dynamic range of voltage-based 

frequency tuning of curved micromachined beams. For beams of varying geometry interacting with 

stationary electrodes, we demonstrate non-monotonic voltage-frequency dependence with voltage values 

exceeding the snap-through point. While electrostatic behavior of curved structures was investigated 

theoretically [47], numerically [30], and experimentally [48], a systematic experimental study of spectral 

characteristics during the snap-through transition has not been conducted. We also demonstrate frequency 

tuning using curved beam interactions with a movable electrode. In this case, we measure the resonant 



frequency of the beam as a function of the electrode displacement. Our experimental results further show 

the applicability of geometrically non-linear structures as potential displacement and acceleration sensor 

platforms. 

 

2. Formulation 

The suspended beam is described in the framework of the Euler-Bernoulli theory combined with the 

shallow arch approximation. As shown in Figure 1(a), we consider a flexible, initially-curved, double-

clamped prismatic beam of length L, with a rectangular cross-section of width b and thickness d. The 

cross sectional moment of inertia and area are I and A, respectively. We assume that the beam is 

composed from a homogeneous, isotropic, linearly-elastic material with a density ρ and the plane-strain 

Young’s modulus ( )2
1E ν− , where ν is Poisson’s ratio. The lithographically-defined curved beam shape 

is described by the function 
0( ) 0z x < . For simplicity, we neglect fringing fields and assume that a 

distributed electrostatic loading can be modeled using the simplest parallel-plate capacitor approximation 

[37,42]. Here, the electrode is initially located at a distance
0g  and allowed to move as a rigid body 

constrained to the z-direction. In this scenario, the electric field is solely along the z direction.  

The undamped motion of the beam is described by the following equation [41]  
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where ( )z x  is the elevation of the beam above its ends, 
0ε  is the permittivity of the free space, V is the 

voltage difference between the beam and the electrode and u is the displacement of the electrode toward 

the beam. The gap between the beam’s ends and the electrode is 
0g u− . Equation (1) accounts for the 

initial axial force 
0N  and for the nonlinear stretching force. For simplicity, our formulation neglects 

residual stresses and assumes N0 = 0. Residual stress in highly doped single crystal silicon, however, 



could affect buckling behavior [37,42]. We further assume that u is an enforced parameter that is 

unaffected by V and beam displacement. 

 

 

 

3. Reduced order model 

In order to analyze the dynamics of the beam, a single degree of freedom, reduced order model was built 

using the Galerkin method. The details of this development can be found in [42,43,48].  While a multi 

degree of freedom model can be employed, the single degree of freedom model describes leading static 

and dynamic effects of these types of devices with satisfactory accuracy [42,43,49]. We define 

0
( ) ( ) ( )w x z x z x= −  to be the deflection of the beam and set 
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is the fundamental buckling mode of the straight beam. While various functions can be used as the base 

function (starting from the linear modes of vibrations of straight [41,42,47,48,50], curved [41,51] or 

statically pre-loaded beams and up to expressions obtained using advanced proper orthogonal 

decomposition (POD) based algorithms [52,53]), the use of equation (3) allows for closed form, analytic 

evaluation of the integral associated with the generalized electrostatic force [42,43]. Previous studies 

[37,43,48,51] showed that the reduced order (RO) models based Eq. (3)  capture leading effects of the 

beam behavior and describe the static and dynamic responses with good accuracy.   In accordance with 

Eq. (2), Eq. (3) is used here as the initial shape of the curved beam and as an approximation of the beam 



deflection. Since the initial shape of the beam is defined by lithography, the structures of basically any 

initial configuration can be fabricated. The function form of Eq. (3), which represents the actual 

fabricated bell-shaped configuration of the beam [38], is chosen here due to its convenience for analysis. 

As a result of the common Galerkin procedure, we obtain the nonlinear ordinary differential 

equation of motion in terms of the deflection, 
m

w  
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where r I A=  is the gyration radius and  
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is the approximate first linear natural frequency of a straight, doubly clamped beam. Hereafter, 

( ) / t
•

= ∂ ∂ denotes derivatives with respect to time. Since the buckling mode was used as a base function 

rather than the first vibrational mode, the numerical value of the coefficient in Eq. (5) 42 3 4.77π =  

slightly differs from the exact eigenvalue of 4.73. 

 

4. Small vibrations around a deformed equilibrium 

For convenience, we re-write Eq. (4) in the form [49] 
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are associated with the mechanical and the electrostatic terms, respectively. We let ( )* * ,m m dcw w V u=  be a 

fixed point of Eq. (6) for a given steady state DC voltage 
dc

V  such that * *( ) ( , , )mech m es m dcF w F w u V= . The 

fundamental mode frequency of small vibrations around the deformed configuration corresponding to 
dc

V  

is obtained by linearization of Eq. (6) around the fixed point 
*

mw . We set in Eq. (6) *

m m dw w w= + , where 

( )dw t  is the dynamic component of the midpoint deflection, and expand the resulting expression into the 

first order Taylor series for 1dw ≪  to obtain 
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The frequency of small free vibrations around a fixed point is given by the expression 

 

0
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Among other parameters, equation (10) shows a strong frequency dependence on Vdc and u. Frequency 

sensitivities, SV and Su, with respect to Vdc (at a constant u) and u (at a constant Vdc) are given by 
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We emphasize that the RO model, Eqs. (6)-(11), has an approximate character and is implemented here 

for the sake of transparency of the development.   Furthermore, the RO model provides a closed form 

dependency between the frequency on the dc voltage and the displacement of the electrode. 

 

5. Reduced Order Model Results 

Parameters used in calculations are detailed in Table 1. Figure 1(b) shows equilibrium curves of 

beams for several values of h. The equilibrium curve for a straight beam (h1) has a single maximum that 

corresponds to the electrostatic pull-in instability. For a beam shape described by eq. (3) and h above a 

certain threshold given by  [42,43],  

min

0

1.179 1.05
d

h d
g

 
≈ − 

 
                                    (12) 

 

the suspended beam becomes bistable. The equilibrium equation (static counterpart of Eq. (6)) has three 

real roots, corresponding to two maxima and one minimum. Although in this case the behavior of the 

beam is influenced by both mechanical and electrostatic nonlinearities, the first local maximum represents 

the snap-through instability whereas the second maximum is associated with the electrostatic pull-in 

instability [42]. In this perspective, the softening associated with the snap-through is mainly due to the 

mechanical nonlinearity rather than the electrostatic force, responsible for the pull-in instability. In the 



vicinity of the snap-through onset, figure 1(b) shows a monotonic voltage-displacement relationship. 

Consequently, this region is free from dangers of beam collapse. Using equation (10), figure 1(c) shows 

the calculated natural frequency as a function of Vdc for various h values with u = 0. Regions near critical 

points are characterized by a strong stiffness decrease and therefore, a consequent frequency decrease. For 

values of h slightly below hmin, the equilibrium curve is distinguished by a low stiffness and a low 

frequency region. At the onset of the snap-through instability, small voltage changes result in significant 

changes in wm and f. Figure 1(c) further shows two distinct regions characterized by a steeply sloped 

voltage-frequency curve where a frequency change results in an increased SV. The first, observed at a 

lower voltage, is in the vicinity of the snap-through. The second, at a higher voltage, is associated with 

electrostatic softening and corresponds to the pull-in instability. 

We now consider the case when the electrostatic force and consequently the effective stiffness 

and the frequency of the beam are parameterized by the electrode displacement. We emphasize that the 

displacement of the electrode u is considered as an externally enforced parameter, which is unaffected by 

the voltage actuating the beam.  As an example, one can mention a scenario when a bulky proof mass of 

an accelerometer is used as the movable electrode, which is significantly larger than the curved beam 

serving as a sensing element.  The sensor is operated by first applying a static voltage, Vdc, to deflect the 

beam to the optimal working position. The value of Vdc is held constant for the duration of the experiment. 

Since beam deflection depends on both the applied voltage and electrode displacement, electrode motion 

induces changes in the electrostatic loading and the natural harmonic. To excite vibrational dynamics, a 

small, time harmonic AC voltage is applied to the electrode in addition to the DC voltage.  

Our lumped model results in figure 2 show the relation between the electrode displacement and 

resonant frequency of the suspended structure. To evaluate device performance and sensitivity, we 

estimate the relative frequency change per, both, nanometer of electrode displacement ( )0f f u∆ ∆  and 

relative gap change ( ) ( )0 0f f u g∆ ∆ . Using h = 2.5 µm and beam parameter values from Table 1, our 

model results show (∆f/fo)/u > 10-3 nm-1, which corresponds to ( ) ( ) ( )0 0 10f f u g O∆ = . This sensitivity is 



maintained over a wide range of displacements spanning hundreds of nanometers. It is instructive to 

compare this result with the capacitive sensing, which is probably the most common interrogation 

approach in displacement and inertial sensors [4,5,54]. For the quasi-static capacitive-sensing case, the 

relative capacitance change is linearly proportional to the relative displacement and is

( ) ( ) ( )0 0 1C C u g O∆ = [54]. As a result, for the beams with the dimensions detailed in Table 1 and for 

u = 1 nm, the relative capacitance change is of order of 10-4, which is ten times smaller than the relative 

frequency change under the same conditions. Using beam geometries from Table 1, our calculations show 

device capacitance change in the aF range. Detection of absolute capacitance change in this regime is 

challenging due to noise and influence of much larger parasitic capacitances. Consequently, our sensing 

approach provides an order of magnitude sensitivity amplification gain. Furthermore, changes in 

frequency are generally easier to detect, for example, by a heterodyne method. 

 

6. Numerical verification 

The model results presented above are based on an approximate single degree of freedom, lumped 

reduced order model of the Euler-Bernoulli beam. Furthermore, the frequency is calculated by using the 

linearized equation (8). To verify the model results and estimate the level of error caused by these 

approximations, numerical analysis was performed. First, static, three-dimensional finite element analysis 

was carried out in order to verify the reliability of the reduced order and the Euler-Bernoulli beam 

models. A commercial package was used, which implements the finite element method for the description 

of the elastic domain (the beam) and the boundary elements method for the analysis of the electrostatic 

field. The volume of the beam was subdivided into 70×4×4 three-dimensional solid brick elements, each 

with 20 nodes, while the surface of the beam was meshed using electrostatic two-dimensional panel 

elements. The voltage was increased incrementally from zero to a value close to the snap-through point 

(voltage control).  At each value of the voltage, the electrostatic solver yields the electrostatic pressure 

distributed on the surface of the beam; the mechanical solver analyzes elastic deformations of the beam 



loaded by the electrostatic pressure. The mechanical and the electrostatic problems were solved 

sequentially using a nonlinear iterative solver until convergence and the deformed configuration of the 

beam was obtained [32]. Figure 3a shows good agreement between the finite element and reduced order 

model results.  

To understand the influence of linearization used for calculation of f, Eq. (10), we numerically 

solved the nonlinear ordinary differential equation (6) using an integration time long enough to obtain a 

steady-periodic response. In our simulations, the micromechanical beam was actuated using a 

combination of Vdc = 94 V and Vac = 5 mV. The excitation frequency was swept from values below to 

above resonance. Our spectral simulations employed a simple continuation technique [55]. The 

dependence of the resonant frequency on the electrode displacement was built from the calculated 

frequency spectra at varying gap values. Since the system is non-linear, the spectral maximum value 

differs from the linear natural harmonic. For small vibrational amplitudes, however, this approach 

provides a good approximation. Figure 3(b) shows the comparison between the linearized (equation (8)) 

and the full nonlinear (equation (6)) results. 

 

7. Experiment 

Two separate experiments were conducted, using devices with stationary and movable electrodes. First, 

micromechanical beams were fabricated from single crystal silicon using a silicon on insulator wafer. 

Devices were lithographically defined and etched using deep reactive ion etching (Figure 4). Thickness of 

the device layer, buried silicon dioxide layer and substrate were ≈30 µm, ≈4 µm and ≈400 µm, 

respectively. The structures were actuated under ambient conditions. A constant DC bias was applied to 

the suspended beam, while an AC field was delivered to the electrode using an amplified output of a 

network analyzer. Device motion was monitored using a single beam laser Doppler vibrometer (LDV). In 

this scenario, the laser was focused at the midpoint of the beam with the LDV output fed back into the 

network analyzer. While the non-scanning, single-point LDV is unsuitable for the quantitative 

measurement of the in-plane vibrational amplitudes, the vibrometer’s output can be used for measuring 



the spectral characteristics of the beam. Here, the modulation of the reflected optical power, resulting 

from the coupled in-plane and out-of-plane motion, was used to measure the spectral response of the 

system [45]. This approach can be viewed in a sense as an example of a situation when frequency based 

sensing is advantageous when compared to the direct amplitude measurement. 

We measured the dynamic response of curved beams with varying h.  Vdc was varied while keeping 

the magnitude of Vac constant and small enough to ensure linear operating conditions. Frequency spectra 

were measured for several values of Vdc. We used the maximum amplitude from the frequency spectra as 

an approximation of the natural frequency. Figure 4(a) and (b) respectively show optical and scanning 

electron microscope micrographs of the beams used in the experiments.  

Figure 5 shows frequency tuning using various values of Vdc. Spectral characteristics of the 

curved beams with h ≈ 3 µm are shown in figure 5(b) for the Vdc above and below the snap-through value. 

The frequency behavior of both straight and curved beams observed in experiments is consistent with 

model predictions. Fabrication errors typically associated with micromachining processes give rise to 

uncertainties in device dimensions. These geometric uncertainties, coupled with the possible residual 

stresses within the device layer may explain the discrepancies between the model and experimental data. 

In order to estimate the influence of geometric uncertainties on the spectral characteristics of the device, 

structural harmonics were calculated for beam thickness and electrostatic gap values varying by ± 0.3 µm, 

and h varying by ± 0.1 µm from the respective nominal values [37]. Our experimental results fall within 

the bounding values predicted by the model.  Specifically, the calculated snap-through voltages varied 

between ≈ 55 V and ≈ 80 V while the minimum point (at the snap-through) of the experimental voltage-

frequency curve was at ≈ 60 V, Fig 5 (d). Due to an increase in the effective stiffness associated with the 

axial stretching of the beam, our model and experimental results show that for beams with h ≈ 0, the 

resonant frequency increases with increasing Vdc. For curved beams, with increasing Vdc, the resonant 

frequency first decreases as the beam approaches the bistability threshold zone, above which frequency 

increases. We estimate frequency sensitivity using the slope of the voltage-frequency curves obtained as a 



fit of the experimental set of values. Our calculations show that at Vdc ≈ 80 V in figure 5(d), the sensitivity 

is SV ≈ 560 Hz/V, whereas at a higher voltage of Vdc ≈ 100 V, it is SV ≈ 487 Hz/V. These experiments 

illustrate the non-monotonic dependence of resonant frequency on Vdc during the snap-through transition. 

Furthermore, the experiments elucidate the accuracy of the reduced order model and its ability to predict 

the dynamic behavior of curved beams.  

 Second set of experiments were conducted using a device with a movable electrode. We 

investigated the nonlinear interactions between the electrode displacement and the vibrational dynamics 

of the curved beam. The results overall demonstrate reliable operation of curved beams near snap-

through. In this light, these micromechanical, geometrically nonlinear devices could be used as highly 

sensitive displacement detectors. The schematics of the device are shown in figure 6(a). Figure 6(b) 

shows an optical micrograph of the fabricated system. Table 3 details nominal and measured device 

parameters. We find that reactive ion etching and optical proximity effects cause variations in critical 

device dimensions. For instance, over-etching results in thinner beams and consequently larger gaps 

between the beam and the electrode. 

Analogously to experiments with stationary electrodes, DC and AC voltages were applied to the 

beam. Frequency was swept around resonance at constant Vdc ≈ 20 V on the beam and Vac ≈ 50 V on the 

electrode.  Relatively high AC voltages were requited to achieve measurable amplitudes of low quality 

factor vibrations in air.  The electrode displacement was controlled manually using probes. The distance 

between the beam and the electrode was measured using optical microscopy. Even though the distance is 

affected by electrostatic forces impinging on the electrode, we estimate this effect as negligible due to 

high device stiffness. We measured vibrational spectra using the LDV. Figure 7(c) shows the measured 

frequency dependence on electrode displacement. The frequency measurement absolute error was 

estimated to be ≈ 75 Hz and is based on the Lorentzian functional fit to the measured spectra. Electrode 

displacement measurement error bars were ≈ 90 nm [56]. The error emanates from the pixel to µm 

conversion ratio determined from the camera resolution and represent one standard deviation. In order to 

estimate the beam sensitivity to electrode displacement, the reduced order model was used to fit the 



experimental data. Specifically, the model results shown in figure 7(c) were obtained for h ≈ 1.7 µm, 

which was considered as a free parameter used for best fitting of experimental data. The reason for this 

choice of h stems from the fact that lithographically defined beam curvature is also affected by residual 

and thermal stresses [42]. The slope of the fitting curve in figure 7(c) represents the frequency sensitivity 

to electrode displacement. Our calculations show that at u ≈ 4 µm, the sensitivity is ≈ 1.5 Hz/nm, whereas 

for a smaller displacement of u ≈ 2 µm, Su ≈ 0.68 Hz/nm. Note that the working point value of Vdc ≈ 20 V 

used in the experiment is not optimal.  By an appropriate choice of the working point voltage Vdc the 

sensitivity can be further improved. Specifically, our calculations suggest that for beams with optimal 

geometry corresponding to the bistablity onset, figure 2 , relative sensitivity can reach ≈ 2 × 10-3 nm-1, 

which, for the adopted parameters, is equivalent to Su ≈ 25 Hz/nm.  

 

8. Conclusions 

Dynamics of curved, doubly clamped MEMS beams near critical snap-through are presented. The model 

results indicate that optimized h values near the bistability onset provide a mechanism for enhancing 

sensitivity to both changes in voltage and electrode displacement. Our numerical and experimental results 

are consistent with these model predictions. While previous groups have reported frequency decrease 

following snap-through, to our knowledge this work represents the first systematic experimental 

demonstration of the pre-buckling decrease and post-buckling increase of the in-plane natural harmonic. 

The ability to exploit the resonant behavior of curved beams shows that micromechanical resonators are 

promising candidates for displacement sensing. With non-optimized bistability values, we estimate 

displacement sensitivity (calculated as a slope of a curve fitting the experimental data) of ≈ 1.5 Hz/nm. 

The performance of the displacement sensor can be enhanced using optimized parameters (Table 1), 

yielding sensitivities of ≈25 Hz/nm, corresponding to an order of magnitude amplification

( ) ( ) ( )0 0 10f f u g O∆ = . Although electrostatic softening can be achieved with more complex designs and 

electrode configurations, the simpler single beam devices allow for compact, robust architectures, with 



potential for nanoscale downsizing and integration with large arrays of frequency based displacement 

sensors. 
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Figure 1. (a) Schematic illustration of a curved, doubly clamped beam actuated using a parallel plate 

electrode architecture. The electrode is allowed to move as a rigid body in the z direction, the 

displacement u of the electrode is positive in the direction toward the beam. (b) Lumped model results -

equilibrium curves (the dependence between the midpoint deflection 
*

mw  of the beam and the applied 

voltage) of beams with varying h (h1 = 0, h2 = 2.5 µm, h3 = 3.5 µm). Negative slope corresponds to an 

unstable equilibrium whereas the positive slope refers to the stable branch. The curve corresponding to 

h

u

x



the bistability onset (h2) is distinguished by a low stiffness region with highly sensitive deflection to 

voltage change. (c) Natural frequency of the beam (eq. (10)) with varying h (h1 = 0, h2 = 2.5 µm, 

h3 = 3.5 µm). The low-tangent stiffness region is discerned by either a steep frequency decrease or 

increase. Furthermore, since the beam is bistable at h3, the curve is not continuous ([47,49]). 

 

 

 

 

 

 

 

 

 

 



Figure 2. Lumped model results for h = 2.5 µm near the bistability onset. (a) Equilibrium curves for 

beam deflection resulting from electrode displacements at varying Vdc. (b) Effective natural frequency 

(solid line) as a function of the electrode displacement, for Vdc = 94 V. The dashed line shows the relative 

sensitivity per nm of electrode motion, ( )0 nmf f∆ . 

 

 

Figure 3.  (a) Static equilibrium curves showing the finite element (markers) and reduced order model 

results (solid line). (b) Reduced order model results show resonant frequency as a function of the 

electrode displacement. Markers correspond to the numerical solution of the nonlinear ordinary 

differential equation (eq. (6)) and solid line corresponds to the linearized frequency (eq. (8)). In both 

cases, h = 2.5 µm was used near the bistablity onset. 

 



 

 

 

 

 

Figure 4.  Optical (a) and scanning electron (b) micrographs of the fabricated devices. The dark circular 

dot in (b) is located at the midpoint of the beam. Scale bars in (a) and (b) correspond to ≈ 200 µm and 

≈ 100 µm, respectively. 

 

 

 

 

 

 

 

 



 

 

Figure 5. Measured frequency spectra of beam with (a) h ≈ 0 and (b) h ≈ 3 µm. For h ≈ 3 µm, Vdc ≈ 40 V 

was below snap-through, whereas Vdc values of 65 V and 90 V were above snap-through. Measured 

resonant frequency (diamonds) as a function of the DC voltage for (c) h ≈ 0 and (d) h ≈ 3 µm beams. 

Solid lines correspond to the results provided by the reduced order model for the nominal geometry of the 

beams, Table 2. The statistical uncertainties based on repeated measurements are smaller than the data 

markers. In the case of a straight beam h ≈ 0 the hardening effect due to the nonlinear stretching of the 

beam axially constrained by unmovable anchors is observed in both experimental ((a) and (c)) and to 

theoretical (c) results.  

 

 

 



 

 

Figure 6.  (a) Schematic illustration of the coupled beam-electrode device configuration. A truss-shaped 

movable electrode is separated from the curved beam by a narrow gap and connected to a suspended mass 

using a folded spring. (b) Optical micrograph of the fabricated displacement sensing devices. Scale bar 

corresponds to ≈ 200 µm. 



 

 

Figure 7. Device with different gaps between the beam and the movable electrode (a) u ≈ 0, 

(b) u ≈ 4.75 µm. (c) Measured resonant frequency (diamond markers) as a function of electrode 

displacement. The statistical uncertainties based on repeated measurements are smaller than the data 



markers. Solid line corresponds to the results provided by the reduced order model for the initial elevation 

of h ≈ 1.7 µm providing the best fit with the experimental result. Scale bars in (a) and (b) correspond to 

≈ 100 µm. The frequency measurement absolute error was estimated to be ≈ 75 Hz. Electrode 

displacement measurement error bars were ≈ 90 nm [56]. 

 

TABLES 

 

 

Table 1. Device parameters used in calculations 

Parameter Value [ mµ ] 

L 1000 

d 3 

b 20 

g0 10 

 

 

Table 2.  Nominal (as designed) and measured (mean ± standard deviation) beam parameters used in 

experiments. The estimated measurement error was based on pixel to µm conversion factor of the optical 

(L) and scanning electron micrographs (d, g0)  [37]. 

Parameter Nominal value [µm] Measured value[µm] 

L 1500 ≈ 1500± 2.30 

d 4 ≈ 3.7 ± 0.06 

b 20 - 

g0 14 ≈ 14.3 ± 0.06 

 

Table 3.  Nominal (as designed) and measured (mean ± standard deviation) device parameters for 

displacement sensing. The estimated measurement error was based on pixel to µm conversion factor of 

the optical (L) and scanning electron micrographs (d, g0) [37]. 

Parameter Nominal value [µm] Measured value [µm] 

L 1000 ≈ 1000± 2.30 

d 2.8 ≈ 2.1 ± 0.06 

b 30 - 

h 2.4 - 

g0 10 ≈ 11.0 ± 0.06 

 


