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Abstract—We consider the auto-scaling problem for applica-
tion hosting in a cloud, where applications are elastic and the
number of requests changes over time. The application requests
are serviced by Virtual Machines (VMs), which reside on Physical
Machines (PMs) in a cloud. We aim to minimize the number of
hosting PMs by intelligently packing VMs into PMs, while the
VMs are auto-scaled, i.e., dynamically acquired and released, to
accommodate varying application needs. We consider a shadow
routing based approach for this problem. The proposed shadow
algorithm employs a specially constructed virtual queueing sys-
tem to dynamically produce an optimal solution that guides
the VM auto-scaling and the VM-to-PM packing. The proposed
algorithm runs continuously without the need to re-solve the
underlying optimization problem “from scratch”, and adapts
automatically to the changes in the application demands. We
prove the asymptotic optimality of the shadow algorithm. The
simulation experiments further demonstrate the algorithm’s good
performance and high adaptivity.

I. INTRODUCTION

A Cloud data-center typically consists of a large number of

physical machines (PMs). Virtualization technology enables

cloud service providers to offer customers virtual machines

(VMs) to run their applications, while facilitating the shar-

ing of CPU, memory and storage resources. VMs can be

configured and allocated as needed to meet hourly, daily, or

weekly demand variation. When an application’s demand for

resources increases, additional VMs are allocated to meet the

quality of service requirement; conversely, when the demand

drops, resources can be freed to save cost. The cloud service

providers may further wish to pack the allocated VMs into a

small number of PMs so as to minimize operational costs, save

energies, and/or generate higher revenues by accommodating

more applications. We call by VM auto-scaling the dynamic

selection of VM quantities and types to accommodate the ap-

plications’ varying demands. The design of algorithms for the

joint VM auto-scaling and VM-to-PM packing that minimize

the number of hosting PMs is a challenging research problem.

Considerable prior works exist on cloud resource manage-

ment with the focus on either the resource auto-scaling or

VM-to-PM packing. In resource auto-scaling, the application

requests are assigned to VMs to receive the service. The VM

quantities and types need to be sufficient for the application

requests to be serviced with satisfactory performance, i.e.,

satisfying the required SLA (service-level agreement); yet not

overly large to avoid unnecessary cost to users and resource

wastage for cloud service providers. Auto-Saling is a popular

feature, and is offered by many cloud service providers, e.g.,

Amazon [2].

The problem of efficient VM-to-PM packing, taken in

isolation (i.e. disjointly from the VM auto-scaling problem),

fits into the general framework of stochastic bin packing.

Classical stochastic bin packing problems are such that the

“items” (VMs) arrive exogeneously, are packed into “bins”

(PMs), and never leave the system. (See e.g. [6], [7] for

good reviews, and also a recent paper [10].) In the VM-to-

PM packing problem, “items” (VMs) arrive in the system, are

served for a random time, and then leave the system. This can

be termed as a stochastic bin packing with item departures.

The work in this direction is more recent, motivated primarily

by the VM-to-PM assignment in a network cloud environment.

In this paper, we consider the joint VM auto-scaling and

VM-to-PM packing problem, where the number of VMs are

dynamically adjusted to meet the application needs and their

performance requirements, while the VMs are configured

(placed) in physical machines such that the cloud resources are

efficiently utilized. In our framework, we explicitly consider

(i) the varying demand load for applications, expressed in

terms of request arrival rates for individual applications and the

required service time to serve an application request; (ii) the

VM type(s) an application may require, characterized by the

computing, memory and storage resource required to handle

certain number of application requests; and (iii) the physical

machines and their resource configurations.

We consider a shadow routing based approach for this

problem, We employ a specially constructed two-tier virtual

queueing system, which in essence dynamically produces and

maintains a solution to the underlying optimization problem

that guides the actual auto-scaling algorithm. The advantage

of shadow routing approach is that it is simple and adaptive:

no need to know a priori, or explicitly measure, the appli-

cation request arrival rates; if the arrival rates change, the

algorithm adapts automatically. Yet, as we show, the algorithm

is asymptotically optimal. All these features are confirmed by

our simulation experiments.

The rest of the paper is organized as follows. The related

work is presented in Section II. The formal model and the

optimization problem are given in Section III. Section IV de-

fines the Shadow routing algorithm, which is the key element

of our scheme, proves its asymptotic optimality. In Section

V we define our entire scheme, which is based on Shadow
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algorithm; here we also provide practical parameter settings,

and discuss the asymptotic optimality of our scheme for large-

scale systems. In Section VI we present simulation results

for our scheme where we test its accuracy, adaptability and

robustness in the face of varying application request loads.

In Section VII we consider the special and challenging case

of sudden and appreciable changes in the application request

loads and demonstrate how expedited algorithm convergence

can be achieved. Section VIII concludes the paper.

II. RELATED WORK

Auto-scaling is important for clouds to efficiently utilize the

virtualized resources. [13] gives an extensive literature review

of proposed auto-scaling techniques, which are classified into

five categories based on the underlying theory or techniques,

namely threshold-based rules, reinforcement learning, queue-

ing theory, control theory and time series analysis. We employ

a shadow routing based approach which does not fall into any

of the above categories.

Public cloud service providers, such as [2], often employ

threshold-based techniques. They offer users access to the

infrastructure’s performance metrics, such as CPU/memory

utilization, disk usage, bandwidth usage, etc. The users them-

selves make up the rules to decide when and how to conduct

the scaling based on these metrics. [16] incorporates user’s

budget and QoS constraints to assign schedules for VM

startups and shut-downs. [11] proposes a system and online

algorithms for VM autoscaling based on load prediction. [8]

consider an autoscaling solution which takes into account VM

configuration and boot time. In this paper, we propose the

shadow routing based auto-scaling algorithm that is dynam-

ically driven by clients’ requests. Thus no workload estima-

tion/prediction is required. In addition, we aim to minimize

the number of hosting physical machines. The existing work

on auto-scaling does not take the VM-to-PM packing into

consideration.

The work on stochastic bin packing with item departures

includes papers [9], [12], [14], [15], [23]–[25] (and to some

extent [10]), which focus on different aspects of the problem at

different generality levels. There is other recent VM-placement

work, e.g., [1], [17], [19], which addresses the placement

problem from different angles, ranging from minimizing net-

work traffic, to shortening the inter-VM distance/latency and

statistically sharing resources. The most closely related work

is [9]. The main contribution of [9] was to demonstrate how

VM-to-PM packing constraints can be incorporated in the

shadow routing framework. The distinctive feature of this

paper is that we have a joint VM auto-scaling and VM-to-PM

packing problem. We show that the shadow routing can still

be applied, but the corresponding virtual queueing system is

necessarily more complicated (it has two tiers). The proposed

algorithms are hence more sophisticated.

III. MODEL AND PROBLEM STATEMENT

A. Model

There are several applications, indexed by i ∈ I =
{1, . . . , I}, and several classes of VMs, indexed by j ∈ J =
{1, . . . , J}. At any given time, each application i employs a

group of VMs, denoted by a vector mi = (mij , j = 1, . . . , J)
to provide the service, where mij is the number of VMs

of class j assigned to application i. User service requests

for application i arrive at the rate λi. A service request for

application i is assigned to one of the VMs of application i
and is serviced by that VM. The service time of an application

i request is 1/µi. A VM of class j can service an integer

number wij ≥ 0 of concurrent application i requests without

violating application i’s SLA.

A PM in the data center (DC) can host multiple VMs.

We call a vector s = (sj , j = 1, . . . , J) a PM’s (feasible)

configuration vector if the PM can simultaneously host sj
number of class j VMs, j = 1, . . . , J with each VM obeying

its SLA. There are two possible approaches to derive the

feasible configuration vectors. The first approach assumes

that the resources are reserved for individual VMs. Under

this assumption, each class j VM needs several computing

resources of different types when it is instantialized; namely,

the amount ajk > 0 of resources k ∈ K = {1, . . . ,K}. The

DC contains β > 0 physical machines (PM), each of which

has the amount Ak > 0 of resource k ∈ K. If a class j VM

is instantialized in the DC, it is placed into one of the PMs,

where the amounts ajk of resources are allocated (if they are

still available at that specific PM). This means that a PM’s

configuration vector is feasible if
∑

j

sjajk ≤ Ak, ∀k ∈ K. (1)

If the resources allocated to a VM are not reserved and

the VMs residing on the same physical machine share the

resources, then the feasible configuration vector cannot be

derived using (1). Rather, the applications need to be profiled,

e.g., as shown in [20], [26], to determine if a configuration

vector is feasible, i.e., the VMs can be co-located on the same

PM with each VM obeying its SLA. In practice, the data center

operators often have good intuitions on the possible feasible

configuration vectors and can apply profiling to verify the

feasibility. How to derive the feasible configuration vectors

using profiling, however, is out of the scope this paper.

Our optimization framework works as long as the feasible

configuration vector set is available.

For the remainder of the paper, we assume the feasible

configuration vectors are derived using the first approach for

ease of presentation. Further, note that configuration vectors,

which can be dominated by convex combinations of other

configuration vectors, are inherently inefficient in the follow-

ing sense. Suppose, for example, that (2, 2), (4, 1), (1, 4) are

feasible configuration vectors; then, instead of a large number

K of PMs in configuration (2, 2) it is more efficient to have

K/2 PMs in configuration (4, 1) and K/2 PMs in config-

uration (4, 1). Since our results are asymptotic – i.e., they
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concern large-scale systems – such inefficient configuration

vectors can be excluded a priori. We denote by S the set

of configuration vectors which are not dominated by convex

combinations of other configuration vectors. We also make a

natural non-degeneracy assumption: for each i there exist j
and s such that wij ≥ 1 and sj ≥ 1 (otherwise application

i cannot be served at all); for each j there exists s such that

sj ≥ 1 (otherwise, we can simply exclude some j from the

model).

B. Problem statement

Denote by φs ≥ 0 the fraction of PMs in the DC that are

used in the configuration s ∈ S. We want a dynamic algorithm

under which the fractions φs, and numbers of VMs, mij , are

as close as possible to an optimal solution of the following

linear program:

min
{m∗

ij
},{φ∗

s},ρ
ρ, (2)

subject to

m∗
ij ≥ 0, ∀(i, j), φ∗

s ≥ 0, ∀s, (3)

λi/µi ≤
∑

j

wij ·m
∗
ij , ∀i, (4)

∑

i

m∗
ij/β ≤

∑

s∈S

sjφ
∗
s , ∀j, (5)

∑

s∈S

φ∗
s = ρ. (6)

In this LP the variables φ∗
s and m∗

ij are non-negative real

numbers; they have the meaning of average values (of the

corresponding “true,” random quantities φs and mij ), such

that the average system workload can be handled. The LHS

of (4) is the aggregate (average) workload for application i,
while the RHS of (4) is the aggregate average service capacity

allocated to this application. The constraint (5) might be easier

to understand in the form
∑

i m
∗
ij ≤

∑
s∈S sjφ

∗
sβ, with φ∗

sβ
being the average number of PMs used in configuration s and,

therefore, sjφ
∗
sβ being the average number of j-VMs served

by PMs in configuration s. Finally, note that, although the

meaning of ρ is the average fraction of the utilized PMs, the

LP makes sense even if the optimal ρ is greater than 1 – if this

is the case, the DC is overloaded. The key symbols used in

the model and in the Shadow routing algorithm are included

in Table I for your reference.

IV. SHADOW ROUTING

A. Construction of the virtual queueing system

We will now construct an algorithm, which makes variable

updates upon each application request arrival, and asymp-

totically solves the LP (2)-(6) (in the sense that will be

specified below). The algorithm maintains and updates a

virtual (“shadow”) queueing system, and makes “routing” and

“service” decisions based on the current state of that system,

depicted schematically in Figure 1.

TABLE I
KEY SYMBOLS

Symbol Definition

i application type; i = 1, . . . , I
j VM class type; j = 1, . . . , J
k resource type; k = 1, . . . ,K

mij number of class j VMs assigned to serve application i
m∗

ij avg. number of class j VMs assigned to serve application i
1/µi average service time of an application i request
ajk amount of resource k required by a class j VM
wij max no. of application i’s requests served by a class j VM
s feasible configuration vector that satisfies condition (1)
S set of undominated feasible configuration vectors
Ak total amount of resource k in a PM
β total number of PMs in a DC
λi avg. arrival rate of application i’s requests
φs fraction of PMs being assigned with configuration s
φ∗

s avg. fraction of PMs being assigned with configuration s
ρ average fraction of the utilized PMs
Qi virtual queue size associated with application i
Vj virtual queue size associated with VM j

Actual application arrivals

Superserver

Fig. 1. Virtual (shadow) queueing system

Assume for simplicity that the arrival flow of service

requests for each application i is Poisson. (This is not crucial.)

Then, the sequence of request arrivals is such that the type of

each arrival is determined randomly, according to probabilities

λi/λ, where λ =
∑

i′ λi′ , independently of other arrivals. For

each application type i there is the associated virtual queue,

whose length is denoted by Qi. For each VM class j there

is the associated virtual queue, whose length is denoted by

Vj . (The virtual queues are just variables maintained by the

algorithm – they are not physical queues where application

requests, or VMs, or anything else, wait for service.) When a

request, say of type i, arrives, the following sequence of events

and decisions takes place, in sequence. First, the amount 1/µi

of “work” is placed in Qi, namely Qi := Qi + 1/µi. Then,

the algorithm must decide whether or not to activate a virtual

server (ij), for one of the j. If (ij) server is activated, the

amount c1wij is removed from Qi and the amount c1/β is
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added to Vj , namely

Qi := max{Qi − c1wij , 0}, Vj := Vj + c1/β.

Here c1 > 0 is a parameter. Finally, the algorithm must decide

whether or not to activate a “superserver” that “serves” queues

Vj in one of the modes s ∈ S; if it is activated in mode s,

then the amount c2sj is removed from each of the Vj , namely

Vj := max{Vj − c2sj , 0}, ∀j.

Here c2 > 0 is another parameter. It is easy to see that the

choice of parameters c1 and c2 satisfying

c1 > max
i

1/µi, c2 > c1/β (7)

is sufficient for the virtual queueing system to be able to “keep

up” with the incoming load, in the sense that there exists

an algorithm for activating servers (ij) and the superserver,

so that all virtual queues remain stable (do not run away to

infinity).

Now, suppose we want an algorithm for activating servers

(ij) and the superserver, such that the average frequency of

superserver activation is minimized, subject to the constraint

that all virtual queues remain stable. The virtual queueing

system and the problem we just described are within the

framework of general model in [21], which gives a general

asymptotically optimal (in the sense specified below) algo-

rithm, called Greedy Primal-Dual (GPD). When we apply

GPD to our virtual system we obtain the algorithm given in

the next subsection. We then show in Proposition 1 that the

average rates at which this algorithm activates servers (ij) and

activates different modes s of the superserver, essentially solve

the LP (2)-(6).

Remark. We want to emphasize that the virtual queues are

not buffers where actual application requests or actual VM

requests are placed for waiting; instead, they are no more than

variables maintained by the routing algorithm. Therefore the

length of virtual queues has no connection to the waiting times

of actual requests.

B. Shadow algorithm

Algorithm: The algorithm maintains the virtual queues Qi

and Vj , and variables {bij}, {bs}, {p̄ij}, and {φ̄s}, i ∈ I, j ∈
J , s ∈ S. It also uses parameters c1, c2 > 0, as described

above. In addition, there is a (small) parameter η > 0, (small)

parameter θ > 0, and parameter α > 0.

Upon each new service request arrival, say of type i to be

specific, the algorithm does the following (in sequence):

1. Qi(t) := Qi(t) + 1/µi.
2. Set blj := 0 for all (lj). Compute

j∗ ∈ argmax
j

[αwijQi − (1/β)Vj ], (8)

and if

αwij∗Qi − (1/β)Vj∗ ≥ 0 (9)

do

Qi := max{Qi−c1wij∗ , 0}, Vj∗ := Vj∗ +c1/β, bij∗ := 1.

3. Set bs = 0 for all s ∈ S. Find configuration vector σ
such that

σ ∈ argmax
s∈S

∑

j∈J

sjVj . (10)

If condition

η
∑

j

σjVj ≥ 1 (11)

holds, update virtual queues Vj(t) as follows:

Vj := max{Vj − c2σj , 0}, ∀j ∈ J .

4. Update variables p̄lj and φ̄s. The variables p̄lj and φ̄s

keep track of the average values of blj and bs, respectively.

p̄lj := (1 − θ)p̄lj + θblj , ∀(l, j),

φ̄s := (1− θ)φ̄s + θbs, ∀s.

End of Algorithm

C. Asymptotic optimality of Shadow algorithm, as η → 0

Proposition 1. Suppose all system parameters and all Shadow

algorithm parameters, except maybe η, are fixed rational

numbers. Assume that condition (7) holds. Suppose the input

flows are Poisson, with fixed rates λi. Consider a sequence of

systems with parameter η → 0. Then, for any η, the virtual

queueing process is a positive recurrent countable discrete-

time Markov chain. Moreover, stationary distributions of the

processes are such that the following holds. Denote by φ̄
(η)
s

the steady-state probability that configuration s is chosen in

(10) and condition (11) holds for it. Similarly, let p̄
(η)
ij be the

steady-state probability that the arriving request is of type i,
index j is chosen in (8) and condition (9) holds. Then, as

η → 0, the sequence of vectors ({φ̄
(η)
s }, {p̄

(η)
ij }) is such that

its any limiting point ({φ̄s}, {p̄ij}) satisfies (using notation

λ =
∑

i λi)

λc1p̄ij = m∗
ij , ∀(i, j),

λc2φ̄s = φ∗
s , ∀ s ∈ S,

where ({φ∗
s}, {m

∗
ij}) is an optimal solution of LP (2)-(6).

Proof of Proposition 1: The virtual queueing process,

viewed as a discrete time process at the times just after request

arrivals, is obviously a discrete time countable Markov chain.

(Rationality of parameters implies that there is only a count-

able number of states.) This Markov chain is stochastically

stable (see section 4.9 of [21]), which in our case means

that there is a finite number of positive recurrent classes of

communicating states, reachable with probability 1 from any

state, and therefore a stationary distribution exists for any

η. (Here we use condition (7), which guarantees that the

system has sufficient capacity so that condition (55) in [21]

holds.) Then, the property (AO-2) in section 4.9 of [21] can

be established. In our case, it means that, as η → 0, the

algorithm solves the problem of minimizing the frequency of

superserver activations, subject to stability of virtual queues.

Formally, if for each η we pick a stationary distribution, then,
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as η → 0, ({φ̄
(η)
s }, {p̄

(η)
ij }) converges to a set of optimal

solutions ({φ̄s}, {p̄ij}) of the following LP:

min
{p̄ij},{φ̄s},ρ̄

ρ̄, (12)

subject to

p̄ij ≥ 0, ∀(i, j), φ̄s ≥ 0, ∀s, (13)

(λi/λ)/µi ≤
∑

j

c1wij p̄ij , ∀i, (14)

∑

i

p̄ijc1/β ≤
∑

s∈S

sjc2φ̄s, ∀j, (15)

∑

s

φ̄s = ρ̄, (16)

∑

j

p̄ij ≤ 1, ∀i,
∑

s

φ̄s ≤ 1. (17)

Using again condition (7), it is easy to see that there exists

an optimal solution to the LP (12)-(16), for which condition

(17) holds. This means that any optimal solution of LP (12)-

(17) is also optimal for LP (12)-(16). Finally, we observe that

if we rewrite LP (12)-(16) in terms of variables m∗
ij = λc1p̄ij ,

φ∗
s = λc2φ̄s and ρ = λc2ρ̄, we obtain problem (2)-(6). The

result follows. ✷

V. SHADOW ROUTING BASED SCHEME

We now describe the actual scheme for assigning arriving

applications to VMs, and for placing VMs into PMs. The

scheme is based on the Shadow algorithm, which runs contin-

uously, driven by applications’ arrivals.

A. Shadow algorithm parameter setting

First, we specify a reasonable parameter setting for the

Shadow algorithm.

In view of condition (7), parameters c1 and c2 can be set

as follows: c1 = 1.01maxi 1/µi and c2 = 1.01c1/β.

The averaging parameter θ can be set for example to θ =
0.001.

“Typical value” of one Vj is

D1 = (1/η)(1/max
s

∑

j∈J

sj).

Maximum change of a Vj is: D2 = max[c1/β, c2 maxs,j sj ].
We choose η such that

D2/D1 = 1/γ, γ = 2, 5, 10.

Finally, a typical scale of a Qi is [1/(αβwij)] times the

typical value of Vj . (See step 2 of the algorithm.) To make

sure that the typical values of Qi are not too small compared

to those of Vj , we set α so that for all (ij), 1/(αβwij) ≥ 1/3,

namely α = 3/[βmaxij wij ].

B. Actual application request assignment algorithm

The algorithm at any time has access to the quantities p̄ij ,

maintained by the Shadow algorithm. For each (ij), Xij be

the number of applications i currently assigned to j-VMs. This

algorithm tries to drive the system state towards equalizing the

ratios Xij/[wij p̄ij ] across all (ij); it also tries to keep VMs

that are already allocated “fully packed” by applications.

When a new i-application arrives we do the following, in

sequence:

1. Map this i-application to a VM type j which minimizes

Xij/[wij p̄ij ].
2. This j we map into a PM configuration s according to VM-

to-PM mapping algorithm (step 1) below.

3. If there are non-empty VMs of the class j, serving ap-

plications i in PMs with the configuration s, we assign the

application to such a VM with the maximum number of

applications in it, as long as this number is less than wij

(and thus another application i still fits). Otherwise (i.e., if

such non-empty VMs j do not exist or cannot fit additional

aplication), we allocate a new VM j into an s-PM, according

to step 2 of the VM-to-PM mapping algorithm below.

When an application departs and leaves its VM empty, we

treat this as a VM departure.

C. VM-to-PM mapping algorithm

Each non-empty PM at any given time has a designated

configuration s ∈ S; the designation s = (s1, . . . , sJ) means

that we will never place more than sj class j VMs into this

PM. A PM with designation s is referred to as an s-PM. Empty

PMs do not have any designation. The following quantity

is maintained for each s ∈ S: zj(s) – the total number of

class j VMs in s-PMs. In addition, the algorithm at any time

has access to the quantities φ̄s, maintained by the Shadow

algorithm.

This algorithm tries to drive the system state towards

equalizing the ratios zj(s)/[sj φ̄s] across all s; it also tries

to keep PMs already allocated “fully packed” by VMs.

If a VM class j needs to be mapped into a server configu-

ration index, it is done as follows.

1. Compute configuration index

s ∈ argmin
s′∈S : s′

j
>0

zj(s
′)/[s′j φ̄s′ ].

If, in addition, a new VM of class j needs to be actually

allocated to a PM, it is done as follows.

2. Among s-PMs (with s computed in step 1) choose a PM

with the maximal number of existing VM, but such that the

existing number of class j VMs is less than sj (so that the

new class j VM can still fit), and assign the VM to this PM.

If no such s-PM is available, we place the VM into an empty

PM and designate the PM as s-PM.

The above algorithm is identical to the VM-to-PM mapping

algorithm (Algorithm B) in [9].
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D. Asymptotic optimality of Shadow routing based scheme, as

system scale grows

The scheme described in this section can be shown to be

asymptotically optimal as the system scale grows to infinity.

Specifically, suppose the application arrival rate λ → ∞, the

number of servers β grows in proportion to λ, i.e. β = cβλ
with cβ being a constant, while all other system parameters

remain constant. Then, it can be shown that, as λ → ∞,

φs/φ
∗
s → 1 for al s (such that φ∗

s > 0) and mij/m
∗
ij → 1

for all (ij) (such that m∗
ij > 0), where φs and mij are the

steady-state (random) quantities, and constants φ∗
s and φ∗

ij

solve LP (2)-(6). The intuition for this fact is simple. The

Shadow algorithm “produces” quantities p̄ij which are close to

m∗
ij , up to a constant factor; similarly, φ̄s are close to φ∗

s , up to

a different constant factor. Therefore, the entire Shadow-based

scheme essentially drives ratios mij/m
∗
ij towards equalization;

and similarly for the ratios φs/φ
∗
s . However, as λ → ∞, the

total number of applications i normalized by λ becomes non-

random, namely,
∑

j Xij/λ → λi/µi. This can be used to

show that, in the λ → ∞ limit, the ratios mij/m
∗
ij become

non-random equal; also, in the limit, almost all allocated VMs

will be fully packed; therefore, the ratios must converge to 1.

By analogous argument, ratios φs/φ
∗
s become equal to 1 in the

limit. This implies that our scheme is asymptotically optimal,

because LP (2)-(6) gives lower bound on the avearge number

of PMs under any scheme.

In this paper, we do not provide a proof of asymptotic

optimality in the system scale, as described in this subsection,

because, despite being very intuitive, such proof would require

a large amount of technical detail. (A skeptical reader can

treat this form of asymptotic optimality as a conjecture.)

Our simulation results, which are for sufficiently large-scale

systems, do demonstrate that the system state indeed stays

very close to an optimal one, given by LP (2)-(6).

VI. EVALUATION

In this section we evaluate the Shadow scheme using

simulations. (Here, when we refer to the Shadow scheme, or

algorithm, we mean the combination of the Shadow itself as

defined in Section IV-B and the actual assignment algorithms

in Sections V-B and V-C.) We consider a data center with

a pool of 1,000 Physical Machines (PMs), with each PM

being configured with 42 ECUs (Elastic Compute Units) and

96 GBytes of memory, where one ECU is equivalent to one

1GHz single core CPU as defined by Amazon [3]1. The PM

configuration is roughly equivalent to a HP ProLiant SL390s

G7 server. We assume there are eight Virtual Machine (VM)

types, as listed in Table II. The VM-size tuple (#ECU :
MemSize) of these VM types are identical to the 64-bit virtual

machine types supported by Amazon. The maximal feasible

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.

configuration set, as defined in Section III-A, contains 46

vectors.

We assume there are four types of applications supported

by the data center. Denote by wij the number of concurrent

application requests of type i that can be serviced by a VM

of type j. Table II lists the values of {wij}. We select the

values of {wij} such that App 1 to App 4 resemble the CPU

intensive application, interactive application, high-memory

high-bandwidth application, and file access application, re-

spectively. Note that the designed algorithms are general and

can handle arbitrary parameter settings.

We start with the experiments to examine the accuracy of

the Shadow algorithm. We then investigate the adaptivity of

the algorithms, and extend the Shadow algorithm to support

services. The means to expedite the convergence in the face

of sudden arrival rate change is studied in Section VII.

TABLE II
VM RESOURCE REQUIREMENTS AND NUMBER OF CONCURRENT

APPLICATION REQUESTS THAT CAN BE SERVICED BY A VM ({wij})

CPU(ECU) Mem(GB) App1 App2 App3 App4

VM1 33.5 23 34 56 23 40

VM2 26 68.4 26 94 68 40

VM3 13 34.2 13 47 34 20

VM4 20 7 20 27 0 40

VM5 6.5 17.1 0 24 17 10

VM6 8 15 0 23 15 40

VM7 4 7.5 0 12 0 20

VM8 5 1.7 0 22 0 10

A. Datacenter PM utilizations and virtual queue sizes

In this experiment, the application requests arrive according

to the Poisson process with the average arrival rate of 124

requests/sec. It resembles the scenario where all applications

are equally active during the simulated time period. The

service time of a request is a constant of 100 seconds. The

algorithm parameters are set as described in Section V-A.

While not presented, the proposed algorithms work well with

different arrival rates and service times. We remove the first

two hours of simulated time as the warm up period. We will

examine the adaptivity/responsiveness of the algorithms in

Section VI-B, and present additional procedure for expedited

convergence in Section VII.

Fig. 2(a) depicts the PM utilization with different coefficient

(γ) values. The larger the value of coefficient γ, the smaller

the η value, and thus the Shadow algorithm is more accurate.

(On the other hand, the convergence time is larger.) We also

plot the optimal PM utilization value obtained using CPLEX

optimizer [4] for the purpose of comparison. The optimal PM

utilization is 53.4%. The PM utilizations with γ = 5 and 10
are roughly the same, around 56.5%, while the PM utilization

with γ = 2 reaches 62%. The results indicate that the value

of γ needs to be about 5 or greater to achieve good accuracy.

We hence use γ = 10 in the following experiments.

To look into the algorithm performance, we plot the virtual

queue sizes associated with different application types and

different virtual machine types in Fig. 2(b) and Fig. 2(c),
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(a) PM utilization (γ = 2, 5, 10)
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(b) Application virtual queue size (γ = 10)
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Fig. 2. Physical machine (PM) utilizations with different coefficient values, and the virtual queue sizes for application and Virtual Machine (VM)

respectively. In Shadow algorithms, the virtual queue sizes,

scaled by factor η, converge to optimal dual variables. All

virtual queue sizes remain approximately constant in Fig. 2(b)

and Fig. 2(c), a strong indication that the algorithm has

converged to the optimal point. In addition, the values of ap-

plication virtual queue sizes and the values of virtual machine

virtual queue sizes are in the range of 104, suggesting the

rescaling of virtual queue sizes using the parametesr c1, c2, η
in Section IV-B has been effective.

B. Adaptivity of the algorithms

We next investigate the adaptivity/responsiveness of the

proposed algorithms. Application request rates typically vary

over time and different applications exhibit different daily

patterns. For instance, companies may run more CPU intensive

applications, e.g., Map-Reduce type of applications, over-night

than in the day-time. Meanwhile, applications such as virtual

desktop become less requested in the evening than during the

working hours. In this experiment, we assume the application

request rate gradually changes from 5pm to 7pm. Specifically,

the request rate for application 1 increases linearly from 124

requests/second at 5pm to 208 requests/sec at 7pm, while the

request rates for application 2, 3 and 4 decrease linearly from

124 requests/sec at 5pm to 35 requests/sec, 52 requests/sec,

and 52 requests/sec at 7pm, respectively. The change of

application request rates not only changes the optimal PM uti-

lization, but also dynamically changes the optimal number of

VMs allocated for different applications and optimal number

of PMs assigned to different configurations.

Fig. 3(a) depicts the PM utilization over time. Without

explicitly detecting the input rate change, the Shadow algo-

rithm is able to automatically keep track of the new optimal

operating point as it continues to run in the same manner

as usual. Fig. 3(b) illustrates the number of VMs for some

application types, i.e., mij . We select the ones that are active

during the transition period from 5pm to 7pm. The number of

VMs adjusts nicely based on the current application request

rates. Fig. 3(c) further depicts the number of PMs assigned to

some configurations. There is a total of 46 configurations in S.

We selected the configurations that are assigned to PMs. The

results in Fig. 3 demonstrate that the Shadow algorithm is able

to promptly respond to application request rate change and

successfully keep track of the new optimal operating point.

C. Providing services

In the model considered so far (see Section III), an applica-

tion request is serviced by one VM. In practice, an application

request can be multi-tiered and may need the services from

multiple VMs. For instance, the Web application architecture

consists of three tiers: presentation tier, application tier, and

data access tier. Different tiers provide different functionalities

and may require different types of VMs. The presentation tier

communicates with other tiers, and displays the results to the

client browsers. The application tier makes logic decisions

and performs calculations. It also moves the processing data

between presentation tier and data access tier. Finally, data

access tier stores and retrieves the information from a data

base or file system. The information is then passed back and

forth to the application tier for processing, and then eventually

back to the presentation tier to display to users. Different tiers

require different types of computational resources.

For our purposes, let’s define such request as a service

request, where a service request employs one or multiple

applications, as defined in Section III, to complete the service.

Note that different services may employ the same underlying

applications, e.g., multiple services need to access the same

data base thus the data-access application can be shared among

them. Without loss of generality, we assume that application

requests of the same type, belonging to different services,

can share a VM. (If not, these applications can be treated as

different application types within our model.) Let k indexes the

service types, k ∈ K = {1, 2, . . . ,K}, and λk be the arrival

rate of service k. Denote by Ik ⊆ I the subset of applications

used by service k.

The optimization problem generalizes as follows:

min
{mij},{φs},ρ

ρ, (18)

subject to

mij ≥ 0, ∀(i, j), φs ≥ 0, ∀s (19)
∑

k: i∈Ik

λk/µi ≤
∑

j

wij ·mij , ∀i, (20)

∑

i

mij/β ≤
∑

s∈S

sjφs, ∀j, (21)
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(a) PM utilization with gradual application
arrival rate change.
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Fig. 3. Datacenter physical machine utilization and optimal number of PMs and VMs with gradual application arrival rate change

∑

s∈S

φs = ρ. (22)

The problem (18) is same as the problem (2) except the

constraints in (20) are more general. We note, however, that the

Shadow algorithm, as described in Section IV-B, still applies

as is – we simply treat each application request i as such,

regardless of which service it belongs to.

We use an example to show how Shadow algorithms

can solve the optimization problem (18). Suppose the cloud

supports three types of services, where service 1 employs

application 1, 2, and 4, service 2 employs application 2 and 4,

and service 3 employs application 3 and 4. Application 4 (e.g.,

file access application) provides the common functionality that

can be used by all three services; assume that application

requests of type 4 can share a VM, regardless of which service

they belong to. In contrast, assume that application requests

of type 2, which belong to different services 1 and 2 cannot

be “mixed” within same VM; therefore, the Shadow algorithm

will “split” the application type 2 into two types 2.1 and 2.2,

respectively.

We set the arrival rate of all three services to be 77 reqs/sec.

Other parameters, such as {wij}, {µi}, remain the same as in

the previous experiments. Fig. 4 depicts the PM-utilization in

comparison to the optimal utility. The optimal PM utility is

44.7%, while the PM utility using Shadow algorithm is 49.7%
on average.

2PM 3PM 4PM 5PM 6PM 7PM 8PM 9PM 10PM
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

P
hy

si
ca

l m
ac

hi
ne

 u
til

iz
at

io
n

 

 

Shadow Algorithm
Optimum

Fig. 4. PM utilization with three services

Fig. 5 further depicts five virtual queues for Constraint (20)

(as compared to four virtual queues in the experiments in

Section VI-A). Note that the virtual queue sizes of queue 2

and queue 5 are identical and overlap with each other. The

experiment shows how to apply the Shadow algorithm to the

service model, and that it performs well.
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Fig. 5. Application virtual queue sizes with three services

VII. EXPEDITED CONVERGENCE

One of the salient features of Shadow algorithm is its

capability to automatically keep track of the optimal operating

point without actively measuring the request arrival rate.

Different request rates correspond to different optimal points

and different optimal values of {mij} and {φs}. The amount

of PMs assigned to each configuration s hence needs to be

adjusted accordingly so as to minimize the PM utility. While

Shadow algorithm is very capable in tracking the optimal

point, the VM-to-PM mapping algorithm, as described in

Section V-C, also plays a pivotal role in the overall algorithm

convergence speed. Below we examine how the Shadow

algorithm performs in face of a sudden application request

rate change. We then propose a PM redesignation algorithm

that can expedite the convergence.

The experiment parameters are the same as in the experi-

ment in Section VI-B except that the gradual transition period

is replaced by a sudden trasition period, i.e., the request rates

for application 1, 2, 3, and 4 are suddenly changed at 6PM. The
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optimal PM utilization is 53.4% from time 2PM to 6PM and

60.3% from time 6PM to 10PM. Fig. 6 depicts the value of φs,

the number of PMs assigned to different configurations, and

the PM utilization. The value of φs is from Shadow algorithm,

while the number of PMs are the result of VM-to-PM mapping

algorithm. As shown in Fig. 6(a) and Fig. 6(b), both the

Shadow and VM-to-PM mapping algorithm react to the sudden

rate change quickly. The value of φ̄s and the number of PMs

reach new optimal point within tens of minutes.

The PM utilization, however, does suffer from a bump right

after 6PM. The PM utilization shoots up to 81%, and then

decreases gradually to the new optimal PM utilization point

of 60.2%. This is due to the fact that optimal values of {φs}
change suddenly at 6PM. Thus PMs originally assigned to a

given configuration may not be needed in the new optimal

solution. This is obvious as shown in Fig. 3(c). Configuration

18 is assigned to about 200 PMs in the time period before

6PM. After the sudden rate change, the number of optimal

PMs assigned with configuration 18 is near zero. It takes time

for the PMs assigned to the configuration 18 to leave the

system, which causes the PM utilization to rise during the

sharp transition period. Specifically, before 6PM, the request

rate for 4 applications are 124 requests/sec. After the 6PM,

the request rate for app 1 is 208 req/sec, and that of app 2, 3,

and 4 are 35req/sec, 52req/sec, and 52req/sec, respectively.

The minimum number of required PMs before the change

is 534 PMs. Since this is a sudden change, the PMs that

are used to serve the ’old’ request profile won’t be released

immediately at 6PM. Meanwhile, the extra 208 - 124 = 84

req/sec for application 1 are extra new requests that need to

be accommodated. The minimal number of PMs needed to

accommodate 84 req/sec (for application 1) is 210 PMs. Hence

the required number of PMs right after 6PM can be estimated

as 534+210=744 PMs, or 74.4%, as shown by the red dotted

line in Fig. 6(c). We next describe the PM-redesignation

algorithm that can mitigate the above PM utilitation surge

problem.

A. PM-redesignation algorithm

PM-redesignation algorithm is an additional optional pro-

cedure that can be run after a VM departs the system. Its

purpose is to speed up the system transition to a new optimal

regime, when sudden changes in the input flows and/or system

parameters occur.

This algorithm has access to to the quantities φ̄s, maintained

by the Shadow algorithm. After a new VM (of any class)

departs from an s-PM, we denote by ŝ = (ŝ1, . . . , ŝJ) the

actual configuration of this PM; namely, ŝj is the actual

number of j-VMs this PM contains. Clearly, ŝ ≤ s. If ŝ = 0,

i.e., it is the empty configuration, we leave this empty PM

without any designation, and stop. If ŝ 6= 0, denote by

S∗(ŝ) = {s′ ∈ S | ŝ ≤ s′}; denote by Ys′ the current number

of s’-PMs. Compute s∗ = argmins′∈S∗ Ys′/φ̄s′ . If s∗ 6= s
and [Ys∗ + 1]/φ̄s∗ ≤ [Ys − 1]/φ̄s, s∗ is identified as the PM-

redesignation target. The PM is redesignated as an s∗-PM. In

addition, every PM belonging to s is examined to see if it can

be redesignated to s∗. If yes, this PM will be redesignated as

an s∗-PM.
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Fig. 7. PM utilization with sudden application request rates change

Fig. 7 depicts the PM utilization after running PM-

redesignation algorithm. The peak PM-utilization is cut down

to 75.2%, close to the required 74.4%. Fig. 8 further depicts

the number of redesignated PMs over time. As expected, the

majority of PM redesignations (about 200 PM redesignations)

happens just after the 6PM. During the stable phase, the

number of PM redesignations is minimum.
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VIII. DISCUSSION AND CONCLUSION

In this paper we presented an optimization framework that

adaptively solves the joint VM auto-scaling and VM-to-PM

packing problem. Our approach integrates the interest of

users in acquiring elastic resources that automatically scale

with the application demands, with the interest of cloud

service providers in packing VMs to efficiently utilize cloud

resources. Extensive simulation results verify the proposed

algorithms’ efficiency, convergence, and adaptivity. Addition-

ally, the framework is scalable to handle a large size cloud.

The number of virtual queues, as shown in Fig. 1, is the sum

of the number of the application types and the number of the

feasible configuration vectors, and is not related to the number

of PMs in a cloud.
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Fig. 6. Value of φs, number of PMs, and PM utilization for a suddern request rate change at time 4pm.

In the framework considered, the cloud customers do not

decide on the type and number of VMs to be launched to

meet the application demands. This decision is embedded

in the optimization framework, and is made by the cloud

provider/operator. Therefore, our framework is especially suit-

able for private clouds, where private cloud operators have full

control over the VM auto-scaling and VM-to-PM packing. Pri-

vate clouds have experienced rapid growth in recent years [5]

due in part to security and privacy concerns. For public clouds,

additional mechanisms are needed to allow cloud providers

to steer the users’ VM selection using, for example, pricing

incentives. This is, however, outside the scope of this paper

and is a topic of future research.

In our optimization model (2), we assume that an ap-

plication can use arbitrary VM types, which is not true in

practice. For instance, a CPU-intensive application needs a

CPU-intensive VM type. The application profiling [26] can

help in choosing the most appropriate VM type(s). For the

unchosen VM types, the value of their parameter wij can

simply be set to zero.

Finally, we assume in our model that the VMs can be

brought up and torn down immediately. However, there is

typically a boot and configuration delay which may be sig-

nificant [18]. Our framework can readily incorporate the VM

boot delay by inflating the job size of an application request

so as to provide a sufficient resource margin. The issue of

how to scale resources to reduce the number of VM boots

and tear-downs may be worthy of further investigation.
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