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We present an analytical description of localized spin wave modes that form in a parabolic field
minimum in a thin ferromagnetic film. Mode profiles proportional to Hermite functions are eigen-
fuctions of the applied field and exchange parts of the equations of motion, and also provide a basis
for numerical approximation of magnetostatic interactions. We find that the spin wave modes are
roughly equally spaced in frequency and have roughly equal coupling to a uniform driving field. The
calculated mode frequencies and corresponding profiles of localized spin wave modes are in good
agreement with micromagnetic modeling and previously published experimental results on multiple
resonances from a series of localized modes detected by ferromagnetic resonance force microscopy.
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I. INTRODUCTION

During the last decade, localization of magnetic excita-
tions (i.e. localization of spin waves) has drawn the atten-
tion of many researchers. Localized spin excitations are
important for a range of applications from local measure-
ments of magnetic properties to the switching dynamics
of novel memory devices and the dynamics of spin torque
oscillators.

The mechanism of spin wave localization can have
a variety of physical origins. At the most basic level,
excitations are confined to the volume of a magnetic
structure.1,2 In a sheet film, however, spin wave localiza-
tion may occur in regions of low effective field, meaning
regions where the precession frequency is lower than the
range of propagating spin wave frequencies in the sur-
rounding medium. Without a separation in frequency
between localized and propagating modes, a locally pre-
pared excitation would likely couple to propagating waves
having the same frequency, allowing the precession en-
ergy to disperse. Regions of low effective field occur as a
result of material property fluctuations in inhomogeneous
materials, and it has been shown through modeling that
such localization contributes to broadening of the ferro-
magnetic resonance line width.3

A fairly common situation where the conditions for
spin wave localization are met occurs in patterned film
structures where internal fields may be strongly inho-
mogeneous, especially near film edges. Localized spin
waves have been observed near the edges of ferromag-
netic stripes and rectangular elements4–8, and these edge
modes have been used to characterize the effects of
lithography,9 oxidation10 and interactions in mulitlayer
stripe arrays11. In straight stripes, the localized spin

waves are localized in two dimensions, but remain ex-
tended along the film edge, but along a curved film edge,
i.e. in ferromagnetic nanodiscs, the spin waves are can
be localized in three dimensions, allowing probes of edge
geometry and conditions along sample edges.12,13

In addition to linear excitations, a rich variety of non-
linear localization phenomena has been explored includ-
ing propagating solitons and stationary nonlinear exci-
tations such as bullets14–16and droplets17–19 which are
self-localized via the intrinsic nonlinearity of the Landau
- Lifshitz equations of motion.20

In this paper, we address small-angle spin wave modes
that are localized in unpatterned films, and we treat a
conceptually simple case, in which the magnitude of the
local field has a parabolic minimum in the plane of the
film. The parabolic field well provides a useful approxi-
mation to the stray field of the tip in magnetic scanned-
probe experiments, for example, where a magnetized tip
can produce significant stray fields. Both calculations
and measurements have demonstrated spin wave localiza-
tion under such a tip for perpendicular21–25, tilted26 and
in-plane orientations13. Localized spin waves of this type
can then be used as probes of material inhomogeneity
with spatial resolution similar to the size of the localized
mode13,21. Additionally, localized spin waves have been
used in the ”magnetic well” method to non-destructively
probe losses in extended films with low damping27.

This article is organized as follows. In Section II we
develop the theoretical basis for analysis of spin waves
that are localized in a parabolic field well. In section III
we use this analysis to approximate the modes formed
in the field minimum due to a magnetic cantilever tip,
and we compare the results with micromagnetic calcula-
tions. For better quantitative agreement between theory
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FIG. 1: Schematic representation of localized spin wave mode
profiles formed in a film of thickness a, magnetized in-plane.
The field is in the z direction while the magnitude of the field
has a parabolic spatial dependence.

and micromagnetic calculations, we extend the theory to
accommodate the case of strongly hybridized modes in
Section IV. In Section V we conclude with a discussion
of results in the context of existing models of spin wave
localization in thin films and nanostructures.

II. DESCRIPTION OF THE MODEL

Figure 1 conceptually illustrates the situation for an
in-plane magnetized film. A magnetic film of thickness a
lies in the y-z plane with the x direction along the film
normal. An external source creates a field that varies in
magnitude over position but is always aligned along the
z-axis. We create a simple field minimum by allowing
the field magnitude to vary in the plane of the film as a
parabolic well,

Hi(y, z) ≈ H0(1− C0 + Czz
2 + Cyy

2). (1)

Here, the internal field Hi includes a uniform applied
field H0 and a parabolic field well with depth H0C0 and
curvature parameters H0Cy and H0Cz . We choose the
parabolic field components to be proportional to the ap-
plied field in order to treat the case of a field well due
to a nearby, partially magnetized sphere. A parabolic
magnetic field profile has a number of intrinsic problems,
including large field amplitudes far away from the origin
and violations of Maxwell’s equations. These difficulties
serve as reminders that the solutions to this problem are
only approximate solutions to any real physical problem.
We treat the magnetization of the film as the sum of

the saturation magnetization M0 and a weakly excited
component, m(r); M = M0 +m(r) exp(iΩt), and we as-

sume that the static average magnetizationM0 is parallel
to the z axis.
An analytic solution for symmetric parabolic field wells

(i.e. Cy = Cz) has been used to describe spin wave modes
localized by the dipole field from a probe magnet25,27.
This model was developed for the case of sufficiently
small wave vectors, where the exchange fields are neg-
ligible. Bessel functions were used to approximate mode
profiles and the results are reasonable for the lowest mode
of spin wave spectrum.23. Here, we treat the the case of
asymmetric field wells ( Cy 6= Cz) and we incorporate
the exchange interactions explicitly.
To find the frequencies Ω as well as corresponding pro-

files of SW modes that are localized in the film in the
inhomogeneous field we use the Landau-Lifshitz equation
of motion. We include the dynamic dipolar field that is
generated by the precession of the magnetization of the
film, h = −∇ΦM , and the static parabolic external field.

i
Ω

γµ0
mx = Himy,−M0(D∆my + hy) (2a)

−i Ω

γµ0
my = Himx,−M0(D∆mx + hx) (2b)

where M0 =|M0| is the saturation magnetization of
the film, γ/2π = 29.6 GHz/T is the gyromagnetic ra-
tio, D = 2A/µ0M

2
0 is the exchange length squared, and

A is the exchange stiffness. The components of the dy-
namic dipolar field, denoted in Eq.2 as hx and hy, can
be expressed as

hu = − ∂

∂u

∫

dr′(m · ▽′)
1

|r− r′| (3)

Using the parabolic field given by (1), the equations of
motion can be rewritten in terms of a non-linear differ-
ential operator Ξ(u) = (− ∂2

∂u2 + u2) which captures the
exchange interactions and the parabolic field:

i
Ω

γµ0
mx = M0Dmy

[

K2
zΞ(ξ) +K2

yΞ(η)
]

(4a)

+H0(1− C0)my −M0hy,

−i Ω

γµ0
my = M0Dmx

[

K2
zΞ(ξ) +K2

yΞ(η)
]

(4b)

+H0(1− C0)mx −M0hx.

Here we have also introduced dimensionless coordinates,
ξ = Kzz, η = Kyy with

Kz =

[

H0Cz

M0D

]1/4

and Ky =

[

H0Cy

M0D

]1/4

. (5)

These K values have dimensions of 1/length, they char-
acterize length scales associated with the well shape and
exchange interactions, and they play roles similar to wave
numbers.
The differential operator Ξ appears in pairs set off by

square brackets in (4). This operator is identical to the



3

Schrödinger equation of the quantum harmonic oscilla-
tor with exchange and Zeeman energies taking the place
of kinetic and potential energies respectively. Eigenfunc-
tions ψn(x) satisfying Ξ(x)ψn(x) = λnψn(x) are known
to be proportional to Hermite polynomials Hn(x) and
have the form

ψn(x) =
1

√

2nn!
√
π
exp(−x2/2)Hn(x), (6)

where

Hn(x) = (−1)n exp(x2)
dn

dxn
exp(−x2), (7)

and the normalization condition is

〈ψi(x)ψj(x)〉 = δij . (8)

We refer loosely to these eigenfunctions as Hermite func-
tions in this paper. The eigenvalues corresponding to the
functions ψn(x) are λn = 2n+ 1.
It is natural to assume that the spatial profiles of the

magnetic excitations have a form of products

m(y, z) ∼ ϕmn(η, ξ) = ψm(η)ψn(ξ). (9)

If the dipolar terms, hx and hy in (2) and (4), were ne-
glected, the set of orthogonal functions ϕmn(η, ξ) would
provide exact solutions for the eigenmodes of the equa-
tions of motion. In such a case, modes with different
indices would not interact with each other. However,
the solution proposed in (9) is not an eigenfunction of
the dipolar operator (Eq. 3), so the presence of the dy-
namic dipolar fields hx, hy leads to an interaction be-
tween modes, and much of the remainder of this paper
will be concerned with approximating the magnetostatic
interactions.
The simplest approach is to use a diagonal

approximation.28,29 Essentially, the approximation as-
sumes that characteristic exchange/well frequency spac-
ing γM0DK

2 [see(10), below] is strong compared to
a characteristic frequency due to magnetostatic effects,
γM0Ka, or ǫ ≡ a/(DKi) ≪ 1. Qualitatively, the diag-
onal approximation will be valid for ultrathin films and
”narrow” field wells, i.e. large values of Cy and Cz. We
will find below that these conditions are not met for the
present example, but the diagonal approximation is a
useful first step, nonetheless.
The diagonal approximation leads to the spectra in a

simple diagonal form, which corresponds to an allowed
set of localized standing modes with frequencies given by

Ωmn = γµ0

√

(Ω0
mn − 〈hy〉mn)(Ω0

mn − 〈hx〉mn), (10)

where

Ω0
mn =M0D[K2

z (2n+1)+K2
y(2m+1)]+H0(1−C0). (11)

FIG. 2: Geometry of the model, simulating a ferromagnetic
resonance force microscopy experiment. The parameters used
in calculations are: tip radius R = 500 nm; distance between
the tip and the surface of the film d = 100 nm; thickness of
the film a = 20 nm.

The diagonal matrix elements of the dipole-dipole inter-
action are calculated by the formula:

〈hi〉mn = −M0KyKz

4πa

∫

dr

∫

dr′ ×

ϕmn(η, ξ, )ϕmn(η
′, ξ′)

∂

∂i

∂

∂i′
1

|r− r′| , (12)

where i can be x or y. These are essentially demagnetiza-
tion fields in the film-normal and in-plane directions. The
six-fold integral can be simplified substantially, and we
refer the reader to Appendix A for details of the simpli-
fication and tabulated coefficients for expansion in small
values of Kia.

III. SPIN WAVES LOCALIZED BY A

MAGNETIZED PROBE TIP

In this section we test the present theory with the diag-
onal approximation, comparing it to micromagnetic so-
lutions for spin waves in a parabolic well. We choose a
parabolic well that approximates the potential well cre-
ated by a the probe tip in a recent set of experiments.
The tip is a magnetically soft unsaturated sphere of ra-
dius R; the distance from the closest point of the tip
to the surface of ferromagnetic thin film is d, while the
thickness of the film is a. See Fig. 2. Previous micro-
magnetic solutions for the full dipolar tip field and the
corresponding experiment are described in Ref. 30.
The magnetic potential at point r = (x, y, z) is equal

to

Φsphere
0 =

1

3
Msphere

R3z

r3
, (13)

and if the value of the applied field is below
saturation,Msphere = 3H0. Here, r = |r| > R where r
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FIG. 3: The spatial dependence of the normalized dipolar field
from the micromagnetic tip. Two-dimensional potential well,
calculated by the formula Hi/H0 = f(y, z)−1 , fitted by two-
dimensional harmonic oscillator potential −C0+Czz

2+Cyy
2,

where C0 = 0.41, Cz = 0.543/R2, Cy = 0.0942/R2

is a radial vector from the center of the sphere to the
point. For the thin film, Hi can be written as a function
of the two in-plane coordinates, y and z, Hi ≈ H0f(y, z),
where

f(y, z) = 1− 1

r̃(y, z)3
(1 − 3(z/R)2

r̃(y, z)2
);

r̃(y, z) =
√

(R + d+ a/2)2 + y2 + z2/R, (14)

To apply the analysis from the preceding section, we
make the approximation that the equilibrium magneti-
zation lies parallel to the z axis i.e., M0 = (0, 0,M0)
and that the excitations have only two components,
m(r) = (mx,my, 0). In the full description, Hsphere has
three spatial components, and for rigorous analysis, one
should take into account deflections of the static magne-
tization by the x and y components of the dipole field.
However, the micromagnetic calculations reveal that the
angular deviations of M0 from the z direction are not
dramatic, and in fact the fields from the partially magne-
tized probe tip are significantly smaller than the applied
field H0.
To apply our model, we approximate the dipole field

from the tip with a truncated parabolic field well as il-
lustrated in Fig.3, where the truncated parabola has the
form given by eq. (1) when Hi(y, z) < H0 and a constant
value H0 where Hi(y, z) > H0. Taking the tip-to-film-
surface distance as d = 100 nm, and the film thickness
a = 20 nm, a least squares fit of the truncated parabola
to the dipole field yields C0 = 0.41, Cz = 0.543/R2,
and Cy = 0.0942/R2. The constant Cz is more than 5
times larger than Cy, which means that the parabola is
”steeper” in the z direction than it is in the y direction.
To gauge the accuracy of the analytic results, we per-

formed micromagnetic calculations of the spin wave dy-
namics in the parabolic field wells. The images in Fig. 4
depict the lossy part of susceptibility of the magnetiza-
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FIG. 4: Dispersion of spin wave modes in parabolic field wells
calculated by micromagnetic modeling as functions of applied
field H0. Material parameters are: saturation magnetization
of the film, M0 = 700 kA/m; gyromagnetic ratio, γ/2π =
29.6 GHz/T; exchange stiffness, A = 10−11 J/m, and film
thickness a = 20 nm. The parameters of the parabolic well
C0, Cz, Cy approximate a dipole field (see text and Fig.3). (a)
Truncated parabolic well field profile. The dark band corre-
sponds to resonance of the sheet film outside the well, while
the lowest solid black line is the uniform-film precession fre-
quency at the minimum field in the well, provided as a refer-
ence. (b) Resonances in an ”infinite” parabolic well extending
over the film plane. The inset shows spectra at 0.1 T for panel
(a) and (b) respectively.

tion as a function of field and frequency.The images are
compiled from individual spectra that were obtained by
Fourier transform of the ring-down response to a field im-
pulse. Fig. 4(a) shows the frequencies of spin wave modes
for a truncated parabola approximation to the tip field
(see Fig.3). The thick dark band corresponds to preces-
sion in the region outside the field well. The lower solid
line is a visual reference that shows the uniform-film pre-
cession frequency corresponding to the minimum field in
the well, H0(1 − C0).

For comparison, Fig. 4(b) shows the results calculated
for an extended parabolic field acting over the whole film
plane, using the same values for C0, Cz and Cy . The
inset compares the imaginary part of the susceptibility
at 0.1 T, and shows very similar behavior for the lowest
modes in the full parabola and in the truncated parabola.
For both types of field well, the trapped spin wave modes
appear as a series of resonances, roughly equally spaced,
and roughly equal in amplitude except the lowest mode,
which appears as a shoulder in the spectra. These fea-
tures are also characteristics of previous experimental re-
sults for localized spin waves in a tangentially magnetized
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FIG. 5: Mode profiles of the localized excitations calculated
with different approximations. The field and equilibrium
magnetization lie along the z axis. Profiles are presented in
order of increasing frequency. Top row: Profiles calculated
by micromagnetic modeling at µ0H0 = 0.1 T, corresponding
to the shoulder and the first three maxima in the inset of
Fig.4. Middle row: Mode profiles for the diagonal approxi-
mation, equivalent to Hermite function basis states ϕ0,m for
m = {2, 0, 4, 6}. With magnetostatic interactions, the (0,2)
mode has a lower frequency than the (0,0) mode. Bottom row:

Eigenmode profiles when hybridization via magnetostatic in-
teractions is taken into account, showing strong similarities
to the micromagnetic results.

film.30 Profiles of the lowest modes, calculated by micro-
magnetic modeling at µ0H0 = 0.1 T, are given in Figure
5. We will discuss these profiles in comparing with ana-
lytical results below.
Now we return to the approach developed in Section

II, and we compare the micromagnetic calculations with
the results generated by the diagonal approximation.
For convenience, we denominate a mode with the pro-
file ϕmn(η, ξ) = ψm(η)ψn(ξ) by a pair of correspond-
ing indeces (m,n), where the first index determines the
y-dependence, and the second index determines the z-
dependence of the mode’s profile in the film plane. We
consider only even indices, as only the modes with even
symmetry can be excited by a uniform driving field.
Mode frequencies calculated in the diagonal approxi-

mation by equation (10), are presented in Figure 6(a).
The lowest part of the spectra consists of a branch of
modes with indices (0, n) which are localized analogs of
backward volume waves with wavefronts perpendicular
to the static magnetization and common y dependence
exp(−η2/2). Additionally, frequencies of a few modes
from the (2, n), (4, n) and (6, n) branches are plotted and
these modes generally have higher frequencies than the
(0, n) branch.
For this example field well, the diagonal approxima-

tion yields results that are only qualitatively consistent
with the micromagnetic solutions, and the diagonal ap-
proximation yields mode frequencies that are generally
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FIG. 6: Calculated dispersion of precession modes using (a)
Hermite function mode profiles and a diagonal approximation
and (b) when hybridization by magnetostatic interactions is
taken into account. Similarly to Fig. 4, the lower black dot
lines correspond to the uniform precession frequency in the
minimum field.

higher than the micromagnetic results. Note the gap
between the lowest mode frequency and the dashed ref-
erence minimum-field line Fig. 6(a), and compare that
with the much smaller corresponding gaps in Fig. 4. The
mode frequencies are also less evenly spaced, especially
for the lowest frequency modes. Interestingly, the lowest
frequency mode is the (0,2) mode, not the (0,0) mode.
The mode profiles, which are identical to the basis state

profiles, are shown in Fig. 5 Middle. These take the form
of standing waves along the field direction, similar the
modes in the micromagnetic results in Fig. 5 Top. How-
ever, clear differences can be seen between the calculated
micromagnetic profiles and the profiles of the Hermite
functions with the same parabolic well parameters (Fig.
5 Middle). The most striking difference is that the mi-
cromagnetic mode profiles are extended further in the y
direction. A subtler difference can be seen in the first
profile in the top row. On either side of the central max-
imum, there are slight minima visible as weak, vertical
dark streaks. The extension of the mode profiles in the
y direction and the extra minima in the profiles relative
to the basis profiles indicate that mode hybridization is
needed to improve upon the diagonal approximation.
The failures of the diagonal approximation are perhaps

not surprising. The validity criterion defined in the pre-
viouse section, ǫi ≡ a/(DKi) ≪ 1 is not well satisfied
for this example. For the present example, ǫy = 1.0 and
ǫz = 0.7. We can expect magnetostatic mode interac-
tions to be important, and we explore these effects in the
following section.
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IV. BEYOND THE DIAGONAL

APPROXIMATION

In the previous section we found that the diagonal
approximation yields only a qualitative prediction com-
pared to the micromagnetic results. Here we look for a
full solution using the full set of Hermite function ba-
sis states while including magnetostatic interactions be-
tween those states.
First, we combine the two first-order equations of mo-

tion in (4) using substitution to obtain a single second-
order equation of motion for mx. Then we expand the
excitations as a superposition of basis states

mx ∝ ap(η, ξ) =
∑

mn

Ap,mnϕmn(η, ξ), (15)

The equations of motion then become an infinite sys-
tem of linear equations for coefficients Amn coupled by
the off-diagonal magnetostatic elements, 〈hx〉mn,m′n′ and
〈hy〉mn,m′n′. Calculation of these terms is described in
the Appendix. We find that the off-diagonal coupling
values generally weaken with “distance” from the diago-
nal, i.e. |m−m′| and |n− n′| and this fact allows us to
approximate the full problem with a finite-sized subset
of the basis states. By numerically diagonalizing the dy-
namical matrix, we obtain the eigenfrequencies Ωp and
the eigenmode profiles ap(η, ξ), and we choose the nor-
malization of the profiles such that

∫

|ap(η, ξ)|2dη dξ = 1.
In the results we show below, we have limited the ba-

sis set to functions with even indices (m,n), where both
n and m vary from 0 to 28. The choice of even indices
addresses the case of a uniform excitation field where
odd-symmetry modes would not be excited. Images of
the 12 lowest-frequency eigenmodes are shown in Fig.
7 in order of increasing eigenfrequency. The first three
modes (with numbers 0, 1, 2) and the 4th, 6th and 9th
ones have profiles with vertical nodal lines similar to the
micromagnetic images (Fig. 6 Top). However, a distinct
set of modes appears (the 3th, the 5th, the 7th, the 8th
and so on) with additional horizontal nodal lines. Res-
onances from this second set are not prominent in the
micromagnetic results.
As an explanation for the apparent absence of certain

modes from the micromagnetic results, we show next that
these these modes couple weakly to a uniform driving
field. The intensity of each mode p with spatial profile
ap(η, ξ) is calculated as

Ip =

[∫

dy dz ap(Kyy,Kzz)
]2

∫

dy dz ap(Kyy,Kzz)2
. (16)

The integral in the numerator of this expression is pro-
portional to the Zeeman interaction between the trans-
verse magnetization in the mode and a uniform, trans-
verse applied driving field. The integral is squared; in an
absorption experiment, this coupling integral acts twice,
once as the field excites the mode, and a second time
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FIG. 7: Mode profiles of the 12 lowest modes, calculated on
the basis of an array of functions ϕmn(η, ξ) with even in-
dices (m,n), where both m and n vary from 0 to 28. Corre-
sponding frequencies (intensities) are given in the upper right
(lower left) corners of every image. Magnetic parameters and
parabolic well were defined in the previous section. Applied
field µ0H0 = 0.1 T

as the precession acts on the field source. The inten-
sity values for the modes are provided in each image in
Fig. 7. Calculated intensities of the modes vs. their
frequencies are given in Fig. 8. The modes with largest
intensities comprise a set of peaks roughly equally spaced
in frequency and roughly equivalent intensity, in agree-
ment with the micromagnetic spectra presented in Fig.
4. Profiles of these modes are very similar to the images
in Fig. 5. The low intensity of the lowest frequency mode
is also captured by the eigenmode calculation.

V. DISCUSSION

Summarizing, we present here calculations of localized
spin wave modes that are excited in a parabolic field
well. The model treats the field well and exchange in-
teractions exactly by using Hermite functions as mode
profiles. However, numerical computation was required
to incorporate the magnetostatic interactions with suffi-
cient fidelity to agree with results obtained by micromag-
netic simulation.
For analysis of localized spin wave modes, the selection
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even indices (m,n), where both m and n vary from 0 to 28.
Intensities describe coupling to a uniform microwave field, as
in ferromagnetic resonance experiments. Corresponding pro-
files for the lowest 12 modes were presented in the Fig. 7.

of the basis functions is dictated by the symmetry of the
situation31. For thin films in uniform fields, plane waves
are the obvious basis choice due to translational invari-
ance and the fact that the plane waves are also eigenfunc-
tions of the applied field, exchange and magnetostatic
interactions29. In confined structures, the plane waves
are no longer eigenfunctions of the magnetostatic inter-
actions or of possible non-uniform static internal fields,
but plane waves remain a good choice for analysis of ex-
citations in rectangular dots32 and in stripes.33

For a normally magnetized film, the axial symmetry
suggests the use of Bessel functions. In the case of a
field well with axial symmetry, the field breaks the ra-
dial uniformity, and the Bessel function profiles are no
longer eigenfunctions of the applied field. Also, the pre-
cession contains in-plane components of magnetization
that break the axial symmetry, and the Bessel function
field profile is not an eigenfunction of the in-plane magne-
tostatic interactions. Despite these shortcomings, Bessel-
function basis functions have been used to good effect
in circular dots,22,28,34 and in normally magnetized field
wells.21,23–25

Symmetry is not the driving motivation for using

Hermite functions in the tangentially magnetized field
well case. Rather the motivation comes from the Her-
mite functions’ ability to solve the combination of the
parabolic field well profile and the exchange interaction.
Improving solutions are then found with increasingly so-
phisticated approximations to the magnetostatic inter-
actions between a modest number of basis states. The
use of Hermite functions also simplifies the calculation of
magnetostatic interactions by virtue of the fact that they
are essentially their own Fourier transforms.
In closing we note that the method we have used here

is not limited to the in-plane case. The method can
be easily generalized for different orientations of the ap-
plied field relative to the film plane, and it may prove
to be useful in planning future ferromagnetic resonance
imaging experiments involving spin wave localization.24

In particular, the method is applicable to the case of nor-
mally magnetized film21, when the potential well is either
isotropic or anisotropic.
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APPENDIX A: CALCULATION OF

MAGNETOSTATIC INTERACTIONS

In general, magnetization precession produces dynamic
fields that then exert torques on the magnetization. In
this appendix, we describe the magnetostatic coupling
that occurs when the field produced in one mode, (m,n)
acts on a mode (m′, n′). Equation 12 describes the case
when (m,n) = (m′, n′), but here we treat the more gen-
eral case of interaction between possibly different modes.
The magnetostatic interaction terms are given by

〈hi〉mn,m′n′ = −M0KyKz

4πa

∫

dr

∫

dr′ϕmn(η, ξ, )ϕm′n′(η′, ξ′)
∂

∂i

∂

∂i′
1

|r− r′| , (A1)

where i stands for x or y and the dimensionless coordi-
nates are ξ = Kzz, η = Kyy.

To simplify the six-fold integral in (A1) we use Fourier
transforms of the integrand terms. The reward is gained
from the fact that the nonlocal kernel of the integral in
(12) becomes a local function in reciprocal space. In
terms of Fourier transform, the kernel can be expressed

as:

1

|r− r′| =
∫

dq

(2π)2
2π

q
e−q|x−x′|eiq(ρ−ρ′), (A2)

where ρ and ρ′ are two-dimensional vectors (y, z) and
(y′, z′), correspondingly.
The remaining in-plane integrals over y, y′, z and z′ are

simplified by using the Fourier transform of the Hermite
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functions (6). Here the Hermite functions yield an ad-
ditional unique advantage: their Fourier transforms are
proportional to the functions themselves.

ψn(x) =
1

(i)n
√
2π

∫ ∞

−∞

dk ψn(k)e
ikx. (A3)

As a result, the magnetostatic matrix elements(12)
simplify to two-fold integrals

〈hx〉mn,m′n′ ≈ −M0

∫∫

du dv
[1− e−qa]

qa
ϕmn(u, v)ϕm′n′(u, v) (A4a)

〈hy〉mn,m′n′ ≈ −M0

∫∫

du dv
q2y
q2

{

1− 1− e−qa

qa

}

ϕmn(u, v)ϕm′n′(u, v) (A4b)

where ϕmn(u, v) are the mode profiles given by (6) to(9),

q = (qy, qz) = (Kyu,Kzv), and q =
√

(Kyu)2 + (Kzv)2 .

APPENDIX B: MAGNETOSTATIC

INTERACTIONS IN THE THIN FILM LIMIT

In the thin film limit, the coefficients given by (A4) can
be approximated by a first-order expansion in aKi <<
1. Because the functions ψn(u) decay strongly as
exp(−u2/2) we can use an expansion in aq under the
integrals. Then we obtain the diagonal matrix elements
of a dipole-dipole operator in a linear approximation.

〈hy〉mn,m′n′ = −M0aKyYmn (1a)

〈hx〉mn,m′n′ = −M0(1− aKyXmn) (1b)

Xmn,m′n′ =

∫∫

du dv
q

2Ky
ϕmn(u, v)ϕm′n′(u, v)(2a)

Ymn,m′n′ =

∫∫

du dv
q2y

2Kyq
ϕmn(u, v)ϕm′n′(u, v)(2b)

Numerical coefficients X and Y depend only on the ratio
of curvature parameters,

√

Cz/Cy.

In those cases where diagonal approximation is
expected to be valid and where the thin film limit
holds, a good description of the trapped modes can be
obtained using a few magnetostatic matrix elements
from the diagonal. For the lowest branch values of
X0n and Y0n will give magnetostatic corrections to
the exchange-dominated frequencies. These values for
different values of C =

√

Cz/Cy are presented in Table I.
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