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We theoretically investigate dynamics of antiferromagnetic domain walls driven by spin-orbit
torques in antiferromagnet/heavy metal bilayers. We show that spin-orbit torques drive antiferro-
magnetic domain walls much faster than ferromagnetic domain walls. As the domain wall velocity
approaches the maximum spin-wave group velocity, the domain wall undergoes Lorentz contraction
and emits spin-waves in the terahertz frequency range. The interplay between spin-orbit torques
and the relativistic dynamics of antiferromagnetic domain walls leads to the efficient manipulation
of antiferromagnetic spin textures and paves the way for the generation of high frequency signals
from antiferromagnets.

PACS numbers: 85.75.-d; 75.50.Ee; 75.78.Fg; 75.70.Tj

Antiferromagnets are ordered spin systems in which
the magnetic moments are compensated on an atomic
scale. The antiferromagnetic order and consequent zero
net magnetic moment are maintained by antiferromag-
netic exchange coupling of neighboring spins. Any ex-
ternal disturbance competes directly with the large an-
tiferromagnetic exchange, which results in magnetic ex-
citations in terahertz frequency ranges [1]. Furthermore,
an antiferromagnet has no magnetic stray field, which is
beneficial for integrated circuits because the stray field
is a primary source of detrimental magnetic perturba-
tions [2, 3]. These attractive features of antiferromagnets
have led to the recent development of antiferromagnetic
spintronics, an emerging research field which pursues the
use of antiferromagnets as active elements in spintronic-
based devices [4].

The principal discipline of antiferromagnetic spintron-
ics is the robust detection and manipulation of the anti-
ferromagnetic order. The antiferromagnetic order can be
electrically probed through the (tunneling) anisotropic
magnetoresistance effect [5] or the spin pumping ef-
fect [6, 7]. Significant progress has also been made on the
manipulation of the antiferromagnetic order using both
charge and spin currents [8]. Conventional spin-transfer
torque enables current-driven manipulation of antiferro-
magnetic spin textures such as antiferromagnetic domain
walls [9–11] and antiferromagnetic skyrmions [12, 13].
We note however that most previous studies on current-
driven manipulation of antiferromagnetic order have ne-
glected spin-orbit coupling.

The influence of spin-orbit coupling on spin trans-
port and magnetization dynamics has recently attracted
considerable attention, as it enables the study of fun-
damental interactions among conduction electron spin,

electron orbit, and local magnetization. In ferromag-
net/heavy metal bilayers, an in-plane current generates
spin-orbit spin-transfer torques (SOTs) [14, 15]. The
microscopic origin of these torques remains under de-
bate, but they can be classified according to their di-
rection. In the coordinate system of Fig. 1, the “field-
like” torque induces precession of spins around the y-
axis, while the “damping-like” torque directs the spin
towards the y-axis. Spin-orbit coupling additionally in-
duces a noncollinear magnetic exchange in these bilayer
systems known as the interfacial Dzyaloshinskii-Moriya
interaction (DMI), which stabilizes Néel domain walls in
ferromagnets. The SOT combined with DMI efficiently
drives a ferromagnetic domain wall [16, 17]. Recently,
current-driven relativistic Néel-order fields in antiferro-
magnets [18] and consequent domain wall motion [19]
have been predicted theoretically and SOT switching of
antiferromagnetic order has been confirmed experimen-
tally [20], indicating the relevance of SOT in antifer-
romagnets with inversion asymmetry. This relativistic
Néel-order field is present in only a specific class of an-
tiferromagnets for which the spin sublattices of the anti-
ferromagnet individually break inversion symmetry, but
form inversion partners with each other.

In this Letter, we investigate SOT-driven antiferro-
magnetic domain wall motion in antiferromagnet/heavy
metal bilayers in the presence of interfacial DMI, based
on the collective coordinate approach [9–11] and atom-
istic spin model simulations [21]. Because SOTs in an-
tiferromagnet/heavy metal bilayers emerge by the struc-
tural inversion asymmetry, our result is applicable to a
wide variety of antiferromagnets in contact with a heavy
metal layer. We show that at reasonable current densi-
ties the antiferromagnetic domain wall velocity can reach



��

��

FIG. 1: Schematic illustration of an antiferromagnet
(AF)/heavy metal (HM) bilayer system. An in-plane charge
current J generates a perpendicular spin current, which in
turn generates SOTs acting on antiferromagnetic moments.

a few kilometers per second, which is much larger than
that of a ferromagnetic domain wall. As the wall velocity
approaches the maximum group velocity of spin-waves, it
undergoes Lorentz contraction and emits spin-waves with
wavelength on the order of the material lattice constant.
The frequency of emitted spin waves is in the terahertz
range and thus the antiferromagnetic domain wall can be
used as a direct-current-driven terahertz source.

We consider an antiferromagnetic domain wall in a
one-dimensional nanowire system composed of an antifer-
romagnet/heavy metal bilayer with perpendicular mag-
netic anisotropy (Fig. 1). We note that our result is
also applicable to in-plane anisotropy [22]. An in-plane
current flowing along the x-axis generates field-like and
damping-like SOTs [15]. For the analytical description,
we use the nonlinear sigma model in the continuum ap-
proximation [10]. To begin, we define the total and stag-
gered magnetization as follows: m ≡ m1(x, t) +m2(x, t)
and l ≡ m1(x, t)−m2(x, t) where m1(x, t) and m2(x, t)
are respectively the magnetic moment densities of two
sub-lattices with |m1(x, t)| = |m2(x, t)| = ms. In the fol-
lowing, we discuss the antiferromagnetic domain wall dy-
namics with m(x, t) and n(x, t)(≡ l(x, t)/l) and expand
equations up to second order in small parameters [9],
assuming that time-, space-derivative, damping, SOTs,
anisotropy, and interfacial DMI are small.

The leading-order free energy in the continuum ap-
proximation is

U =

∫ [a
2
|m|2 + A

2
(
∂n

∂x
)2 + Lm · ∂n

∂x

−K

2
(ez · n)2 +

D

2
ey · (n× ∂n

∂x
)
]
dr, (1)

where a and A are the homogeneous and inhomogeneous
exchange constants, respectively, L is the parity-breaking
exchange constant [23, 24], andK andD denote the easy-
axis anisotropy and interfacial DMI, respectively. From
the functional derivative of the energy density, we obtain
effective fields to lowerst order fm = − δU

δm and fn = − δU
δn .

Disregarding nonlinear terms, the equations of motion

are:

∂n

∂t
= (γfm −G1

∂m

∂t
)× n+Tn

SOT, (2)

∂m

∂t
= (γfn −G2

∂n

∂t
)× n+Tm

SOT, (3)

where γ is the gyromagnetic ratio, and G1 and G2 are
damping parameters [10, 11]. Rewriting the field-like and
damping-like torques in terms of n and m and retaining
lowest order terms leads to: Tn

SOT = γBD

l n× (m× ey)+
γBFn × ey and Tm

SOT = γBDln × (n × ey) + γBFm ×
ey [6] where BD(= µBθSHJ/γemstz) and BF(= χBD)
denote effective fields corresponding to the damping-like
and field-like components of SOT, respectively, tz is the
thickness of antiferromagnet, θSH is the effective spin Hall
angle, µB is the Bohr magneton, e is the electron charge,
J is the current density, and χ is the ratio of BF to BD.

We introduce the collective coordinates for the domain
wall position r and angle ϕ, and the ansatz for the wall
profile [25]: n(x, t) = (sin θ cosϕ, sin θ sinϕ, cos θ) where
θ = 2 tan−1[exp(x−r

λ )], and λ is the domain wall width.
Following the procedure in Ref. [11], m can be expressed
in terms of n by combining Eqs. (2) and (3). Substituting
the wall profile into n and keeping leading order terms,
we obtain the following equations:

r̈ + aγG2ṙ +
π

2
aγ2lλBD cosϕ+

π

2
γλBFϕ̇ sinϕ = 0,(4)

ϕ̈ + aγG2ϕ̇− π

4

aγ2

λ
D sinϕ− π

2

γ

λ
BFṙ sinϕ = 0. (5)

We first consider the case for a Néel wall (i.e., ϕ(t =
0) = 0 or π), which is stabilized by nonzero D since the
hard-axis anisotropy of antiferromagnetic domain wall is
negligible. In Eqs. (4) and (5), all terms having sinϕ are
zero at t = 0. With ṙ = 0 and ϕ̇ = 0 at t = 0 (i.e., the
domain wall is at rest at t = 0), ϕ̇ is always zero and the
steady-state velocity vDW of Néel wall is given as

vDW = vAF = −πγλBD/2α, (6)

where α (= G2/l) is the Gilbert damping. It is worth-
while comparing vAF to the velocity vF of a Néel type
ferromagnetic domain wall driven by SOT [16]:

vF =
γπD

2ms

√
1 + (αD/BDmsλ)2

. (7)

In the small BD limit, |vF| = |vAF|. This equivalence
is however broken when BD is large. For a ferromag-
netic wall, ϕ increases with BD so that vF saturates to
γπD/2ms. For an antiferromagnetic wall, on the other
hand, ϕ does not vary with time and as a result, vAF

increases linearly with BD (thus J). This unique prop-
erty of antiferromagnetic Néel wall leads to a large vAF

especially for a small damping α because vAF ∝ 1/α. A
small damping is realized in semiconducting or insulat-
ing antiferromagnets such as NiO, MnO, FeO, and CoO,
where spin scattering is suppressed.



We next consider the case for a Bloch wall (i.e., ϕ(t =
0) = π/2 or 3π/2), corresponding to D = 0. From Eq.
(5), ϕ̇ is always zero because ṙ = 0 and ϕ̇ = 0 at t = 0.
Substituting ϕ̇ = 0 and cosϕ = 0 in Eq. (4), we find vDW

of a Bloch wall is zero when it is driven only by the SOT.

To verify the analytical results, we perform numerical
calculations with the atomistic Landau-Lifshitz-Gilbert
(LLG) equation [21] for an antiferromagnet [see supple-
mentary material [22] for details of the atomistic model].
The symbols in Fig. 2(a) show numerical results of the
steady-state vDW as a function of the current density J
when BF = 0. As predicted by Eq. (6), a Bloch wall does
not move whereas the Néel wall velocity linearly increases
with J in a low current regime. We find however that the
Néel wall velocity saturates in a high current regime, in
contrast to the prediction of Eq. (6). As explained above,
such saturation behavior of vDW is also expected for a fer-
romagnetic wall when it is driven by combined effects of
SOT and DMI [16]. In case of ferromagnetic walls, the
saturation of vDW results from the saturation of the do-
main wall angle ϕ in the high current regime. In case
of antiferromagnetic walls, however, ϕ does not change
with time [i.e., ϕ̇ = 0; see Eq. (5) and Fig. 2(b)] so that
the vDW saturation of an antiferromagnetic domain wall
results from a completely different origin.

We find that the spin-wave emission from the antiferro-
magnetic domain wall is the origin of the vDW saturation
in the high current regime. A snap-shot configuration
of n shows that the wall moves to the right while emit-
ting spin-waves to the left [Fig. 2(b); see supplementary
movie in [22]]. The reason for spin-wave emission is as
follows: The damping-like SOT asymmetrically tilts the
domains on the right and the left of wall [see inset of
Fig. 2(c)]. Because of the asymmetric domain tilting,
the rear (i.e., left) of wall has a steeper gradient of n and
thus a higher exchange energy than the front of wall. As
the wall moves faster, the wall width λ shrinks more [see
Fig. 2(d)]. As λ approaches the lattice constant, the anti-
ferromagnetic domain wall is unable to sustain its energy
and starts to emit spin-waves towards its rear (where the
gradient is steeper) to release the energy. Therefore, the
spin-wave emission serves as an additional energy dissi-
pation channel and slows down the wall motion.

These interesting dynamics of antiferromagnetic do-
main walls in the high current regime are a manifestation
of the relativistic kinematics originating from the Lorentz
invariance of the magnon dispersion [29, 30]. In special
relativity, as the velocity of a massive particle approaches
the speed of light c, it shrinks via Lorentz contraction and
its velocity saturates to c. For the dynamics of antiferro-
magnets, the speed of light is replaced by the maximum
spin-wave group velocity because the antiferromagnetic
domain wall can be decomposed into spin-waves and has
a finite inertial mass [30]. The velocity limit of an antifer-
romagnetic domain wall can therefore be described by the
relativistic kinematics: it undergoes Lorentz contraction
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FIG. 2: SOT-driven antiferromagnetic domain wall motion
for BF = 0: (a) Domain wall velocity vDW vs current density
J [28]. (b) Configuration of Néel-type antiferromagnetic do-
main wall at J = 2.0× 1011 A/m2. (c) Configuration of Néel-
type antiferromagnetic domain wall at J = 0.5 × 1011 A/m2.
Inset shows nx component. (d) Domain wall width λ vs
domain wall velocity vDW. (e) Domain wall mass MDW vs
vDW/vmax where vmax is the maximum group velocity of spin-
wave. (f) Spin-wave frequency f vs J . Modeling parameters
are [26]: d = 0.4 nm, Asim = 16.0meV,Ksim = 0.04meV, µ =
3.45µB, θSH = 0.1, α = 0.001, and χ = 0 (i.e., BF = 0) or
23 (i.e., BF ̸= 0 [27]). We use Dsim = 0 or Dsim = 2.0meV,
obtaining a Bloch or Néel wall, respectively.

as its velocity approaches the maximum spin-wave group
velocity, and its velocity saturates to the maximum spin-
wave group velocity. Figure 2(d) shows that numerically
obtained λ indeed shrinks as vDW becomes larger. The
Lorentz contraction of antiferromagnetic domain wall is
described by

λ = λeq

√
1− (vDW/vmax)2, (8)

where λeq is the equilibrium domain wall width and vmax

is the maximum group velocity of spin-wave. To obtain
vmax, we consider spin-waves in the bulk domain regions
for simplicity. Spin-waves are described by the equation
of motion for a small transverse component nx as

∂2nx

∂t2
= aγ2Ã

∂2nx

∂x2
− aγ2Knx ± aγ2lBD, (9)
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FIG. 3: SOT-driven antiferromagnetic domain wall motion
for BF ̸= 0 (χ = 23 [27]): (a) Domain wall velocity vDW vs
current density J [28]. Inset shows the domain wall angle ϕ
for an antiferromagnetic domain wall that is initially of Bloch
type. (b) Spin-wave frequency f vs J . f for BF = 0 is also
shown for comparison.

where Ã = A − L2/a and the upper (lower) sign corre-
sponds to the up (down) domain. The dispersion relation
and corresponding group velocity are given by

ω = γ

√
a(Ãk2 +K), (10)

vg =
dω

dk
=

γald

2
√
1 + 4K/al2d2k2

, (11)

and thus vmax = γald/2. For the modeling parameters,
vmax is about 5.6 km/s as shown in Fig. 2(a). With vmax

given above, the relativistically corrected vDW is given as

vDW =
γald

2

√
1− (λ/λeq)2. (12)

Equations (8) and (12) describe the numerical results rea-
sonably well [see Fig. 2(a) and (d)].
Two remarks on the relativistic kinematics of SOT-

driven antiferromagnetic domain wall motion are in or-
der. Firstly, it is also associated with the inertial mass
of the wall. In steady-state motion, the effective inertial
mass MDW of antiferromagnetic domain wall is MDW =
2ρwtz/λ = 2ρwtz/λeq

√
1− (vDW/vmax)2 where w is the

wire width. Because of the Lorentz contraction, MDW

increases by the Lorentz factor 1/
√

1− (vDW/vmax)2 as
vDW increases (Fig. 2(e)). Secondly, the frequency
of emitted spin-waves is in the terahertz range. Us-
ing the modeling parameters in the spin-wave disper-
sion given above, one finds that the spin-wave frequency
fmax (=ω/2π) corresponding to vmax is about 2.5 THz.
The numerically obtained spin-wave frequency is slightly
lower than fmax but is still in the terahertz range [Fig.
2(f)]. This suggests that the antiferromagnetic domain
wall can be used as a terahertz source of electric signal.
The power of THz signal estimated based on the spin
pumping and inverse spin-Hall effect [6, 7] is of the order
of µW [22], which is measurable.
We next show numerical results for BF ̸= 0 (Fig. 3).

BF does not affect dynamics of the Néel wall: vDW of

the Néel wall is almost independent of BF. On the other
hand, BF affects dynamics of Bloch wall substantially.
For BF = 0 the Bloch wall does not move [Fig. 2(a)]
whereas for BF ̸= 0 it moves with vDW ≈ vmax above a
certain threshold current density [Jth = 2.5×1011 A/m2;
see Fig. 3(a)]. This fast motion of the Bloch wall is ac-
companied by a current-dependent change in the domain
wall angle ϕ [inset of Fig. 3(a)], because a nonzero BF

transforms an initial Bloch wall into a Néel type wall.
This transformation is known as the spin-flop transition
of an antiferromagnet [32]. When an antiferromagnet is
subject to a large magnetic field applied along the stag-
gered magnetization n, the spin sublattice antiparallel to
the applied field is energetically unfavorable. At a thresh-
old field, the spins flop to a configuration where both sub-
lattices are perpendicular to the applied field [33], which
corresponds to the transformation from a Bloch to a Néel
wall. From Fig. 3(a), we find that vDW saturates in the
high current regime as in the case with BF = 0. This
vDW saturation also originates from the emission of spin-
waves in the terahertz frequency ranges [Fig. 3(b)].

In summary, the SOT can efficiently move the anti-
ferromagnetic domain wall. The damping-like SOT is
the main driving force whereas the field-like SOT is ef-
fective by transforming a Bloch wall into a Néel wall.
The antiferromagnetic domain wall velocity can reach a
few kilometers per second, which is orders of magnitude
larger than the ferromagnetic domain wall velocity. The
relativistic kinematics of antiferromagnets results in the
saturation of vDW in the high current regime, which is ac-
companied by the emission of spin-waves with frequency
in the terahertz range. An antiferromagnetic domain wall
can therefore serve as a terahertz source.

We end this paper with two remarks. Firstly, the rel-
ativistic kinematics is not unique to antiferromagnetic
domain walls: a ferromagnetic domain wall can exhibit
relativistic motion in systems with biaxial anisotropy,
which is essential for a finite inertial mass. Wang et
al. [34] reported field-driven ferromagnetic domain wall
motion with spin-wave emission. This relativistic motion
is however realized only by assuming very large hard-axis
anisotropy, comparable to exchange energy. This unreal-
istic assumption is required to push the wall width to a
few lattice constants. In contrast, for antiferromagnetic
domain walls, the condition of a-few-lattice-constant wall
width is naturally realized by the SOT. Secondly, Yang
et al. [35] reported a very high vDW(≈ 750 m/s−1) in
synthetic antiferromagnets. Even though synthetic anti-
ferromagnets share some of the attractive properties of
antiferromagnetic devices, e.g. absence of stray magnetic
fields and high domain wall velocity, we find that THz
spin-wave emission may be not possible for synthetic anti-
ferromagnets with a reasonable antiferromagnetic RKKY
interaction because the RKKY interaction is insufficient
to suppress the domain wall angle tilting [22].

We acknowledge fruitful discussions with T. Ono, A.



Manchon, J. Xiao, R. Cheng, S. K. Kim, O. Tch-
ernyshyov, O. A. Tretiakov, K.-W. Kim, and M. D. Stiles.
This work was supported by the National Research
Foundation of Korea (NRF) (2015M3D1A1070465, 2011-
0027905, NRF-2014R1A2A1A11051344).

∗ These two authors contributed equally to this work.
† Electronic address: bgpark@kaist.ac.kr
‡ Electronic address: kj_lee@korea.ac.kr

[1] T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein,
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1. ATOMISTIC MODEL FOR NUMERICAL CALCULATIONS

The Hamiltonian of the antiferromagnets is

H = Asim

∑
i

Si ·Si+1−Ksim

∑
i

(Si ·ez)2−Dsim

∑
i

ey ·(Si×Si+1)+
µ0

8π
msµ

∑
i,j

(
Si · Sj −

3(Si · rij)(Sj · rij)
r2

)
, (1)

where Si represents the normalized magnetic moment (i.e., |Si| = 1) at lattice site i, µ is the magnetic moment per
lattice site, and Asim,Ksim, Dsim denote the exchange, anisotropy, and DMI energies, respectively. The last term
represents the dipole-dipole interaction where rij is a distance vector between lattice sites i and j (i.e., |rij | = r). The
atomistic LLG equation including spin-orbit torques is as follows:

∂Si

∂t
= −γSi ×Beff + αSi ×

∂Si

∂t
+ γBDSi × (Si × ey) + γBF(Si × ey), (2)

where Beff = − 1
µ

δH
δSi

is the effective field.

2. RELATIVISTIC DOMAIN WALL DYNAMICS IN ANTIFERROMAGNETS WITH IN-PLANE
MAGNETIC ANISOTROPY

In this section, we investigate SOT-driven domain wall motion in antiferromagnets with in-plane magnetic
anisotropy (IMA). We introduce the collective coordinates for the domain wall position r and angle ϕ, and
Walker ansatz for IMA domain wall profile expressed in the staggered vector: n(x, t) = (nx, ny, nz) =
(cos θ, sin θ cosϕ, sin θ sinϕ) where θ = 2 tan−1[exp(x−r

λ )] and λ is the domain wall width. In this case, ϕ is de-
fined within the y−z plane. With DMI (D ̸= 0), ϕ is π/2 or 3π/2, and without DMI (D = 0), ϕ is 0 or π. In the same
manner as the case with perpendicular magnetic anisotropy (PMA) shown in the main text, we obtain the following
equations of motion:

r̈ + aγG2ṙ −
πaγ2lλBD

2
sinϕ+

πγλBF

2
ϕ̇ cosϕ = 0, (3)

ϕ̈+ aγG2ϕ̇− πaγ2D

4λ
cosϕ− πγBF

2λ
ṙ cosϕ = 0. (4)

We note that these equations of motion are similar to those for PMA domain wall case. Therefore, the steady-state
velocity of IMA domain wall is also similar to that of PMA domain wall:

vDW = −πγλBD

2α
sinϕ. (5)

We perform numerical simulation with atomistic LLG equation for IMA domain wall. In this case, we consider
only the damping-like torque (BF = 0) for simplicity. We use modeling parameters as follows: d = 0.4 nm, Asim =
16.0meV,Ksim = 0.2meV, µ = 3.45µB, α = 0.001, and θSH = 0.1. We set Dsim = 0meV for zero DMI case and
Dsim = 2.0meV for non-zero DMI case, respectively.
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FIG. 1: Steady-state domain wall velocity as a function of current density for in-plane magnetic anisotropy (IMA) case.
Symbols correspond to numerical calculations, while solid lines correspond to analytical solutions. Blue dashed line represents
the maximum spin-wave group velocity. Domain wall cannot be retained above J = 5× 1011 A/m2 for non-zero DMI case.

Figure 1 shows numerical results of steady-state velocity vDW of IMA case as a function of the current density J .
For non-zero DMI, vDW saturates to the maximum spin-wave group velocity with emitting THz spin-waves. All these
results are analogous with PMA Néel wall case and Eq. (8) in the main text describes the simulation results well.
Furthermore, the case of zero DMI is also the same as the case of PMA Bloch wall which does not move by SOT.
Therefore, we confirm that the relativistic kinematics of antiferromagnetic domain wall occurs regardless of preferred
magnetic easy axis.

3. ESTIMATION OF AC POWER ORIGINATING FROM TERAHERTZ SPIN-WAVES

The power originating from THz spin-waves can be estimated by antiferromagnetic spin-pumping and inverse spin-
Hall effect in heavy metal (HM). Cheng et al. reported that the magnitude of spin mixing conductance at the interface
of non-metal/compensated antiferromagnet is similar to that of non-metal/ferromagnet [1]. Based on Cheng’s spin
pumping theory, we estimate the power as shown below.
The spin-waves inject spin currents into HM via antiferromagnetic spin pumping. The pumped spin current (density)

is [1, 2]

e

ℏ
Js
jz =

1

2

{
gr (m1 × ṁ1 +m2 × ṁ2)− gi(ṁ1 + ṁ2)

}
j

(6)

where the subscript j (z) represents the polarization(flow) direction, gr(gi) are real(imaginary) part of the spin-mixing
conductance, andmk (k = 1, 2) is the unit vector along the magnetization in two spin sublattices. Because gi is usually
small compared to gr, henceforth, we ignore gi. Note that we also neglect the staggered spin current which decays
within a distance of mean free path in the HM.
The spin current injected into the HM induces the charge current Ji via the inverse spin-Hall effect

Ji = θSHϵijkJ
s
jk, θSH =

σSH

σ
, (7)

where σ(σSH) is the conductivity(spin Hall conductivity) of HM. Substituting Eq. (4) into Eq. (5), we have

Ji =
ℏ
2e

θSHgrϵij (m1 × ṁ1 +m2 × ṁ2)j . (8)
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From the numerical simulation results shown in the main text, we take the ansatz of m1 and m2 as

m1 = ẑ+mx sinωt x̂+my cosωt ŷ, m2 = −ẑ−mx sin(ωt− ϕ) x̂+my cos(ωt− ϕ) ŷ (my < mx ≪ 1) (9)

where ϕ is the phase difference between m1 and m2. Keeping linear order terms in mx and my we obtain

m1 × ṁ1 ≃ mxω cosωt ŷ +myω sinωt x̂, m2 × ṁ2 ≃ mxω cos(ωt− ϕ) ŷ −myω sin(ωt− ϕ) x̂. (10)

Using Eqs. (6) and (8), we obtain the induced current (density) as

Jx =
ℏ
2e

θSHgrmxω [cosωt+ cos(ωt− ϕ)] , Jy = − ℏ
2e

θSHgrmyω [sinωt− sin(ωt− ϕ)] . (11)

From the Ohm’s law and assuming that the spin-wave has a constant amplitude within the length d corresponding to
spin-wave attenuation length (i.e., square wave approximation), we obtain the AC power P along x-direction (domain
wall propagation direction)

P = IxV =
Lyd

2

σ
J2
x =

ℏ2

4e2
θ2SH
σ

g2rm
2
xω

2Lyd
2(1 + cosϕ) (12)

where the upper bar represents time average and Ly is width of the sample. For the typical set of parameters such as

θSH = 0.1, σ = 107Ω−1m−1, gr = 5.9× 1014Ω−1m−2,

mx = 0.1, ω = 4π × 1012s−1, Ly = 100nm, d = 200nm, ϕ =
π

6
, (13)

we obtain P ≃ 0.4µW, which is measurable in experiments.

4. COMPARISON TO SOT-DRIVEN DOMAIN WALL DYNAMICS IN SYNTHETIC
ANTIFERROMAGETS

Recently, Yang et al. reported that SOT drives a domain wall in synthetic antiferromagnets very efficiently (vDW ≈
750 m/s) [3]. As synthetic antiferromagnets share some of the attractive properties of antiferromagnetic devices, e.g.
absence of stray magnetic fields and high domain wall velocity, it is meaningful to check whether or not SOT-driven
domain wall motion in synthetic antiferromagnets are able to generate THz spin-waves.
Here we check the possibility by performing numerical simulations for SOT-induced domain wall motion in syn-

thetic antiferromagnets (bottom ferromagnet (dFM)/ Ru (dRu) / top ferromagnet (dFM)). The Hamiltonian of each
ferromagnetic layer in a synthetic antiferromagnet is

H = Asim

∑
i

Si · Si+1 −Ksim

∑
i

(Si · ez)2 −Dsim

∑
i

ey · (Si × Si+1) (14)

+
µ0

8π
msµ

∑
i,j

(
Si · Sj −

3(Si · rij)(Sj · rij)
r2

)
− JRKKY

∑
i

Si · Si′ ,

where Si represents the normalized magnetic moment (i.e., |Si| = 1) at lattice site i, µ is the magnetic moment per
lattice site, and Asim,Ksim, Dsim denote the exchange, anisotropy, and DMI energies, respectively.
We assume the damping-like SOTs with opposite sign are applied to top and bottom ferromagnets so that the

SOT drives domain wall motion in the same direction in both ferromagnets. We use modeling parameters as follows:
dFM = 0.4 nm, dRu = 0.4 nm, Asim = −0.1 eV, Ksim = 0.4 meV, Dsim = 10 meV, µ = 6.9µB, θSH = 0.1, and
α = 0.001 with various Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange coupling constants (JRKKY) of −1.0,
−5.0, and −10.0 meV. We note that JRKKY of −1.0 meV corresponds to a reasonable value of RKKY interaction in
realistic systems.
Figure 2 shows atomistic model results of the synthetic antiferromagnet. For all values of JRKKY studied, we find

that vDW saturates in the high current regime (Fig. 2(a)), just like that of true antiferromagnets shown in the main
text. For JRKKY of −1.0 and −5.0 meV, we find however that the vDW saturation of synthetic antiferromagnets is
not caused by THz spin-wave emission but is entirely caused by the tilt of domain wall angle (Fig. 2(b)). This is in
contrast to domain wall dynamics of true antiferromagnets. In case of true antiferromagnets, the domain wall angle
is hardly tilted so that vDW tends to linearly increase with the current. As a result, vDW reaches vmax at a certain
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FIG. 2: Atomistic simulation results of a ferromagnetic layer in a synthetic antiferromagnet. We note that the top and bottom
ferromagnetic layers are identical so that magnetization dynamics of two layers is also symmetric. (a) steady-state velocity
vDW and (b) domain wall angle ϕ as a function of the current density for various JRKKY. The angle ϕ is defined as the domain
wall angle from x-axis. (c) Snapshot of normalized magnetization components of steady state domain wall for JRKKY = −10.0
meV at J = 5×1011 A/m2. (d) Enlarged snapshot of My component corrsponding to (c). The frequency of emitted spin-waves
is about 3.2 THz.

current threshod, resulting in THz spin-wave emission. On the other hand, in case of synthetic antiferromagnets with
weak(reasonable)-to-intermediate JRKKY, vDW is unable to reach vmax because it saturates due to the domain wall
angle tilting.
Therefore, the key factor to differentiate domain wall dynamics between true antiferromagnets and synthetic an-

tiferromagnets is the strength of antiferromagnetic exchange which affects the domain wall angle tilting. In other
words, for SOT-driven domain wall dynamics, the damping-like SOT tilts the domain wall angle whereas the anti-
ferromagnetic exchange suppresses such tilting. In case of true antiferromagnets, the antiferromagnetic exchange is
very strong (i.e., Asim = 16.0 meV for the results shown in the main text) so that the domain wall angle does not
tilt almost at all. Even in case of synthetic antiferromagnets, the RKKY antiferromagnetic exchange suppresses the
domain wall angle tilting but its suppression is considerably weaker than that of true antiferromagnets. As a result,
for JRKKY = −1.0 and −5.0 meV, the domain wall angle tilting is not sufficiently suppressed and vDW saturates
without any spin-wave emission. On the other hand, for a larger RKKY coupling (JRKKY = −10.0 meV), we find that
vDW (domain wall angle) is larger (smaller) than the other two cases and small-amplitude spin-waves are emitted at
a large current density (J = 5× 1011 A/m2 shown in Fig. 2(c) and (d)), which is consistent with our understanding
based on the strength of antiferromagnetic exchange.
To summarize, synthethic antiferromagents show SOT-driven domain wall dynamics similar to true antiferromag-

nets. However, THz spin-wave emission may be not possible for synthetic antiferromagnets with a reasonable JRKKY

(i.e., JRKKY = −1.0 meV) because the antiferromagnetic exchange is insufficient to suppress the domain wall angle
tilting. Therefore, we conclude that THz spin-wave emission is unique to antiferromagnets when reasonable material
properties are considered.

∗ These two authors contributed equally to this work.
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