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 A moiré pattern is created by superimposing two black-and-white or gray-scale 

patterns of regular geometry, such as two sets of evenly spaced lines. We observed an 

analogous effect between two transparent phase masks in a light beam which occurs at a 

distance. This phase moiré effect and the classic moiré effect are shown to be the two ends 

of a continuous spectrum. The phase moiré effect allows the detection of sub-resolution 

intensity or phase patterns with a transparent screen. When applied to x-ray imaging, it 

enables a polychromatic far-field interferometer (PFI) without absorption gratings. X-ray 

interferometry can non-invasively detect refractive index variations inside an object1-10. 

Current bench-top interferometers operate in the near field with limitations in sensitivity 

and x-ray dose efficiency2, 5, 7-10. The universal moiré effect helps overcome these limitations 

and obviates the need to make hard x-ray absorption gratings of sub-micron periods.    

 The classic moiré effect is the product of two intensity patterns of slightly different sizes 

or orientations. It can be found in a variety of forms in diverse applications including metrology, 

precision measurements, alignment and imaging11-13. Transparent phase masks, or phase gratings, 

imprint a periodic phase pattern on a wave front. When two such gratings are overlaid in a light 

beam, there is no moiré effect immediately behind the gratings in the near field; we did, however, 

observe an achromatic intensity pattern in the far field. Its spatial frequency equals the difference 

between the projected frequencies of the two gratings. The two gratings can either be in contact 

or have a finite spacing. We show that this phase moiré effect and the classic effect are the 

extremes of a general effect for masks that mix phase and amplitude modulations to various 

degrees. 



 In the experiment illustrated in Fig.1a, two identical visible-light phase gratings of the 

same 14.3 µm period (G1 and G2) were overlaid in parallel planes. They were illuminated by a 

white-light cone beam from a source of 0.44 mm size and projected onto a frosted-glass image 

screen (See supplemental Fig. 1 for a photo of the setup, the light spectrum and the phase-shift 

profile of the gratings). The geometric distances were L1=18.0 cm from the source to the first 

grating, L2 varying between 5 mm and 20.5 cm from the 2nd grating to the image screen, and the 

inter-grating spacing D fixed at 0.41 mm. Broad intensity fringes emerged as the image screen 

moved away from the gratings (Fig. 1b). Supplemental video 1 shows the full images when 

scanning the position of the image screen. 

 An intuitive explanation of the phase moiré effect is illustrated in Fig. 1c.  The cone beam 

projects the self-images of G1 onto the plane of G2 with a slightly magnified period P1
14, 

resulting approximately in a combined phase oscillation of the form [cos(2πx/P1)+cos(2πx/P2)], 

where P2 is the period of G2. It can be written as 2cos[πx(1/P1-1/P2)]cos[πx(1/P1+1/P2)], which 

is equivalent to a single phase grating whose phase shift is modulated by a beat pattern. The beat 

pattern represents alternating strongly and weakly diffracting areas. Light that transmits through 

the strongly diffracting areas are diverted into side diffraction orders and away from the direction 

of straight radial projection. After a sufficient distance, the re-direction of the flux gives rise to 

periodic intensity fringes as shown in Fig.1c. The measured and theoretical dependence of the 

fringe visibility on the position of the image screen are summarized in Fig. 1d. Fringe visibility is 

fringe amplitude/mean intensity, or (Imax-Imin)/(Imax+Imin).     

 The moiré carpet in Fig. 2a experimentally shows the progression of the moiré fringes 

with the inter-grating spacing D in the range between 0.05 mm and 5 mm. The image screen was 

fixed at 20 cm from the source. The gratings were placed mid-way between them. As D increases, 

the difference in the projected frequencies of the gratings also increases, leading to denser 

fringes. Coherent interference between different diffraction orders occurs in the space between 

the gratings and produces the appropriate self-images of G1 at the G2 plane at regular intervals14 

of D. Therefore, the fringe contrast underwent a periodic oscillation and gradually diminished 

with increasing D due to the broad spectrum of the light. The interval of oscillation is 

theoretically14 2P2/λ. The measured value of 0.74±0.09 mm which is one standard deviation due 

to insufficient sampling, matches the 550 nm average wavelength of the white light spectrum 

(Supplemental Fig. 1). The measured and theoretically calculated fringe visibilities as a function 

of the spacing D are shown in Fig. 2b. The measured fringe spatial frequency as a function of D 

is also predictable by theory (Fig. 2b). Supplemental video 2 shows the full images when 

scanning D. 

 Theoretical derivation of the general situation of a polychromatic cone-beam illuminating 

a pair of gratings of different periods is provided in the Methods section. The phase moiré effect 

and the classic moiré effect are at the two extremes. With pure amplitude gratings the classic 

moiré effect appears immediately behind the gratings. There is no requirement on the lateral 



coherence of the light source. With pure phase gratings the phase moiré effect appears at a 

distance from the gratings; the lateral coherence of the light at the first grating should be about 

the period of the grating. A continuous transition exists between the two extremes for any 

combination of intensity and phase modulations.  

  For phase-contrast imaging applications that require high sensitivity, the space between 

the gratings can be the preferred location to place the objects, since coherent wave interference 

occurs here. With this in mind, a three-grating setup (Fig. 3a) has the advantage that it allows the 

gratings to be widely separated. Here, the G2 grating refocuses the diffracted waves from G1 into 

a series of achromatic Fourier images at a specific plane downstream14. The G3 grating is placed 

on or near this plane to produce moiré effects between itself and the Fourier images. See 

Methods section for the theoretical formulas of the three-grating setup. Similar to the two-grating 

system, the G1 grating can be a pure intensity or a pure phase grating as the two extreme cases. 

The former allows an extended light source with minimal lateral coherence but at the cost of 

light reduction by G1; the latter requires the lateral coherence of the source at G1 to be about the 

grating period.  

 The phase moiré effect is now recognized as the underlying mechanism of a type of x-ray 

interferometer that uses only phase gratings, which has previously demonstrated an order of 

magnitude increase in sensitivity and reduction in radiation dose when compared with the current 

Talbot-Lau interferometer15. This understanding leads to the use of purposely mismatched 

grating periods to substantially improve the efficiency of the x-ray PFI. The improved design has 

three phase gratings of 1 mm by 7 cm area and periods of 399 nm, 400 nm and 400 nm, 

respectively. Grating fabrication is described in ref. 16. The x-ray tube had a rhenium-tungsten 

anode and operated at a peak voltage of 40 kV and 40 mA. A 70 µm wide slit was placed on the 

x-ray tube window to limit the vertical size of the source while keeping sufficient angular spread 

of the beam to cover the grating area. See Supplemental Fig. 2 for a photo of the system. The 

geometric distances illustrated in Fig.3a were L1=0.391 m, D1=0.463 m, L3=0.710 m. The 

distance D3 was scanned over the range of D1 +/- 8 mm. The cross-section profiles of the 

gratings (Fig. 3b) were obtained with scanning electron microscopy (SEM). The gratings are 

designed for phase shifting but also contain material absorption. From these profiles both the 

phase shift and linear attenuation profiles were extracted for photon energies of 20 keV to 40 

keV (data at 27.5 keV are plotted in Fig. 3c). The G2 profile was designed to maximize light 

diffraction into the ±1 orders.  

 The moiré carpet in Fig. 4a shows the evolution of the moiré fringes with the changing 

G3 position. Full-field images were provided in Supplemental video 3. The measured and 

theoretically calculated fringe visibility and frequency curves are shown in Fig. 4b for the case of 

parallel grating planes. The fringe visibility increased with out-of-plane tilting of the gratings. 

With G3 positioned at D3 – D1 = 1.2 mm, the measured and theoretically calculated fringe 

visibility curves as functions of the tilt angles of G1 and G3 are shown in Figures 4c and 4d, 

respectively. The out-of-plane tilt mainly altered the transmission profiles of the gratings. Their 



influence on the fringe contrast is discussed in the Methods section. The peak fringe visibility of 

19.4 % was attained when both G1 and G3 were tilted at 1.2°. This is a 43 % increase in fringe 

visibility over the previous 13.5 % value15 due to the use of mismatched grating periods. 

 In imaging experiments the samples are positioned behind grating G2 (Fig. 3a) where 

vertically separated light paths coherently interfere. A local gradient of the refractive index 

causes a phase shift of the moiré fringes. An image of the phase shift is a differential phase 

image. A second measurement is the attenuation of the fringe amplitude due to perturbations by 

the object that reduce the mutual coherence of the light paths. This provides a de-coherence 

image. The raw projection images were taken in a phase-stepping procedure7, 8, 17 and processed 

with an adaptive algorithm to deal with mechanical fluctuations. A complete data set included 10 

images of 1 s exposure each, at a total entrance surface radiation dose (ESD) of 0.71 mGy. The 

grating area determined a 0.7 mm by 5 cm field of view at the sample. Samples were scanned at 

0.7 mm steps and multiple fields of view were tiled to cover the desired height.  

 Figure 5a shows a reference image without any sample. It appears stretched in the 

vertical direction due to an oblique incident angle of 4.5º of the beam on the detector screen for 

improved efficiency and vertical resolution18. The grating G3 was slightly rotated around the 

beam axis to cause the inclination of the fringes from being horizontal. Figures 5b-5d are 

multimodal projection images of a formalin-fixed, unstained mouse kidney specimen immersed 

in water, including the differential phase, de-coherence and conventional attenuation-contrast 

radiography.  Although a single projection, the outline and internal blood vessels of the kidney 

become visible in the differential phase image (Fig. 5b). The accompanying de-coherence image 

(Fig. 5c) shows reduced coherence in the peripheral fat tissue (white arrows) and also in areas 

containing steep gradients of the differential phase, such as the bright edges of the graduation 

marks on the centrifuge tube. This is caused by a large dispersion of the fringe phase within a 

pixel19. The conventional radiography (Fig. 5d) was taken with a flat-panel x-ray detector at a 

dose of 4.47 mGy ESD. A photograph of the specimen is shown in Fig. 5e.  

 Generally when creating a distant moiré pattern with a phase grating, the fringe period 

scales inversely with the grating period (see Eq. 17 in Methods). Therefore, smaller grating 

periods allow shorter observation distances. In ideal situations the moiré fringe visibility between 

two phase gratings and among three phase gratings are estimated at 81 % and 33 %, respectively. 

Practically the visibility is reduced by less than ideal grating profiles, scattering in the grating 

material, spectral dispersion of the grating phase shift with a broad-band source and the detector 

resolution.  

While the self-imaging of gratings is a coherent interference effect20, the universal moiré 

effect is at its core an incoherent intensity effect. With highly coherent sources such as a point 

monochromatic source, the self or Fourier images of gratings may coexist with the moiré effect 

in the form of fine fringes super-imposed on broad moiré patterns. The moiré effect between 

phase masks still requires a certain level of lateral coherence of the illumination, since the effect 



appears at a standoff distance from the masks. It is shown in Methods that the lateral coherence 

length of the illumination at the first phase grating should be comparable to the grating period. 

One the other hand, a first amplitude grating segments the incident beam and removes the 

coherence requirement on the illumination similar to the Lau effect, which is detailed in Methods. 

 Due to its simplicity and robustness towards environmental factors, the phase moiré 

effect was recently implemented for polychromatic and monochromatic cold neutron sources in 

quantum information and imaging research using pure silicon gratings as phase masks21. In a 

broad sense the universal moiré effect occurs when a periodic screen is placed on a periodically 

modulated wave front. The periodic wave front can be the Fourier image of other grating(s) 

upstream. The classic moiré effect is a special case where the screen is an intensity mask. Our 

finding shows that one can use a phase mask as the screen. The effect also occurs for pure phase 

modulations which are not visible by direct observation of the intensity distribution.   

 

Methods 

Theoretical modeling of the universal moiré effect between two diffraction gratings 

 The theory applies to the general case of a cone-beam illuminating a pair of diffraction 

gratings of different periods with a possible spacing between them. The gratings can modulate 

the phase or amplitude or both of the beam. Two assumptions are made: the wavelength λ << 

grating periods; the gratings act as multiplicative transmission functions on the complex 

amplitude wave front. The moiré effect is shown to be determined by auto-correlation functions 

of the grating transmission profiles.  

 Referring to the schematics of Fig. 1a, the scalar field at a point y on the image plane is 

given by the Fresnel-Kirchhoff integral of diffraction20 

𝑉(𝑦) ∝ ∬
1

𝑟0𝑟1𝑟2
exp[𝑖𝑘(𝑟0 + 𝑟1+𝑟2)]𝑇1(𝑦1)𝑇2(𝑦2)𝑑𝑦1𝑑𝑦2 ,                       (1) 

where k is the wave number in vacuum, y1 and y2 are coordinates in the G1 and G2 planes; r0, r1 

and r2 are the successive spacings between the source, the points y1, y2 and y, respectively; T1 and 

T2 are the complex grating transmission functions.  They are further written in Fourier series as 

 𝑇1(𝑦1) = ∑ 𝐴𝑚exp(𝑖2𝜋𝑚𝑓1𝑦1) , and                         (2) 

 𝑇2(𝑦2) = ∑ 𝐵𝑛exp(𝑖2𝜋𝑛𝑓2𝑦2) ,        (3) 

where f1 and f2 are the spatial frequencies of the gratings. The vertical coordinate of the source is 

ys. Substituting Eq. 2 and 3 into Eq. 1, expanding the phase factor of each AmBn term to the 

second order around its minimum point at ∂/∂yj=0 and carrying through the Fresnel integral 

leads to an explicit expression of the wave field  



𝑉(𝑦) ∝ exp(𝑖𝑘 𝐿 cos 𝜃⁄ ) ∑ 𝐴𝑚𝐵𝑛exp[𝑖∅0(𝑚, 𝑛) + 𝑖∅1(𝑚, 𝑛)]𝑚,𝑛 ,   (4) 

where θ is the elevation angle of the line connecting the source to point y (Fig. 1a), 

∅0(𝑚, 𝑛) = 2𝜋𝑚𝑓1(
𝐿1

𝐿
𝑦 +

𝐷+𝐿2

𝐿
𝑦𝑠) + 2𝜋𝑛𝑓2(

𝐿1+𝐷

𝐿
𝑦 +

𝐿2

𝐿
𝑦𝑠),    (5) 

and 

∅1(𝑚, 𝑛) = −
𝐿

2𝑘 cos3 𝜃
[(2𝜋𝑚𝑓1)2 𝐿1 𝐿⁄ + (2𝜋𝑛𝑓2)2 𝐿2 𝐿⁄ − (2𝜋𝑚𝑓1 𝐿1 𝐿⁄ − 2𝜋𝑛𝑓2 𝐿2 𝐿⁄ )2].  (6) 

Considering the phase difference between the AmBn and the Am+1Bn-1 terms, which contains an 

achromatic part  

∅0(𝑚, 𝑛) − ∅0(𝑚 + 1, 𝑛 − 1) = 2𝜋 (𝑓2
𝐿1+𝐷

𝐿
− 𝑓1

𝐿1

𝐿
) 𝑦 + 2𝜋 (𝑓2

𝐿2

𝐿
− 𝑓1

𝐷+𝐿2

𝐿
) 𝑦𝑠,    (7) 

and a wavelength-dependent part 

∅1(𝑚, 𝑛) − ∅1(𝑚 + 1, 𝑛 − 1) = 2𝜋 (𝑚 +
1

2
) 𝛿1(𝜆) − 2𝜋 (𝑛 −

1

2
) 𝛿2(𝜆),     (8) 

where the increments are 

𝛿1(𝜆) =
𝜆

𝐿 cos3 𝜃
𝑓1𝐿1[(𝑓1 − 𝑓2)𝐿2 + 𝑓1𝐷],    (9) 

and 

𝛿2(𝜆) =
𝜆

𝐿 cos3 𝜃
𝑓2𝐿2[(𝑓2 − 𝑓1)𝐿1 + 𝑓2𝐷].    (10) 

The achromatic part (Eq. 7) implies the potential for a moiré pattern at the image plane with a 

wavelength-independent period of 

𝑃𝑑 = 𝐿/[(𝑓2 − 𝑓1)𝐿1 + 𝑓2𝐷].       (11) 

The moiré fringes arise from the product of the AmBn and Am+1Bn-1 terms in the image intensity 

distribution of |V(y)|2. Its complex amplitude according to Eq. 7 and 8 is 

𝐻1(𝜆) ∝ exp [𝑖(
2𝜋𝑦

𝑃𝑑
−

2𝜋𝑦𝑠

𝑃𝑠
)] ∑ 𝐴𝑚𝐴𝑚+1

∗ 𝑒𝑖2𝜋(𝑚+1/2)𝛿1
𝑚 ∑ 𝐵𝑛𝐵𝑛−1

∗ 𝑒−𝑖2𝜋(𝑛−1/2)𝛿2
𝑛 .    (12) 

Noting that the phase of the pattern also depends cyclically on the source position with a period 

of 

𝑃𝑠 = 𝐿/[(𝑓1 − 𝑓2)𝐿2 + 𝑓1𝐷],        (13) 



this is called the source period. The summations in Eq. 12 are in fact Fourier coefficients of auto-

correlation functions of the grating transmission profiles, known as the ambiguity function in 

waveform analysis: 

∑ 𝐴𝑚𝐴𝑚+1
∗ 𝑒𝑖2𝜋(𝑚+

1

2
)𝛿1

𝑚 = 𝜒1(𝛿1𝑃1, 𝑓1) =                
1

𝑃1
∫ 𝑇1(𝜉 + 𝛿1𝑃1 2⁄ )𝑇1

∗(𝜉 −
𝑃1

0

𝛿1𝑃1 2⁄ ) exp(𝑖2𝜋𝜉𝑓1)𝑑𝜉,          (14) 

and 

 ∑ 𝐵𝑛𝐵𝑛−1
∗ 𝑒−𝑖2𝜋(𝑛−1/2)𝛿2

𝑛 = 𝜒2
∗(𝛿2𝑃2, 𝑓2) =            [

1

𝑃2
∫ 𝑇2(𝜉 + 𝛿2𝑃2 2⁄ )𝑇2

∗(𝜉 −
𝑃2

0

𝛿2𝑃2 2⁄ ) exp(𝑖2𝜋𝜉𝑓2)𝑑𝜉]
∗

.            (15) 

Substituting Eq. 14 and 15 into Eq. 12 provides a closed-form expression of the moiré fringe 

contrast. The Fourier coefficient of the fringe amplitude normalized to the mean intensity is 

𝐻1(𝜆)

𝐻0
=

𝜒1(𝛿1𝑃1,𝑓1)

〈𝑇1𝑇1
∗〉

𝜒2
∗(𝛿2𝑃2,𝑓2)

〈𝑇2𝑇2
∗〉

,        (16) 

where <Tj Tj*> denotes the average intensity transmission through a grating.  

The fringe and source periods in Eq. 11 and 13 can be written in terms of the auto-

correlation distances δj(λ) as 

2

2

3

2 cos)(

1
L

P
Pd




 , and     (17) 

1

1

3

1 cos)(

1
L

P
Ps




 .     (18) 

 Several physical facts of the universal moiré effect emerge from the formulas. For a 

polychromatic source, the fringe contrast is a weighted average of Eq. 16 over the light spectrum. 

The key determinant of the moiré effect is the auto-correlation distances δj(λ). The equations 

indicate a trend of decreasing fringe contrast with increasing spectral spread of δj(λ) when the 

spacing D is enlarged. This is seen in the data in Fig. 2b. Due to the cyclic dependence of the 

ambiguity functions on the auto-correlation distances, the fringe contrast oscillates with the 

spacing D as seen in Fig. 2b. Since the auto-correlation distances depend on both the grating 

period differential f1-f2 and their spacing, there are a continuous range of conditions for 

significant moiré effects. In the example of Fig. 2 a small gap between two gratings of the same 

period produces the effect. Alternatively if two gratings are overlaid with no spacing, a proper 

difference in periods also maximizes the moiré fringes. The fringe period scales linearly with the 

G2-to-image distance and inversely with the grating period. An extreme case is when G2 is an 

amplitude grating which produces a moiré pattern at δ2=0. It describes the classic moiré effect 



appearing immediately behind G2. With a finite-sized source the fringe amplitude is the integral 

of Eq. 12 over the source distribution. For a significant moiré effect the source size S should be 

less than half the source period Ps. Equivalently, the lateral coherence of the source at the first 

grating, λL1/S, should be greater than 2δ1P1. The extreme is when G1 is an amplitude grating, 

which produces a moiré effect at δ1=0. In this case there is no limit on the source size since G1 

filters the source into a set of line sources. 

Modeling of the three-grating system 

 Here the first two gratings are widely separated (Fig. 3a). Previous equations for the two-

grating system describe the wave front before the 3rd grating. Consider the phase difference 

between the AmB1 and Am+1B-1 terms of the wave amplitude (Eq. 4-6). It is wavelength 

independent and invariant with the diffraction order m at a specific “echo” plane at a distance L2 

downstream from the G2 grating, where 

 )]2/([ 12112 fffDL  .     (19) 

At the echo plane the wave amplitude contains the sum of pairs as 
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Each pair represents an achromatic interference pattern superimposed onto a spherical wave, or a 

Fourier image20 from G1. For a polychromatic source the pairs are mutually incoherent due to the 

strong wavelength dependence of 1(m,1) (Eq. 6). When a third grating G3 is placed on or near 

the echo plane and its frequency f3 is near 2f2-f1, each Fourier image forms a moiré pattern with 

G3 at the image plane further downstream. The incoherent sum of these moiré patterns is the 

overall moiré pattern. Referring to Fig. 3a for geometric parameters, the normalized moiré fringe 

amplitude is given by  

,
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where the fractional auto-correlation distances are 

)],()())([(
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)( 1323231213
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  and   (22) 

)]()())([(
cos

)( 3121213233

33
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 .   (23) 

Similar to the two-grating case, the moiré fringe period and the source period are both 

wavelength-independent: 



)]()())(/[( 312121323 DDfLffLLffLPd  , and   (24) 

)]()())(/[( 132323121 DDfLffLLffLPs  .   (25) 

 The physical effects described by these results are similar to the two-grating case. With a 

polychromatic source the moiré effect is maximized for a specific set of auto-correlation 

distances δj(λ) which can be adjusted by the position of the third grating G3, as seen in Fig. 4b; 

tilting the G1 and G3 gratings out of plane alters their transmission profiles, which changes the 

moiré fringe amplitude in a predictable way as shown in Fig. 4c and 4d; the moiré fringe period 

scales linearly with the G3-to-image distance and inversely with the grating periods; the extreme 

case of significant moiré fringes at δ3=0 when G3 is an amplitude grating describes the classic 

moiré effect which appears immediately behind G3; the source size should be less than half the 

source period Ps, or equivalently the lateral coherence of the source at the first grating, λL1/S, 

should be greater than 2δ1P1; the extreme case of a moiré pattern at δ1=0 when G1 is an 

amplitude grating describes the source being filtered by G1 into a set of line sources.  
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Figure 1 

 

Figure 1. An example of the phase moiré effect between two transparent phase gratings, (a) A 

white light source of a finite size illuminates the gratings. A frosted-glass screen captures the 

projected color image. (b) The vertical cross-section of the image as a function of the grating-to-

screen distance L2 shows a moiré pattern arising at a distance. Supplementary Fig. S1 includes a 

photo of the experimental setup and Supplemental video 1 shows the full images. (c) The 

explanation is that the two gratings act as a single phase grating whose phase oscillation is 

modulated by a beat pattern, representing interleaved strongly and weakly diffracting areas. 

Photons transmitting through the strongly diffracting areas are diffracted away from the direction 

of straight radial projection, giving rise to intensity bands at a distant plane. (d) Dependence of 

measured (red dots) and theoretically calculated (blue line) fringe visibility on the distance L2. 



The single standard deviation in the fringe visibility is 0.03 determined primary by the 

uncertainty in the signal to noise ratio.  

Figure 2 

 

Figure 2. Dependence of the moiré pattern on the inter-grating spacing in the setup in Fig. 1. (a) 

In the moiré carpet, the fringe pattern at a given inter-grating spacing D is shown as a vertical 

strip. The strips for the range of D values are stitched into the carpet. (b) Quantitative 

comparison of the moiré fringe visibility (blue) and spatial frequency (red) between theoretical 



calculations (solid lines) and experimental results (dots), as functions of the spacing D. The 

single standard deviation in the fringe visibility is 0.03 determined primary by the uncertainty in 

the signal to noise ratio and the single standard deviation of fringe frequency was 0.05 mm-1. 

Figure 3 

 

Figure 3. The moiré effect among three phase gratings underlies a polychromatic far-field 

interferometer in this x-ray example. (a) Under a cone beam the first two gratings form a series 

of achromatic interference patterns at a plane downstream. The third grating is positioned on or 

near the plane to form moiré fringes at a distance. (b) SEM image of a cross section of the phase 

grating G1. Trenches in silicon are filled with gold to cause a periodic profile of phase shift. (c) 

The grating SEM cross sections were used to calculate their phase shift and linear attenuation 

profiles. Data of the G1 grating at 27.5 keV are shown. The sharp dips are produced by a thin 

layer of Pt. 



Figure 4 

 

Figure 4. Experimental data from the x-ray polychromatic far-field interferometer with 

mismatched grating periods. (a) The moiré carpet shows the evolution of the fringe pattern as the 

longitudinal position of the third grating is scanned. (b) Quantitative comparison of the fringe 

visibility (blue) and spatial frequency (red) between theoretical calculations (solid lines) and 

measurements (dots), as functions of the position of the G3 grating. The single standard deviation 

in the fringe visibility is 0.05 determined primary by the uncertainty in the signal to noise ratio 

and the single standard deviation of fringe frequency was 0.05 mm-1. (c) Theoretical (solid blue 

line) and measured (red dots) fringe visibilities as a function of the out-of-plane tilt of the grating 

G1. (d) The same comparison for the G3 grating. The peak fringe visibility of 19.4 % was 

reached by optimizing both position and tilts. 

  



Figure 5 

          

Figure 5. Multi-modal x-ray projection images of a mouse kidney specimen immersed in water. 

(a) A single shot image of the grating area without the specimen shows the moiré fringes. Gray 

scale is the normalized image intensity. (b) The differential phase image reveals the outline and 

internal blood vessels (white arrows) of the kidney, together with the graduation marks on the 

centrifuge tube. Gray scale is in radians. (c) The de-coherence image shows reduced moiré fringe 

amplitude in fatty tissue (white arrows) and at the edges of the graduation marks. Gray scale is 

the linear attenuation coefficient. (d) Conventional attenuation-contrast radiography shows the 

fatty tissue as darker areas indicating lower density. Gray scale is the linear attenuation 

coefficient. (e) A photograph of the kidney specimen suspended in water in the centrifuge tube.  


