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This paper presents the boundary conditions needed for drift-diffusion models to treat interfaces
with spin-orbit coupling. Using these boundary conditions for heavy metal/ferromagnet bilayers,
solutions of the drift-diffusion equations agree with solutions of the spin-dependent Boltzmann
equation and allow for a much simpler interpretation of the results. A key feature of these boundary
conditions is their ability to capture the role that in-plane electric fields have on the generation of
spin currents that flow perpendicularly to the interface. The generation of these spin currents is a
direct consequence of the effect of interfacial spin-orbit coupling on interfacial scattering. In heavy
metal/ferromagnet bilayers, these spin currents provide an important mechanism for the creation
of damping-like and field-like torques; they also lead to possible reinterpretations of experiments in
which interfacial contributions to spin torques are thought to be suppressed.

I. INTRODUCTION

In heavy metal/ferromagnet bilayers, charge currents
flowing parallel to the interface can manipulate the mag-
netization of the ferromagnetic layer [1–7]. The vari-
ous mechanisms that drive this process require spin-orbit
coupling [8–11], which couples the spin and orbital mo-
ments of carriers. In addition to this coupling, the or-
bital moments of carriers are coupled to the crystal lat-
tice via the Coulomb interaction. Through this extended
coupling, carriers receive angular momentum from the
atomic lattice and transfer it to the magnetization. This
transfer of angular momentum from carriers to the mag-
netization is known as a spin-orbit torque [8, 11–16].
Spin-orbit torques provide a potentially energy-efficient
mechanism to write information to magnetic bits made
of heavy metal/ferromagnet bilayers [5].

The torques in these bilayers can result from spin-orbit
coupling in the bulk and at the interface. The torques
from these two sources have been described in very differ-
ent ways [2–4, 6, 7, 11]. The importance of each torque
is unclear because of the limited number of models that
describe both effects within the same framework [11].
Since clear phenomenological models can describe the
torques created by bulk spin-orbit effects [11], incorpo-
rating interfacial spin-orbit effects into those models will
help to properly identify the important mechanisms for
spin-orbit torques. In a companion paper [17], we intro-
duce a complete phenomenological description of inter-
facial spin-orbit effects. In this paper we use the impor-
tant parts of that description to develop a simple drift-
diffusion model for spin-orbit torques in bilayers.

Bulk spin-orbit coupling contributes to spin-orbit
torques in heavy metal/ferromagnet bilayers in the fol-
lowing way. In the heavy metal, bulk spin-orbit coupling
causes carriers with opposite spin polarization to scatter
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in opposite directions. As a result, charge currents gener-
ate spin currents whose polarization and flow directions
are orthogonal to each other and to the charge current.
This process, known as the spin Hall effect [18–24], allows
for an electric field pointing along the interface to create
a spin current that flows across the interface. Take the in-
terface normal to lie along ẑ and the electric field to point
along x̂. The spin currents that flow along ẑ then gener-
ate a flux of angular momentum polarized along the vec-
tor −x̂× ẑ, as illustrated in Fig. 1(a)-(c). Upon entering
the ferromagnet, this angular momentum is transferred
to the magnetization through the spin-transfer mecha-
nism [12–16]. This process progressively orients the mag-
netization towards the −x̂× ẑ direction, as described by
a torque pointing along the direction m̂× [m̂×(−x̂× ẑ)].
Here m̂ denotes the unit vector aligned with the magne-
tization. Torques of this form are typically referred to
as damping-like, since they drive the magnetization to-
wards a particular axis. In reality, this transfer of angular
momentum to the magnetization is not perfect because
there is a small component of the spins that rotate when
they reflect from the interface, giving rise to torques per-
pendicular to the damping-like direction [11].

At the interface between the heavy metal and the fer-
romagnet, the breaking of inversion symmetry causes an
enhanced spin-orbit coupling [25] that leads to a second
contribution to spin-orbit torques. To understand this
contribution, note that carriers at the interface develop
a net spin accumulation due to a phenomenon known
as the Rashba-Edelstein effect [25–30]. If this spin ac-
cumulation is misaligned with the magnetization at the
interface, it exerts a torque on the magnetization via the
exchange interaction [1, 2, 7–10]. In this geometry, the
spin accumulation points along the −x̂×ẑ direction; thus
the resulting torque on the magnetization points along
m̂ × (−x̂ × ẑ). Torques of this form are often referred
to as field-like, since they force the magnetization to pre-
cess around a particular axis. Typical descriptions of
this torque are based on strictly two-dimensional mod-
els, which are unrealistic in bilayers because carriers are
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FIG. 1. (Color online) Spin and particle currents created by in-plane electric fields in heavy metal/ferromagnet bilayers. Panel
(a) illustrates some scattering processes that give rise to spin currents in the bulk. Panel (b) depicts these currents within
the bilayer as they would be represented in a drift-diffusion approach. White arrows represent particle currents while the
colored arrows represent spin currents. The direction of these arrows indicates the direction of flow while the color (blue/red)
indicates the direction of spin polarization (positive/negative) along the y-axis. Panel (c) shows slices of the non-equilibrium
distribution functions that correspond to the currents in panel (b), as described by the Boltzmann equation. The k-space plots
each contain the Fermi surface (black circle) and the non-equilibrium distribution functions. Distortions of the distribution
functions outside (inside) the Fermi surface indicate an excess (deficit) of carriers at each k-point. The width of the curves
shows the degree of spin polarization and the colors indicate the direction of spin polarization as before. For example, carriers
in the heavy metal moving towards or away the interface have opposite spin polarization; thus the spin Hall current represents
a flux of angular momentum (spin current) but no net spin accumulation. Panel (d) illustrates scattering processes that give
rise to spin currents near the interface due to interfacial spin-orbit coupling. Panel (e) depicts those currents analogously to
panel (b), and shows that in-plane charge currents give rise to out-of-plane spin currents that are generated at the interface due
to interfacial spin-orbit coupling. Panel (f) shows the non-equilibrium distribution function corresponding to these currents.
The distribution functions demonstrate that carriers carry a net spin current and exhibit a net spin accumulation (unlike the
case with the spin Hall effect). The spin accumulation exerts a torque on the magnetization at the interface via the exchange
interaction, while the spin currents exert torques on the neighboring ferromagnet layer via the spin-transfer mechanism.

not actually confined to the interface. We expect that
the spin torques driven by interfacial spin-orbit coupling
cannot be quantitatively described by two-dimensional
models, since carriers that scatter across the interface be-
have differently than those that are confined to it. This
suggests that the interfacial contribution to spin-orbit
torques requires reexamination using three-dimensional
models.

Three-dimensional solutions of the spin-dependent
Boltzmann equation show that carriers can exhibit a net
spin polarization and carry a net spin current near in-
terfaces with spin-orbit coupling. We illustrate this phe-
nomenon in Fig. 1(d)-(f). If the net spin polarization is
misaligned with the magnetization, it exerts a torque on
the magnetization at the interface. This captures the spin
torque normally associated with the Rashba-Edelstein ef-
fect. However, the spin currents created by interfacial
spin-orbit scattering can flow away from the interface,
and those that enter the ferromagnet exert additional
torques on the magnetization. These spin currents gen-
erate torques via the spin-transfer mechanism, but are

driven by interfacial spin-orbit scattering rather than the
bulk spin Hall effect. This mechanism is not usually con-
sidered when analyzing spin torques in bilayers, but can
contribute significantly to the total spin torque. It allows
for spin torques generated by the interface to have strong
damping-like components, which are typically associated
with the bulk spin Hall effect. The spin polarization and
flow directions of these spin currents are not required to
be orthogonal to each other or to the electric field, un-
like the spin currents generated by the spin Hall effect in
isotropic bulk systems.

In this three-dimensional picture, one could interpret
the net spin polarization as the Rashba-Edelstein effect
and the net spin current as an interface-generated spin
Hall effect. First principles calculations support the exis-
tence of an interfacial spin Hall effect [31, 32] that could
significantly exceed its bulk counterpart [31]. Experimen-
tal evidence suggests that the spin Hall angle becomes
modified near the interface of Bi/Py bilayers, which also
alludes to a distinct interfacial contribution to the spin
Hall effect [33]. To assist the interpretation of experi-
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ments, the phenomena discussed so far should be incor-
porated into a simple phenomenological model.

The drift-diffusion equations are a popular tool used to
model transport and analyze experimental results. They
directly relate charge and spin currents to gradients in
charge and spin accumulation, but do not describe the
momentum-dependence of these quantities. To treat sys-
tems like the bilayers of interest here, the bulk drift-
diffusion equations need to be augmented by boundary
conditions. Typically these are taken from magnetoelec-
tronic circuit theory. However, this approach does not
treat interfacial spin-orbit coupling or its consequences.
In the companion paper, we generalize magnetoelectronic
circuit theory to include these effects. Here, we include
only the most important changes to magnetoelectronic
circuit theory in our boundary conditions when comput-
ing spin-orbit torques for a model system. To test this
approach, we compare the results to those found from
Boltzmann equation calculations for the same model.

The Boltzmann equation captures the contributions to
transport from carriers at each point in momentum space.
Since spin-orbit scattering is inherently momentum de-
pendent, the Boltzmann equation better describes spin
transport in the presence of bulk or interfacial spin-orbit
coupling. For example, the three sources of spin cur-
rent shown in Fig. 1 can be implicitly captured by the
Boltzmann equation [11]. Solving the Boltzmann equa-
tion requires more analytical and computational effort,
and is more difficult to directly correlate to experiments.
Furthermore, it is particularly difficult to perform Boltz-
mann equation calculations for realistic electronic struc-
tures. Thus, an important reason to generalize magneto-
electronic circuit theory is to clearly describe interfacial
spin-orbit effects from first principles calculations. How-
ever, the Boltzmann equation does provide a good test
of the boundary conditions used in drift-diffusion models,
since we can independently calculate the boundary con-
ditions in both models and directly compare the results.

In this paper, we present boundary conditions for drift-
diffusion calculations of spin-orbit torques that capture
spin-orbit scattering at interfaces. After introducing
these boundary conditions, we use them to solve the drift-
diffusion equations for a bilayer system. This approach
gives an analytical model that describes the spin-orbit
torques caused by both the spin-Hall and the interfacial
Rashba-Edelstein effects. We then demonstrate that this
analytical model predicts spin-orbit torques in quantita-
tive agreement with those found by solving the Boltz-
mann equation numerically, as long as both methods use
the same spin-dependent transmission and reflection co-
efficients at the interface.

II. PHENOMENOLOGY

In the following we discuss the phenomenology of spin
torques in multilayer systems with and without interfa-
cial spin-orbit coupling. First we consider spin transfer

torques in spin valves, and then discuss spin-orbit torques
in heavy metal/ferromagnet bilayers. Throughout this
paper we use two coordinate systems: one oriented rel-
ative to the interface (to describe electron flow) and the
other oriented relative to the magnetization (to describe
spin orientation). In the interface coordinate system, the
x/y plane lies along the interface and the z axis points
perpendicular to it. The interface is located at the z-axis
origin, where z = 0− and z = 0+ describe the regions
just within the non-magnet and ferromagnet respectively.
In the magnetization coordinate system, the direction `

lies along the magnetization ( ˆ̀ = m̂) while the direc-

tions d and f are aligned perpendicular to ˆ̀. Here we
choose that the directions d and f point along the vec-

tors d̂ ∝ m̂ × [m̂ × (−x̂ × ẑ)] and f̂ ∝ m̂ × (−x̂ × ẑ)
respectively. As before, we refer to the direction d as
damping-like and the direction f as field-like. In gen-
eral, the transverse directions need only span the plane
perpendicular to the magnetization. The transverse di-
rections defined here are merely convenient for describing
spin-orbit torques.

A. Spin Transfer Torque

We first discuss spin transfer torques in spin valves
with no spin-orbit coupling. Spin valves consist of a
non-magnetic metallic spacer sandwiched between two
ferromagnetic layers. The magnetization of one ferro-
magnetic layer is often fixed via coupling to a neighbor-
ing antiferromagnetic layer, while the magnetization of
the other layer remains free to change its orientation. A
spin current arises from passing charge current through
the fixed layer; this spin current then flows through the
non-magnet and transfers angular momentum to the free
layer.

When describing spin accumulations and spin currents
in these systems, it is useful to distinguish between those
polarized along the magnetization direction and those
polarized transversely to it. At the interface between
the non-magnet and the free layer, the spin current po-
larized along the magnetization direction remains con-
served. However, the spin current with polarization
transverse to the magnetization dissipates entirely upon
entering the ferromagnet [16]. The interface absorbs part
of the transverse spin current, while the remaining por-
tion quickly dissipates within the ferromagnet due to
a precession-induced dephasing of spins. In transition
metal ferromagnets and their alloys, this dephasing hap-
pens over distances smaller than the spin diffusion length.
Thus we treat the spin accumulation in the ferromagnet
as vanishing arbitrarily close to the interface, as is done
in magnetoelectronic circuit theory [34, 35]. The rapid
dephasing also allows us to neglect angular momentum
transfer (via spin-orbit coupling) to the bulk atomic lat-
tice. Spin torques can only change the direction of the
magnetization, since the magnetization’s vector magni-
tude is considered fixed. Thus, in the following discussion
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we only consider spin currents and spin accumulations
with polarization transverse to the magnetization.

We refer to the transverse spin current at z = 0− as
j⊥(0−), where the following expression

j⊥(0−) = GRµ⊥(0−), (1)

relates this current with the transverse spin accumula-
tion at z = 0− (given by µ⊥(0−)). Here we express the
spin accumulation in units of voltage and the spin current
in units of number current density [36]. Both the trans-
verse spin current and transverse spin accumulation are
two-vectors; in the magnetization reference frame they
consist of the damping-like and field-like components of
each quantity, i.e.

j⊥(0−) =

(
jd(0

−)

jf (0−)

)
, µ⊥(0−) =

(
µd(0

−)

µf (0−)

)
. (2)

The conductance matrix GR is dependent on the
complex-valued spin mixing conductance G↑↓ in the fol-
lowing way:

GR =

(
Re[G↑↓] −Im[G↑↓]

Im[G↑↓] Re[G↑↓]

)
. (3)

The spin mixing conductance comes from magnetoelec-
tronic circuit theory and does not depend on the magne-
tization direction.

To compute the total spin torque (τ tot) [37], we note
that both the interface and the bulk ferromagnet contain
magnetization. Thus, the spin current at z = 0− equals
the flux of angular momentum just outside the ferromag-
netic part of the system. As previously discussed, the
interface and the bulk ferromagnet absorb the transverse
part of this spin current. Therefore the total spin torque
equals j⊥(0−), and we only require GR and µ⊥(0−) to
compute it.

In the ferromagnet, the dephasing processes rapidly
destroy the transverse spin accumulations and currents.
This explains why the spin current in Eq. (1) does not de-
pend on µ⊥(0+), as it is negligibly small. Even though
the transverse spin current j⊥(0+) also dephases, it is
useful to identify it as the spin torque on the bulk ferro-
magnet (τFM). Thus we may write:

τFM = j⊥(0+) = ΓFMµ⊥(0−) (4)

Here the torkance tensor ΓFM relates the spin torque in
the bulk ferromagnet to the transverse spin accumulation
at z = 0−. It has a structure similar to GR, though
for now we avoid specifying it. The spin torque at the
interface (τ int) is then the difference between τ tot and
τFM, which equals the change in transverse spin current
from z = 0− to z = 0+:

τ int = j⊥(0−)− j⊥(0+) (5)

Using Eqs. (1) and (4) we may then write

τ int = τmag = (GR − ΓFM)µ⊥(0−), (6)

where τmag represents the torque on the magnetization
at the interface. The distinction between τ int and τmag

is irrelevant in the absence of spin-orbit coupling, since
all spin torques in the spin valve are exerted entirely on
the magnetization. However, by introducing interfacial
spin-orbit coupling, the magnetization is not the only
source of angular momentum that couples to carriers;
the lattice provides another source that complicates this
analysis and makes this distinction useful.

B. Spin-orbit Torque

The need for a fixed ferromagnetic layer is bypassed
in heavy metal/ferromagnetic bilayers, where the spin
current is generated by the spin Hall effect in the heavy
metal. The spin Hall effect creates spin currents by di-
verting carriers of charge current with opposite spin in
opposite directions. The spin polarization and flow di-
rections of these spin currents are orthogonal both to
each other and to the charge current. Because carriers
flowing in opposite directions carry opposite spin polar-
ization, they contribute to a net spin current but do not
exhibit a net spin polarization. As seen in Fig. 1(a-c),
the electric field that induces the charge current is typ-
ically aligned with the interface plane, thus generating
a spin current that flows normal to the interface. The
spin torque then arises as it does in spin valves, where
the spin current transfers angular momentum to the free
layer.

However, spin-orbit scattering near the interface cre-
ates spin currents in addition to those caused by the spin
Hall effect. This occurs because individual carriers sub-
ject to an in-plane electric field still move in all directions;
only their net velocity points in-plane. As a result, car-
riers scatter off of the interface in a spin-dependent way
(due to interfacial spin-orbit coupling) and thus become
spin-polarized. As depicted in Fig. 1(d-f), the net spin
polarization for all carriers does not vanish if the elec-
tric field perturbs the occupancy of states differently on
each side of the interface. A difference in the occupancy
of states for reflected and transmitted carriers can arise
from differing conductivities, degrees of polarization in
the ferromagnet, or band structures in each layer. Unlike
the spin Hall effect, carriers subject to interfacial spin-
orbit scattering not only carry a net spin current, but
also develop a net spin-polarization. This gives carriers
two ways to exert a spin torque on the system.

First, we consider the spin currents generated by in-
terfacial spin-orbit scattering. With the addition of these
spin currents, Eq. (1) becomes

j⊥(0−) = GRµ⊥(0−) + jE⊥(0−) (7)

The new spin current jE⊥(0−) may be written as follows

jE⊥(0−) = σ(m̂)Ẽ, (8)

where the conductivity tensor σ(m̂) vanishes in the ab-
sence of interfacial spin-orbit coupling and depends on
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the magnetization direction m̂. The scalar Ẽ ≡ −E/e
denotes the in-plane electric field, but is scaled such that
the conductivity vector has the same units as the bulk
conductivities. Here we assume that the electric field
points along the x-axis without loss of generality. This
makes the conductivity tensor a two-vector, although
in general the conductivity tensor couples both in-plane
electric field components with all spin currents that re-
sult from spin-orbit scattering. We remind the reader
that the two-vector jE⊥(0−) describes spin currents that
are polarized transversely to the magnetization and flow
perpendicular to the interface plane. However, these spin
currents arise from electric fields that point along the in-
terface plane.

We note that the conductance tensor GR is derived
in the spirit of magnetoelectronic circuit theory, which
means that it does not account for spin-flip scattering at
the interface. Since interfacial spin-orbit coupling leads
to spin-flip scattering, the conductance matrix becomes
modified as well; however we do not consider such mod-
ifications in this paper. For a simple model of spin-orbit
coupling, we show in the companion paper that such
modifications only negligibly alter the conductance ten-
sor.

The transverse spin current at z = 0+ becomes modi-
fied by interfacial spin-orbit scattering as well:

j⊥(0+) = ΓFMµ⊥(0−) + jE⊥(0+). (9)

The new term is given by

jE⊥(0+) = γFM(m̂)Ẽ, (10)

where the torkivity tensor γFM(m̂) represents the ana-
logue of the conductivity tensor just defined. As long as
the relation τFM = j⊥(0+) still holds, the spin current
given by Eq. (10) now provides an additional contribu-
tion to the spin torque on the bulk ferromagnet.

Second, we consider the spin polarization that arises
from interfacial spin-orbit scattering. This spin polar-
ization couples to the magnetization at the interface via
the exchange interaction. This coupling causes carriers
to exert an additional spin torque on the magnetization;
as a result Eq. (6) becomes

τmag = (GR − ΓFM)µ⊥(0−) + τE, (11)

where τE equals the contribution from interfacial spin-
orbit scattering. We may express this contribution as

τE = γmag(m̂)Ẽ (12)

where γmag(m̂) denotes an additional torkivity tensor. It
describes the torque on the magnetization at the interface
(z = 0), in contrast to the spin current that forms just
within the ferromagnet (at z = 0+). Like all spin cur-
rents considered in this paper, these torques have units
of number current densities.

To summarize the results so far, the tensors defined
by Eqs. (8), (10), and (12) describe the modifications to

spin transport brought upon by interfacial spin-orbit cou-
pling. The tensors σ(m̂) and γFM(m̂) describe the spin
currents that arise from spin-orbit scattering near the in-
terface, while γmag(m̂) describes an additional contribu-
tion to the spin torque at the interface. Each of these ten-
sors may be computed in terms of the spin-dependent re-
flection and transmission amplitudes at the interface; we
provide the necessary expressions in appendix B. We now
discuss how these tensors alter the various spin torques
in the bilayer.

We first remind the reader that τ int equals the total
change in tranverse spin polarization across the interface,
while τmag equals the portion of τ int given to the mag-
netization. In the case of the spin valve these torques
are identical, as Eq. (6) suggests. However, in heavy
metal/ferromagnet bilayers, the interfacial spin-orbit in-
teraction couples carriers to an additional angular mo-
mentum bath that is separate from the magnetization.
This suggests that τ int equals the sum of two torques:
one on the magnetization (τmag) and the other on the
atomic lattice (τ latt). Thus the interfacial torque now
becomes,

τ int ≡ j⊥(0−)− j⊥(0+)

= τmag + τ latt, (13)

where the lattice torque

τ latt = τ int − τmag

= j⊥(0−)− j⊥(0+)− (GR − ΓFM)µ⊥(0−)− τE

= jE⊥(0−)− jE⊥(0+)− τE

=
[
σ(m̂)− γFM(m̂)− γmag(m̂)

]
Ẽ, (14)

represents a parasitic contribution to the magnetization
torque. Thus, not only does τmag change in the presence
of interfacial spin-orbit coupling (according to Eq. (11)),
it only partially contributes to the spin torque that car-
riers exert on the interface (τ int).

The total spin torque on the magnetization may now be
expressed in terms of its interfacial and bulk ferromagnet
contributions,

τ tot = τmag + τFM,

= τmag + j⊥(0+), (15)

or by subtracting the lattice torque from the incident flux
of angular momentum (i.e. the spin current at z = 0−):

τ tot = j⊥(0−)− τ latt. (16)

Equations (15) and (16) represent two separate break-
downs of the total spin-orbit torque, and help to clarify
the thickness dependencies of heavy metal/ferromagnet
systems. The spin current in any region vanishes as the
layer thickness approaches zero. Thus, as the ferromag-
net thickness vanishes, the total spin-orbit torque ap-
proaches the spin torque on the magnetization at the
interface (τmag). As the heavy metal thickness vanishes,
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it approaches the opposite of the lattice torque (−τ latt)
instead.

Equations (7), (9), and (11) capture the phenomenol-
ogy of interfacial spin orbit coupling and in-plane electric
fields. When used as boundary conditions for the drift-
diffusion equations, they allow for quantitative compari-
son with results from the Boltzmann equation.

III. THE DRIFT-DIFFUSION AND
BOLTZMANN SOLUTIONS

We now demonstrate that one may accurately model
the interfacial Rashba interaction through the inclusion
of the conductivity/torkivity tensors and the mixing con-
ductance. To study the importance of these parameters
we solve the drift-diffusion and Boltzmann equations for
a heavy metal/ferromagnet bilayer, using material pa-
rameters for a Pt/Co system given in Ref. [11]. We
provide some of these parameters here [38]. That pa-
per presented a solution to the drift-diffusion equations,
but only in the absence of interfacial spin-orbit coupling.
Here, we extend that solution to include interfacial spin-
orbit coupling, enabling the calculation of Rashba-based
spin-orbit torques.

A. Drift-diffusion solution

The drift-diffusion equations directly relate spin and
charge accumulations with spin and charge current den-
sities, and do not explicitly treat k-dependent scattering.
In the following we describe the three-component spin
accumulation and spin current density as µs and js re-
spectively. While the spin current is generally a tensor,
here we only consider motion normal to the interface;
thus we treat the spin current as a vector in spin space.
The charge accumulation and charge current density are
given by µc and jc. The latter is a scalar because (as with
the spin current) we only consider the out-of-plane cur-
rent flow. In this approach (for a spatially-homogenous
magnetization m̂) we write the spin current density in
the ferromagnet (z > 0) as

js(z) =
σFM

e
Pm̂

∂µc(z)

∂z
− σFM

e

∂µs(z)

∂z
(17)

which obeys the following spin continuity equation:

1

eNFM
s

∂js(z)

∂z
=− 1

τFMsf

µs(z)−
1

τex
µs(z)× m̂

− 1

τdp
m̂× µs(z)× m̂. (18)

The spin polarization of the current P , given by

P = (σFM
↑ − σFM

↓ )/σFM (19)

arises because majority and minority carriers have differ-
ent bulk conductivities. The right hand side of Eq. (18)

describes the relaxation due to spin-flip scattering, col-
lective spin precession about the magnetization, and de-
phasing of the ensemble average of spin, with each mech-
anism characterized by the time intervals τFMsf , τex, and
τdp respectively. The quantity NFM

s is the density of
states per unit volume in the ferromagnet.

The corresponding equations for the heavy metal (z <
0) contain no magnetization-dependent terms, but in-
clude a spin current density source jsHs = σsHE × ẑ to
model the spin Hall effect:

js(z) = −σ
HM

e

∂µs(z)

∂z
+ jsHs (20)

1

eNHM
s

∂js(z)

∂z
= − 1

τHM
sf

µs(z). (21)

Here NHM
s gives the density of states per unit volume

and τHM
sf equals the spin-flip relaxation time in the heavy

metal. To compute spin-orbit torques, we only need the
spin components of all quantities that are transverse to
the magnetization. The drift-diffusion equations that de-
scribe these components alone still have the same form
as Eqs. (20) and (21) in the heavy metal.

According to Eq. (16), the total spin-orbit torque may
be expressed in terms of j⊥(0−) and τ latt. To compute
τ latt we must calculate the conductivity and torkivity
matrices given by Eqs. (B20)–(B22). To compute j⊥(0−)
we must solve the drift-diffusion equations using the ap-
propriate boundary conditions. The drift-diffusion equa-
tions solved here, as well as the parameters describing
the bulk regions, are identical to those used in Ref. [11].
However, to capture interfacial spin-orbit effects, we use
Eq. (7) as boundary conditions at z = 0− instead of mag-
netoelectronic circuit theory alone. We also assume that
the spin currents vanish at the outer boundaries of both
materials.

At z = 0+ we make the approximation that the trans-
verse spin accumulations and currents vanish due to de-
phasing. However, our discussion of the total spin-orbit
torque in section II B assumes that the transverse spin
current j⊥(0+) does not vanish. This was necessary so
that we analyze the phenomenology of interfacial spin-
orbit coupling on both sides of the interface. Here we
only assume that j⊥(0+) = 0 in order to simplify the an-
alytical drift-diffusion solution. We then compute τFM

indirectly by subtracting τmag from τ tot. Later we test
all of these approximations by comparison to results from
the Boltzmann equation.

In terms of the normal metal thickness t, the solution
of j⊥(0−) is given by

j⊥(0−) = g(t)jE⊥(0−) + h(t)jsHd (22)

Note that the spin Hall current contains no field-like com-
ponent, so only its damping-like component jsHd enters
this solution. The matrix g(t) and the two-vector h(t)
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FIG. 2. (Color online) Damping-like (τ totd ) and field-like (τ totf )
total spin torques plotted versus the heavy metal thickness
(t). Here lsf = 2.57 nm as in Ref. [11]. The spin torques
shown originate from either the bulk spin Hall effect or the
interfacial Rashba effect. The ratio of the damping-like and
field-like components of the spin Hall torque roughly match
the ratio between the real and imaginary parts of the mixing
conductance. Additionally, the spin Hall torque saturates at
thicknesses roughly twice that of the Rashba torque. This
thickness-related suppression provides one possible mecha-
nism for Rashba torques to surpass spin Hall torques in thin
bilayer systems.

have the following structure:

g(t) =

(
g1(t) g2(t)

g2(t) g1(t)

)
h(t) =

(
g1(t)h1(t)

g2(t)h2(t)

)
. (23)

The unitless functions g1, g2, h1, and h2 all vanish for
zero thickness and converge to finite values for infinite
thickness. To express these functions we define a scaled
mixing conductance

GR ≡ Re[G↑↓]
2lsf
σHM

(24)

GI ≡ Im[G↑↓]
2lsf
σHM

, (25)

using the bulk conductivity σHM and the spin diffusion
length lsf of the heavy metal. Then, G1 and G2 are

g1(t) =
tanh2(t/lsf)−GR tanh(t/lsf)

(GR − tanh(t/lsf))2 + (GI)2
(26)

g2(t) =
GI tanh(t/lsf)

(GR − tanh(t/lsf))2 + (GI)2
, (27)

which vary monotonically with Re[G↑↓] and Im[G↑↓] re-
spectively. The functions h1 and h2

h1(t) = h2(t)
1 + g1(t)

g1(t)
(28)

h2(t) = − (1− e−t/lsf)2

1 + e−2t/lsf
, (29)

capture extra thickness-dependent terms associated with
the spin Hall effect only, as seen in Eqs. (22) and (23).

According to Eqs. (16) and (22), the total spin torque
equals:

τ tot = g(t)jE⊥(0−) + h(t)jsHd − τ latt. (30)

Without interfacial spin-orbit coupling, the spin current
jE⊥(0−) and the lattice torque τ latt vanish. With inter-
facial spin-orbit coupling, the former contributes to the
spin torque thickness dependence while the latter gives
the opposite of the zero-thickness intercept. In particu-
lar, jEd (0−) and jEf (0−) may be useful fitting parameters
for experiments, as they represent the new information
required to characterize the thickness dependence of spin-
orbit torques.

To compute all boundary parameters we use a scatter-
ing potential localized at the interface [11], based on the
Rashba model of spin orbit coupling:

V (r) =
~2kF
m

δ(z)
(
u0 + uexσ · m̂ + uRσ · (k̂× ẑ)

)
(31)

Here u0 represents a spin-independent barrier, uex gov-
erns the interfacial exchange interaction, and uR denotes
the Rashba interaction strength. Plane waves comprise
the scattering wavefunctions in both regions. By de-
riving reflection and transmission coefficients for major-
ity/minority carriers subject to this interfacial potential,
one may compute the conductivity and torkivity tensors
using the expressions found in appendices A and B. From
this we may obtain the parameters jE⊥(0±) and τE, which
capture the dominant effects of the interfacial spin-orbit
interaction.

Fig. 2 shows the total spin torque versus the heavy
metal thickness, as caused by the spin Hall and inter-
facial Rashba effects separately. As expected, the spin
Hall torque shows a mostly damping-like character, while
the Rashba torque shows a mostly field-like character.
However, each torque contains both a damping-like and
field-like component. For the spin Hall torque, the ratio
between the real and imaginary parts of the spin mix-
ing conductance G↑↓ roughly determines the ratio be-
tween the damping-like and field-like components. For
the Rashba torque, the current sources jE⊥(0±) and the
lattice torque τ latt mostly determine this ratio instead.
Interestingly, due to the terms h1(t) and h2(t), the spin
Hall torque saturates at thicknesses roughly twice that
of the Rashba torque. This thickness-related suppression
provides one possible mechanism for Rashba torques to
surpass spin Hall torques in thin bilayer systems.

B. Comparison of the drift-diffusion and
Boltzmann approaches

To check the validity of the approximations made
above we solve the steady-state linearized Boltzmann
equation, using the methods described in Refs. [11], [39],
and [40]. However we do so in the absence of the spin Hall
effect, so as to focus on the interfacial Rashba interaction
alone.
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FIG. 3. (Color online) Spin torques in a Co/Pt bilayer
plotted versus the interfacial exchange strength uex (with
no spin Hall effect). The solid curves give the Boltzmann
solution, while the dashed curves and the circles give the
drift-diffusion/generalized circuit theory solution. The cir-
cles are based on the conductivity and torkivity tensors com-
puted in appendix B, while the dashed curves use more
accurately-computed tensors outlined in appendix D. (a)-
(d) The damping-like (d) and field-like (f) components of the
total spin torque, shown for various uR. As uex increases,
the total spin torque becomes mostly field-like. (e)-(f) Break-
down of the total spin torque into its interfacial (red) and bulk
(blue) parts. For weak uex the bulk spin torque dominates,
while for strong uex the interfacial spin torque dominates.
The spin current density jEd (0+) (which causes a spin torque
by flowing into the ferromagnet) significantly contributes to
the total damping-like spin torque for weak uex. However, as
uex increases the interfacial spin torque must increase as well;
eventually its field-like component exceeds all other contribu-
tions.

Figure 3(a)-(d) shows the total spin torque versus the
interfacial exchange interaction (uex) for strong (uR/u0 =
0.5) and weak (uR/u0 = 0.05) interfacial spin-orbit cou-
pling. For all cases, the drift-diffusion (circles) and
Boltzmann (solid lines) approaches produce quantita-
tively similar results. We achieve this agreement by
using Eqs. (7), (9), and (11) as boundary conditions
for the drift-diffusion equations, thus capturing the ef-
fects of interfacial spin-orbit scattering. The conduc-
tivity and torkivity tensors that these boundary condi-
tions depend on are derived by approximating the Boltz-

mann distribution at the interface, as seen in appendix B.
We also present results from an additional drift-diffusion
approach (dashed lines) that uses boundary conditions
based on a more sophisticated ansatz of the interfacial
Boltzmann distribution. Appendix D outlines the de-
tails of this method. Interestingly, both drift-diffusion
approaches agree well with the Boltzmann approach. For
thin layers this agreement may change, since the more
sophisticated ansatz of the interfacial Boltzmann distri-
bution takes the outer boundaries into consideration.

Figures 3(e)-(f) show the interfacial (red) and bulk fer-
romagnet (blue) contributions to the total spin torque
as a function of the strength of the interfacial exchange
potential. The interfacial torque is always field-like,
while the bulk ferromagnet torque contains significant
damping-like contributions as well. This occurs because
the spin current jEd (0+) surpasses the spin torque given
by τEf for weak uex. Ordinarily, a damping-like spin
torque arises from the spin Hall effect, which does not
exist in these results. However, as uex increases, the
damping-like and field-like components of the interfacial
spin torque also increase; eventually the field-like compo-
nent dominates all other spin torque contributions. This
implies that the proximity effect, which could be modeled
by uex, might change the direction of spin-orbit torques.

Figure 4 compares the Boltzmann approach (solid
curves) and the simpler drift-diffusion approach (circles)
as a function of the strength of the interfacial spin-orbit
coupling. The drift-diffusion solution provides excellent
agreement with the Boltzmann solution for all quantities
plotted. This agreement suggests that the conductivity
and torkivity tensors would work well as fitting param-
eters to characterize the impact of interfacial spin-orbit
coupling on experimental results.

Figures 3 and 4 demonstrate that the boundary con-
ditions given by Eqs. (7), (9), and (11) enable the drift-
diffusion approach to reproduce results from the Boltz-
mann approach in the presence of interfacial spin-orbit
coupling, despite the fact that the former approach re-
tains no k-space information. The conductivity and
torkivity parameters capture interfacial spin-orbit scat-
tering and drive the spin dynamics of spin-diffusive sys-
tems; without them the drift-diffusion equations cannot
simulate interfacial spin-orbit coupling. Furthermore,
the analytical drift-diffusion solution matches the numer-
ical Boltzmann solution quite well, suggesting that the
conductivity and torkivity tensors furnish important pa-
rameters when modeling spin-orbit torques.

IV. OUTLOOK

The conductivity and torkivity tensors capture the
physics of interfacial spin-orbit scattering and in-plane
electric fields. In particular, we showed that these tensors
strongly influence the potential for a system to produce
damping-like and/or field-like torques. As a result, cal-
culating these tensors for a realistically-modeled system
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FIG. 4. (Color online) Comparison of the Boltzmann approach (solid curves) and drift-diffusion/generalized circuit theory
approach (circles), with the latter using the boundary parameters computed in appendix B. The panels display spin torques in
a Co/Pt bilayer in the absence of the spin Hall effect, plotted versus Rashba parameter (uR) for various exchange parameter
values (uex). Panels (a) and (b) represent the total spin torque, while panels (c)/(d) and (e)/(f) represent the interfacial and
bulk contributions respectively. Both approaches quantitatively agree on the parameterization of the each spin torque, although
the drift-diffusion/circuit theory approach slightly underestimates the value of the damping-like spin torque. The conductivity
(σ) and torkivity (γ) parameters enable the drift-diffusion equations to describe Rashba spin-orbit torques by capturing the
k-dependent spin-orbit scattering present in the Boltzmann equation. Without the inclusion of these parameters, no such
drift-diffusion solution exists.

should provide direct insight into its spin transport be-
havior. Even so, treating the elements of these tensors as
phenomenological parameters should benefit the analysis
of a variety of experiments.

Attempts to suppress the Rashba torque in heavy
metal/ferromagnet multilayers often involve inserting a
metallic spacer between films. Although this prevents
the formation of a single interface with both spin-orbit
coupling and an exchange interaction, it creates two in-
terfaces that possess mostly one property or the other.
Fan et al. [4] measure spin torques in both CoFeB/Pt
and CoFeB/Cu/Pt multilayers in order to isolate the spin
torque contributions from the heavy metal and from the
interface. To see this, consider the latter system, and
note that the Cu spacer prevents the spin polarization
at the Cu/Pt interface from directly exerting a torque
on the CoFeB layer. As a result, the spin torque in that
system was attributed to the heavy metal, which cre-
ates a spin current (via the spin Hall effect) that can
pass through the Cu spacer with negligible spin relax-
ation [4]. However, in the interpretation presented here,
spin-orbit scattering at the Cu/Pt interface also creates
a spin current. In analogy with the spin Hall effect, this
spin current can flow into a neighboring ferromagnetic
layer and exert a spin torque. In general, the polarization
direction of this spin current can differ from that gener-
ated by the spin Hall effect. The resulting spin torque
is both damping-like and field-like with respect to the
field direction −E × ẑ, but is solely damping-like with
respect to the polarization direction of the spin current.
Thus, interfaces with spin-orbit coupling could play an

active role in generating spin-orbit torques, even when
separated from ferromagnetic layers by metallic spacers.

Allen et al. [6] measure the Ta thickness dependence
for a CoFeB/Ta bilayer and project a non-zero field-like
interfacial torque. The model that they use attributes
the thickness dependence only to the spin Hall effect
and treats the Rashba torque as an interfacial parame-
ter. The drift-diffusion solution presented in section III A
provides a generalization of this analysis in the presence
of Rashba spin orbit coupling and a possible explanation
of the zero-thickness intercept.

Finally, Garello et al. [3] measure strongly anisotropic
damping-like and field-like torques that depend heav-
ily on growth techniques and material composition. We
note that the scattering amplitudes considered depend on
magnetization direction and interfacial disorder, which
lead to such anisotropy within the boundary parameters.
Further work is required to characterize this anisotropy.

We expect that the most useful approach for inter-
preting experiments as above is to treat the new trans-
port parameters as fitting parameters. In the future, this
approach can be checked by calculating the parameters
from first principles [41, 42] as has been done for mag-
netoelectronic circuit theory. In the companion paper
we generalize the expressions given by Eqs. (B20)–(B22)
for the case of realistic electronic structures. Such cal-
culations would provide a useful bridge between direct
first-principles calculations of spin torques [32, 43–45]
and drift-diffusion calculations done to analyze experi-
ments.

To conclude, we present boundary conditions that cap-
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ture the phenomenology of interfacial spin-orbit scatter-
ing when driven by in-plane electric fields, which was pre-
viously inaccessible to the drift-diffusion equations. Us-
ing these boundary conditions we solve the drift-diffusion
equations for a bilayer system, and obtain an analytical
model of spin-orbit torques caused by both the spin Hall
and Rashba-Edelstein effects. We then compare the spin-
orbit torques predicted by this drift-diffusion approach
with those obtained by solving the spin-dependent Boltz-
mann equation. We find quantitative agreement between
both approaches over a large parameter space, which in-
cludes both strong and weak interfacial spin-orbit cou-
pling. Most importantly, we find that the spin currents
created by interfacial spin-orbit scattering must be con-
sidered to achieve agreement between these approaches.
Finally, we discuss the interpretation of current exper-
iments, and describe in particular how an interface can
exert a spin torque on a nearby ferromagnetic layer with-
out being directly connected to it.
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Appendix A: Derivation of reflection and
transmission matrices

Interfacial spin-orbit coupling causes both momen-
tum and spin-dependent scattering at interfaces. If
the incident distribution of carriers depends on momen-
tum and/or spin, outgoing carriers may become spin-
polarized via interfacial spin-orbit scattering. This gives
rise to non-vanishing spin accumulations, spin currents,
and spin torques, which are related by Eqs. (7), (9), and
(11). In order to derive the tensors introduced in those
expressions, we must first describe how an ensemble of
spins scatters at an interface.

One may relate the spinors describing carriers incident
(χ) and scattered away from (ξ) an interface by the fol-
lowing relation,

ξ = rχ (A1)

subject to the 2 × 2 reflection matrix for major-
ity/minority spin states:

r =

(
r↑ r↑↓

r↓↑ r↓

)
. (A2)

For now we omit the transmission of carriers from the
opposite side of the interface. Given the density matrix
associated with an ensemble of incident carriers,

ρin =
∑
n

pnχnχ
†
n, (A3)

where pn denotes the probability of occupying the spin
state χn, the density matrix for outgoing carriers be-
comes:

ρout =
∑
n

pnξnξ
†
n = rρinr†. (A4)

Since density matrices are Hermitian one may expand
them as follows

ρ = gcσc + gsσs. (A5)

where σs denote the Pauli matrices (s ∈ [x, y, z]) and
σc = I2×2. One may show that the coefficients gs equal
the ensemble average of spin in direction s, while gc gives
the total probability of occupation. The outgoing density
matrix then becomes

ρout = goutα σα = ginβ rσβr
†, (A6)

where the α ∈ [x, y, z, c]. By obtaining the matrix Rαβ
such that

goutα = Rαβg
in
β , (A7)

one characterizes the scattering of an ensemble of spins in
the semiclassical limit (in terms of scattering amplitudes
for minority/majority carriers alone). Using the identity

tr[σασβ ] = 2δαβI2×2 (A8)

one may show that the Rαβ becomes

Rαβ =
1

2
tr[r†σαrσβ ]. (A9)

The matrix that describes transmission (Tαβ) may be
obtained in a similar fashion. If the scattering amplitudes
couple additional channels (such as in-plane momentum
or orbital quantum number) we may write

SXYmn,αβ =

{
RXmn,αβ for X = Y

TXYmn,αβ for X 6= Y.
(A10)

for

RXmn,αβ =
1

2
tr
[
(rXmn)†σαr

X
mnσβ

]
(A11)

TXYmn,αβ =
1

2
tr
[
(tXYmn )†σαt

XY
mn σβ

]
, (A12)

instead, where m/n label the additional channels and
X,Y ∈ [+,−] label the sides of the interface. These scat-
tering matrices comprise boundary conditions suitable
for semiclassical models such as the Boltzmann equation.
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Appendix B: Derivation of the conductivity and
torkivity parameters

We now derive expressions for the conductivity and
torkivity parameters introduced in Eqs. (8), (10), and
(12), which can be expressed in terms of scattering am-
plitudes. To do so we use the non-equilibrium distribu-
tion function gα(r,k), which describes a perturbation of
the equilibrium Fermi-Dirac distribution feq(εk) and de-
pends on the position, momentum, and spin of carrier
wavepackets:

fα(r,k) = feq(εk)δαc +
∂feq
∂εk

gα(r,k). (B1)

The representation that we use includes four distribu-
tions (α ∈ [d, f, `, c]), where the first three refer to spins
polarized along each axes and the last one refers to the
total population. Note that in the following we refer to
α as a spin/charge index. We approximate the portion
of gα(r,k) incident to the interface in the non-magnet as
follows:

ginα (0−,k||) = e2ẼτNMvx(k||)δαc. (B2)

Note that k|| denotes the in-plane momentum vector,

τNM gives the the momentum relaxation time in the
non-magnet, and Ẽ = −E/e equals the scaled in-plane
electric field. Without loss of generality we assume that
the electric field points along the x-axis. This distribu-
tion function weights the occupancy of carriers such that
those moving in the direction opposite to the electric field
outnumber those moving in the same direction. There-
fore Eq. (B2) captures the charge current that arises from
an electric field. In a ferromagnet, an electric field creates
both a charge and spin current, captured by the following
distribution function instead:

ginα (0+,k||) = e2ẼτFMvx(k||)

×
(
δαc − Pδασm̂σ

)
. (B3)

Here the index σ ∈ [d, f, `] runs over only the spin compo-
nents. The quantity τFM gives the momentum relaxation
time in the ferromagnet, while

P =
(
σFM
↑ − σFM

↓
)
/σFM, (B4)

equals the polarization in the ferromagnet, given in terms
of the bulk conductivities for majority and minority car-
riers.

Equations (B2) and (B3) give the anisotropic contribu-
tions to the non-equilibrium distribution function caused
by an in-plane electric field. They are derived from the
particular solution of the Boltzmann equation in the re-
laxation time approximation. Here, for numerical sim-
plicity, we assume the same spherical Fermi surface de-
scribes both regions [46] and both spins in the ferromag-
net. The spin-dependent conductivity in the ferromag-
netic material is captured by different scattering times

for majority and minority carriers. In appendix D, we
generalize the expressions presented in this appendix to
describe non-trivial electronic structures.

The momentum relaxation times used in Eqs. (B2) and
(B3) are renormalized by bulk spin-flip scattering in the
non-magnet and account for differing majority and mi-
nority relaxation times in the ferromagnet:

(τNM)−1 = (τNM
mf )−1 + (τNM

sf )−1 (B5)

(τFM)−1 = 2(τFM↑mf + τFM↑mf )−1 (B6)

For the non-magnet, τNM
mf denotes the mean free scatter-

ing time while τNM
sf denotes the spin-flip scattering time.

For the ferromagnet, τFM↑mf and τFM↓mf denote the mean
free scattering times for majority and minority carriers
respectively. We may better approximate Eqs. (B2) and
(B3) by forcing the distribution function to obey outer
boundary conditions as well. In appendix D we present a
more sophisticated approximation for Eqs. (B2) and (B3)
that accomplishes this by incorporating solutions to the
homogeneous Boltzmann equation.

The outgoing distribution at z = 0− is specified by
the incoming distributions of both sides and interfacial
scattering coefficients:

goutα (0−,k||) = R−αβ(k||)g
in
β (0−,k||)

+ T−+αβ (k||)g
in
β (0+,k||). (B7)

Note that the scattering coefficients depend on magneti-
zation in general. Likewise, the outgoing distribution at
z = 0+ is expressed as follows:

goutα (0+,k||) = R+
αβ(k||)g

in
β (0+,k||)

+ T+−
αβ (k||)g

in
β (0−,k||). (B8)

To calculate non-equilibrium quantities on either side of
the interface, we must compute integrals of the distri-
bution function over the Fermi surface (FS). In terms
of the incoming and outgoing distribution functions, the
spin current densities jEσ (σ ∈ [d, f, `]) on each side of the
interface are

jEσ (0−) = − c

evF

∫
FS∈in

d2kvz

[(
R−σβ − δσβ

)
ginβ (0−)

+ T−+σβ g
in
β (0+)

]
(B9)

jEσ (0+) = − c

evF

∫
FS∈in

d2kvz

[(
R+
σβ − δσβ

)
ginβ (0+)

+ T+−
σβ g

in
β (0−)

]
, (B10)

where the constant c is given by:

c = − e
~

1

(2π)3
. (B11)

Here we write jEσ in units of number current density. The
phase-coherent spin densities on each side of the interface
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are

〈sEσ (0−)〉 = − c

evF

∫
FS∈in

d2kT+−
σα g

in
α (0−) (B12)

〈sEσ (0+)〉 = − c

evF

∫
FS∈in

d2kT−+σα g
in
α (0+). (B13)

We write these spin densities in units of number den-
sity. The total spin density 〈sE〉 equals the sum of the
contributions from both sides:

〈sE〉 = 〈sE(0−)〉+ 〈sE(0+)〉. (B14)

The spin torque on the magnetization at the interface is
given by

τE = −Jex
~
〈sE〉 × m̂, (B15)

where Jex equals the exchange energy at the interface.
For the scattering potential given by Eq. (31), Jex be-
comes

Jex = −~kFuex
m

. (B16)

It is convenient to write the spin current density and spin
torque in terms of the conductivity σσ and torkivity γσ
parameters:

jEσ (0−) = σσẼ (B17)

jEσ (0+) = γFMσ Ẽ (B18)

τEσ = γmag
σ Ẽ. (B19)

Using Eqs (B2), (B3), (B7), and (B8) to evaluate
Eqs. (B9)–(B14), one may express these tensors in terms
of the magnetization-dependent scattering coefficients:

σσ(0−) = − ec
vF

∫
FS∈in

d2kvzvx

[
τNM

(
R−σc − δσc

)
+ τFM

(
T−+σc − PT−+σσ′ m̂σ′

)]
, (B20)

γFMσ = − ec
vF

∫
FS∈in

d2kvzvx

[
τNMT+−

σc + τFM
(
R+
σc − δσc − P (R+

σσ′ − δσσ′)m̂σ′
)]
, (B21)

γmag
σ = −uexec

∫
FS∈in

d2kvxεσσ′σ′′m̂σ′

[
τNMT+−

σ′′c + τFM
(
T−+σ′′c − PT

−+
σ′′σm̂σ

)]
. (B22)

For σ ∈ [d, f ] we produce the tensors introduced in sec-
tion II B. In the same spirit as magnetoelectronic circuit
theory, these tensors represent moments of the scattering
coefficients weighted by velocities. Note that for P = 0
the tensors describing spin currents do not vanish, so
long as the momentum relaxation times of each region
differ and carriers are subject to interfacial spin-orbit
scattering. This suggests that non-magnetic interfaces
with spin-orbit coupling still behave as sources of spin
current.

Appendix C: The discretized Boltzmann equation

The spin-dependent Boltzmann equation is given by

∂fα
∂t

+
∂r

∂t

∂fα
∂r

+
∂k

∂t

∂fα
∂k

+ γεαβγH
ex
β fγ =

∂fα
∂t coll

. (C1)

where Greek letters label spin/charge indices (α, β ∈
[d, f, `, c]) and are implicitly summed over unless oth-
erwise stated. The fourth term, however, describes spin
precession in a ferromagnet and excludes the charge dis-
tribution from the implicit sums. One may use the semi-
classical equations of motion to determine the following

time derivatives

∂r

∂t
= v(k) (C2)

∂k

∂t
= −eE (C3)

where v denotes the electron velocity and E equals the
electric field. In the limit that the distribution functions
are small perturbations of the Fermi function, i.e.

fα(k)→ feq(εk)δαc +
∂feq
∂εk

gα(r,k) (C4)

we obtain the linearized Boltzmann equation (in steady-
state)

vz(k)
∂gα(k)

∂z
− eE · vx(k)δαc + γεαβγH

ex
β gγ(k)

= −Rαα′(k)gα′(k) +

∫
FS

dk′Pαα′(k,k′)gα′(k′) (C5)

assuming that any position-dependence is restricted to
the z axis. The latter assumption applies to systems with
translational-invariance in the x/y plane. Note that all
k vectors are limited to the Fermi surface.

We now treat the Fermi surface as a mesh of NK dis-
crete vectors, labeled by some index i. Using the follow-
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ing prescription

k → i (C6)

gα(k)→ giα (C7)

Rαα′(ki)→ Ri,αα′ (C8)

Pαα′(ki, kj)→ Pij,αα′ (C9)∫
FS

hα(k)dk =

Nk∑
i=1

wih
α
i (C10)

we may write Eq. (C5) as

∂giα
∂z

+
∑
j

Bij,αα′gjα′ = eEδαc
vx,i
vz,i

(C11)

where

Bij,αα′ ≡ 1

vz,i

[
γεαβα′Hex

β δij

+Ri,αα′δij − wjPij,αα′

]
. (C12)

Here we assume that E = Ex̂. Note that wi, which trans-
forms any sum into a Fermi surface integral, depends on
the mesh choice. Combining the indices i and α into a
single index, we may write Eq. (C11) in vector form

∂g

∂z
+Bg = Ev∗x (C13)

using the definition

[v∗x]iα ≡ e
vx,i
vz,i

δαc (C14)

where both g and v∗x contain NT ≡ 4 × NK elements,
making B an NT × NT matrix. The full solution then
becomes

g = gP + gH (C15)

which satisfy

BgP = Ev∗x (C16)

and

gH =
∑
n

cne
λnz ḡn (C17)

where λn and ḡn are respectively the NT eigenvalues and
eigenvectors of the B matrix. The particular solution gP
describes the direct response to an external electric field,
whereas gH represents a linear combination of the NT
solutions to the homogenous Boltzmann equation. Both
boundary conditions and the external electric field deter-
mine the coefficients cn [47]. Equation (C17) implies that
all solutions to the homogenous equation vary exponen-
tially over position, but may possess some complicated
spin-dependent distribution over k-space.

We may also write Eq. (C17) as

gH = ZΛ(z)c (C18)

where Z is an NT × NT matrix defined by the column
vectors ḡn,

Z =
(
ḡ1 ḡ2 · · · ḡNT

)
(C19)

Λ(z) describes the position dependence,

Λ(z) =


eλ1z 0 · · · 0

0 eλ2z · · · 0
...

...
. . .

...

0 0 · · · eλNT
z

 (C20)

and c is a vector containing the coefficients of expansion
for the homogeneous solutions:

c =
(
c1 c2 · · · cNT

)
(C21)

At z = 0, Λ yields the identity matrix and Eq. (C15)
becomes

g = gP + Zc. (C22)

Appendix D: Exact modification of the Boltzmann
distribution at interfaces due to an electric field

The previous section describes how to solve the lin-
earized Boltzmann equation in some bulk region. The
total solution consists of the particular solution and a
linear combination of the homogeneous solutions. The
electric field fixes the strength of the particular solu-
tion, while boundary conditions additionally determine
the coefficients of expansion for the homogeneous solu-
tions (given by cn). For bilayer systems, the scattering
coefficients introduced in appendix A provide the appro-
priate boundary conditions at the interface. They relate
the incoming and outgoing parts of the distribution func-
tions. However, the incoming and outgoing parts of the
particular solution do not obey these boundary condi-
tions. Thus, one must construct the correct linear combi-
nation of homogeneous solutions (which form a complete
set) to guarantee that the total distribution function sat-
isfies interfacial boundary conditions. The total solution
changes if the electric field changes, in part because the
electric field modifies the particular solution. However,
to continue satisfying the boundary conditions at the in-
terface, the coefficients of expansion must change as well.
Thus, for bilayer systems, an external electric field mod-
ifies both the particular solution and the coefficients of
expansion.

In appendix B we derive the conductivity and torkivity
tensors by approximating the non-equilibrium distribu-
tion function at the interface. There we assumed that
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the particular solution sufficiently described the non-
equilibrium distribution function that results from an ex-
ternal electric field. By determining how the coefficients
of expansion change in the presence of an external electric
field, we obtain a more sophisticated ansatz of that dis-
tribution function. Using the same procedure presented
in appendix B, but replacing the particular solution with
this more sophisticated ansatz, one may obtain conduc-
tivity and torkivity tensors that better reproduce the
physics of the Boltzmann equation. We emphasize that
this approach does not require one to completely solve
the Boltzmann equation for the bilayer, but is far more
computationally intensive than the approach outlined in
appendix B.

In the following we consider two regions separated by
an interface, and extract the exact portion of the Boltz-
mann distribution modified by an external electric field.
For a given layer, g∗P and Z characterize the general
Boltzmann distribution. The electric field E and the co-
efficients of expansion cn remain undetermined. Here we
require that the k-space mesh of both regions contain
NT points. Thus, one may split any function defined on
either Fermi surface into incoming and outgoing pieces,
each of which contain NT /2 elements.

In general, one can model interfacial scattering in
terms of an S-matrix, defined by(

gout(0−)

gout(0+)

)
= S

(
gin(0−)

gin(0+)

)
(D1)

where gin(0±) and gout(0±) denote vectors with dimen-
sion NT

2 , and describe the incoming and outgoing dis-
tribution functions on each side of the interface. The
NT ×NT S-matrix

S =

(
S−− S−+

S+− S++

)
. (D2)

is defined as follows

[S−−]ij,αβ = R−ij,αβ (D3)

[S−+]ij,αβ = T−+ij,αβ (D4)

[S+−]ij,αβ = T+−
ij,αβ (D5)

[S++]ij,αβ = R+
ij,αβ . (D6)

Here T±∓ij,αβ and R±ij,αβ give components of the S-matrix.
They equal the reflection and transmission matrices in-
troduced in Appendix A.

Since the distribution function includes no quantum
phase information, one cannot assume its continuity at
the interface (i.e. g(0−) 6= g(0+)). In order to obtain the
solution of Eq. (C13), we must solve for the coefficients
of expansion in each region such that the total solution
satisfies the scattering matrix. To accomplish this we
write Eq. (C22) for both regions in terms of the incoming

and outgoing parts:(
gin(0−)

gin(0+)

)
=

(
ginP (0−)

ginP (0+)

)

+

(
Z in(0−) 0

0 Z in(0+)

)(
c(0−)

c(0+)

)
, (D7)

(
gout(0−)

gout(0+)

)
=

(
goutP (0−)

goutP (0+)

)

+

(
Zout(0−) 0

0 Zout(0+)

)(
c(0−)

c(0+)

)
. (D8)

The vectors c(0±) contain the coefficients of expansion
corresponding to the distribution functions at z = 0±.
Notice that the same coefficients appear in both the in-
coming and outgoing equations. In analogy to Eqs. (C19)
and (C21), both Z in(0±) and Zout(0±) denote NT

2 ×NT
matrices constructed from the column vectors ḡin(0±)
and ḡout(0±) respectively.

Invoking the following convention for any vector h and
matrix H

h =

(
h(0−)

h(0+)

)
H =

(
H(0−) 0

0 H(0+)

)
(D9)

we may write Eqs. (D1), (D7), and (D8) more compactly
as

gout − Sgin = 0 (D10)

gin = ginP + Z inc (D11)

gout = goutP + Zoutc. (D12)

Note that Z in and Zout are NT × 2NT matrices. To-
gether, Eqs. (D10)–(D12) provide us with a system of
NT equations to solve for c. However, c contains 2NT
coefficients. Without knowing the outer boundary con-
ditions, one can only solve for half of the coefficients in
terms of the other half. We therefore separate c into the
set of determined cD and undetermined cU coefficients,
which gives:

gin = ginP + Z in
D cD + Z in

U cU (D13)

gout = goutP + Zout
D cD + Zout

U cU . (D14)

The matrices Z
in/out
U/D contain column vectors describing

either the determined or undetermined solutions only. As
a result, they represent NT ×NT matrices. According to
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the convention established in Eq. (D9), both cD and cU
are given by

cD =

(
cD(0−)

cD(0+)

)
cU =

(
cU (0−)

cU (0+)

)
, (D15)

and contain coefficients from each region. Finally we de-
fine the vector

bA = goutA − SgoutA (D16)

which quantifies the extent to which the distribution gA

satisfies the S-matrix. For example, the b vector cor-
responding to the total distribution must vanish, since
it satisfies the S-matrix. One may equivalently write
Eq. (D16) in terms of coefficients, i.e.

bA = PAcA (D17)

where

PA ≡ Zout
A − SZ in

A . (D18)

Using this notation we may rewrite Eq. (D1) as

gout − Sgin = bP + bU + bD. (D19)

= bP + PUcU + PDcD. (D20)

= 0. (D21)

Solving for cD, we have:

cD = TcU + cP (D22)

where

T ≡ −[PD]−1PU (D23)

cP ≡ −[PD]−1bP . (D24)

Equation (D22) implies the following: if one knows half
of the coefficients, the remaining coefficients are related
by the matrix T (given that PD is invertible), in addi-
tion to a piece cP caused solely by the electric field. The

coefficients contained within cP give the desired modifi-
cations to the coefficients of expansion that are caused
by an external electric field.

The portion of the incoming Boltzmann distribution
caused by an external electric field then become

ginE = ginP + Z in
D cP . (D25)

Recalling the convention set by Eq. (D9), the vector ginE
includes distribution functions from both sides of the in-
terface:

ginE =

(
ginE (0−)

ginE (0+)

)
. (D26)

The remaining portion of the incoming Boltzmann distri-
bution (independent of an external electric field) is given
by

ginQ = [Z in
U + Z in

DT ]cU . (D27)

The external electric field E and the undetermined co-
efficients [cU ]n serve as input parameters to the full
Boltzmann distribution; the remaining quantities in
Eqs. (D25) and (D27) depend on material properties of
the bulk regions and the interface. In other words, E and
[cU ]n now furnish the only degrees of freedom remaining
in the interfacial Boltzmann distributions.

We now discuss how to use this result to improve
the conductivity and torkivity tensors. We remind the
reader that in order to derive those tensors, one must
approximate the non-equilibrium distribution function
ginα (0±,k||) caused by an external electric field. In ap-

pendix B we approximate ginα (0±,k||) using analytical ex-
pressions for the particular solutions, which were given
by Eqs. (B2) and (B3). However, the vectors ginE (0±) de-
rived here are discrete representations (over momentum
space) of the exact distribution functions caused by an
external electric field. Thus, one could obtain ginα (0±,k||)

numerically by computing ginE , rather than using the par-
ticular solutions alone. This more sophisticated ansatz
can be used in place of Eqs. (B2) and (B3) when com-
puting the conductivity and torkivity tensors.
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