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ABSTRACT
Software tools, knowledge of materials and processes, and

data provide three pillars on which Additive Manufacturing (AM)
lifecycles and value chains can be supported. These pillars lever-
age efforts dedicated to the development of AM databases, high-
fidelity models, and design and planning support tools. How-
ever, as of today, it remains a challenge to integrate distributed
AM data and heterogeneous predictive models in software tools
to drive a more collaborative AM development environment. In
this paper, we describe the development of an analytical frame-
work for integrated and collaborative AM development. Infor-
mation correlating material, product design, process planning
and manufacturing operations are captured and managed in the
analytical framework. A layered structure is adopted to support
the composability of data, models and knowledge bases. The key
technologies to enable composability are discussed along with a
suite of tools that assist designers in the management of data,
models and knowledge components. A proof-of-concept case
study demonstrates the potential of the AM analytical frame-
work.
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1 INTRODUCTION
Additive manufacturing (AM) builds a part layer-by-layer

directly from a 3D model. AM technology enables the fab-
rication of parts with complex shapes and heterogeneous ma-
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terials that cannot be obtained with traditional manufacturing
methods. These advantages make AM an attractive alterna-
tive in an emerging manufacturing paradigm characterized by
mass-customization, personalization and new business models
and supply chain models.

While the last several years have already observed an in-
crease of the relative share of AM use for end-product manu-
facturing (mainly in automotive, medical and aerospace appli-
cations) [1], limitations have also been observed by both re-
searchers and practitioners [2–4]. Such limitations may manifest
either physically or digitally. For instance, some physical limi-
tations observed in these processes include the maximum size of
AM-produced components, the low build speed and the limited
spectrum of materials available for use in AM. While physical
limitations are well known among process engineers, digital lim-
itations are gaining more and more attention. To some extent,
digital limitations originate from the lack of an effective develop-
ment environment to enable repeatable and reproducible builds
and low cost qualification [5]. As of today, design, process plan-
ning, part building, testing and value chain activities (material
and machine development) are commonly conducted separately
and in fragmented environments.

First of all, there is a lack of a digital thread to integrate
the supply chain of data from product conception to building and
testing. Limited connectivity exists between AM lifecycle activ-
ities. For instance, the STL (STereoLithography) file format -
the de facto standard used to connect CAD (Computer-aided de-
sign) to part building - is not well suited for the representation
of most of the optimized shapes used in AM [6]. During fabri-
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cation, AM machines work with proprietary build file formats,
vendor specific configuration languages and encoded monitoring
logs. Though some effort [7–9] has been committed to homog-
enizing AM data, these efforts have been limited in scope and
implemented primarily in research environments. The lack of
shareable information across the AM lifecycle not only compli-
cates process and part qualification at the machine level [10, 11]
but also leads to large implementation gaps.

Secondly, there is limited understanding of the relationships
between geometry, processing, structure, and properties, which
could help predict the characteristics of AM final products. AM
models, along with other sources of knowledge, play critical
roles in the development of such products, from the selection of
a process and material, lattice and support structure design, pro-
cess parameter optimization to in-situ process control. However,
given the different AM technologies, and the numerous variables
associated with each technology (i.e., process and material pa-
rameters), AM modeling and knowledge mining efforts are cur-
rently not well coordinated, limiting their adoption. Models are
usually developed for specific scenarios, and they are often sub-
ject to unique constraints. Moreover, these modeling results are
usually proprietary due to the nature and purpose for which such
models are often developed. To better utilize AM models and
knowledge, a structured approach is necessary to move toward
more composable and reusable solutions [12].

Last but not the least, the current AM software environment
is far from being mature and tools are disconnected from each
other. CAD vendors provide tools for conventional manufactur-
ing and export STL files for AM machines. Some AM software
companies (e.g., Materialise, Nettfab) offer STL fixing functions,
and allow structure modification, support design and even slicing
for a set of machines. However, both traditional CAD systems
and AM process planning software do not possess the desired
tools (i.e. design rules, modeling and simulation engines) to fully
support informed AM design. In rare cases when those tools are
available, meta-information (including process knowledge) is in-
corporated into the tools as black boxes 1.

The fragmentation of today’s AM development environment
is illustrated with the three pillars shown in Figure 1. Software
tools, models and knowledge base, and data are drawn as three
supports for AM applications, but in a disconnected fashion. As
a large amount of AM data has already been generated and con-
siderable effort has been dedicated to the development of AM
models and knowledge bases, the data and models are ultimately
expected to be used by AM software tools to enable a collab-
orative AM development environment, where a fully-integrated
design optimization can be conducted for development cycle and

1Certain commercial equipment, instruments, or materials are identified in
this paper are not intended to imply recommendation or endorsement by the Na-
tional Institute of Standards and Technology, nor is it intended to imply that the
materials or equipment identified are necessarily the best available for the pur-
pose.

FIGURE 1: Three pillars for AM development.

cost minimization and with greater confidence in part quality. In
order to achieve that goal, there is a need for a systems approach
to bring together all the distributed data and necessary models
and knowledge, and make them work in an integrated manner.
Therefore, a foundation consisting of a suite of data, model and
knowledge management tools is added under the three pillars to
achieve the ability to retrieve the data, build predictive models
and obtain design knowledge quickly and at low cost, as shown
in Figure 1.

In this paper, a layered AM analytical framework is outlined
as a solution to address the digital limitations and enable rapid
AM part development. Within the framework, AM-specific traits
are considered, yet general enough so that these traits can be spe-
cialized. AM-specific information and knowledge management
opportunities exist in relation to production and lifecycle [13],
material information [9], data analytics and predictive model-
ing [12], and process planning [14], among others. It is with
these considerations in mind that the framework is designed to
support the representation, curation, facilitation, and manage-
ment of AM data, information, and knowledge across distributed
environments.

Section 2 of the paper provides a description of the concep-
tual analytical framework. Section 3 focuses on the key technol-
ogy of the analytical framework. Section 4 shows a case study of
the application of such an analytical framework to AM material
informatics; and Section 5 concludes the paper.

2 AN AM ANALYTICAL FRAMEWORK
A multi-layered, analytical framework (Figure 2) will en-

able the integration of data, models and a knowledge base and
software tools for the rapid development and deployment of AM-
destined parts. In the fully functional framework, the data, model
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FIGURE 2: A layered structure of AM analytical framework

and knowledge, and software tools are structured in a quasi-
hierarchy. The Data Layer sits at the bottom, while the Software
Tool Layer is positioned on the top, providing mechanisms that
directly serve the requests from AM stakeholders. In the middle
sits the Knowledge Layer, bridging the Data Layer with the Soft-
ware Tool Layer. Depending on the nature of an activity, mod-
els can directly interact with the data to support software tools
or AM queries. A cross-layer set of Data, Model and Knowl-
edge Management Functions facilitate the interactions between
the three layers. Descriptions of the layers and rules of design
follow.

(a) Software tool layer: Software tools throughout the AM life-
cycle and value chain may include: CAD design, CAE tools,
lattice design, support structure design, process planning
tools, process control and monitoring, material intelligence,
machine qualification, test results analysis and part qualifi-
cation tools. Interoperability is key to integrating software
applications, highlighting the importance of standard data

exchange formats. Software tools should be constructed to
allow for the incorporation of reusable models and knowl-
edge bases. In addition, in collaborative environments, it is
preferable to use software tools that are designed as services
and accessible by all the AM stakeholders.

(b) Knowledge layer: Effective software tools should possess
decision support functions driven by knowledge. Two cate-
gories of knowledge are included: descriptive and prescrip-
tive. Descriptive knowledge describes things as they are,
while prescriptive knowledge prescribes how thing should
be for a desired goal [15, 16]. This layer maintains libraries
of unit AM models and customizable knowledge bases. For
instance, AM process models include both physics-based
models and data driven empirical models. The model ele-
ments can be built at different length- and time scales. These
model units should be composed and reconfigured based
on desired outputs, such as dimensional accuracy, surface
roughness, residual stress, microstructure and mechanical
properties.
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In addition to models, knowledge bases are also included at
Knowledge Layer. For instance, the Knowledge Layer may
contain a knowledge base for reconfigurable constructs for
design rules. Dedicated AM design rules are necessary for
both CAD tools and AM process planning tools. Strong de-
pendencies of AM process outputs on part geometry makes
the standardization and representation of material properties
for AM very challenging, a challenge potentially addressed
with customizable material database interfaces.
A key criterion in designing the Knowledge Layer is the in-
corporation of principles that support modularity. Modular-
ity and composability support customization and federation
within and between implementations. Models should be de-
signed in modules, and represented in standard formats ac-
companied by semantic descriptions for automatic orches-
tration in software tools.

(c) Data layer: The Data Layer provides the foundation of
the AM development environment and supports both the
Knowledge Layer and the Software Layer. Data is necessary
to derive and validate models and knowledge bases through
machine learning techniques. Newly added data can be fed
into the Data Layer to enhance the models and knowledge
bases continuously.
AM data is directly used in different software tools by AM
stakeholders as inputs, controls and resources. All of the
AM data generated and used during the build of a part should
be stored for effective traceability analysis, establishing a
digital thread that is critical for part qualification. In addi-
tion, the interfaces to support experimental data generated
by material vendors and equipment builders are included in
the framework.
The data components must be inclusive enough to cover
material data, equipment data, product data, design mod-
els, process data and test data. A common data access in-
terface is critical for federation and consistent data query
results among different stakeholders. Since a central data
repository is not feasible for an AM collaborative environ-
ment, data should be structured appropriately to support fed-
eration and easy mapping between the common data access
interface and distributed data sources.

(d) Data, Model and Knowledge Management Functions:
Modularity, composability and compositionality are the
foundation of the proposed AM analytical framework.
These traits are fundamental to achieving sharable data,
reusable models and knowledge bases. Sets of management
functions are necessary for data curation and the fusion be-
tween data analytics and visualization. Support functions
are needed for model and knowledge creation and composi-
tion, for instance to derive or validate models through data.
Development of these functions requires understanding the
types of data to be curated, the structure which with this data
is best supported, and the applications most likely to access

this data.

A fully realized AM development environment, based on
the integrated analytical framework, is expected to support com-
plete, end-to-end digital processing during the AM product life-
cycle. Such a capability can greatly streamline how AM products
are developed, from understanding design considerations to em-
ploying predictive analytics. For instance, the predictive models,
representing the relationship between design variables and pro-
cess parameters and part properties, as well as the knowledge
base specifying design constraints, allow engineers to investi-
gate, through design rules or numerical simulation, “what if” sce-
narios. A realized architecture allows answers to be supported by
the data collected through experiments, tests and previous builds.
Through the integrated use of software tools, predictive models
and AM lifecycle data, greater confidence can be instilled in part
quality. Using the framework for early parallelization of AM
activities can significantly reduce development and qualification
costs. The key technologies enabling the analytical framework
will be discussed in next section.

3 KEY TECHNOLOGIES
The theoretical foundation for building the data, model and

knowledge management functions lies in five areas: (1) informa-
tion modeling, (2) model representation, (3) model ontologies,
(4) surrogate modeling, and (5) modular design rules. The rules
that lead the development of these technologies are specified in
this section along with some early work in these fields.

3.1 A common information model
A comprehensive, and AM-specific, information model is

required to link activities to a digital spectrum, and implement
an integrated information system to support data sharing. Such a
model must provide:

(a) Full coverage of AM lifecycle and value chain activities.
(b) Information necessary to verify and validate an AM part

throughout design-to-product transformations.
(c) Multi-discipline data analytics to develop in-depth AM

knowledge bases, including process-material-property rela-
tionships, AM design allowables, and AM design rules.

(d) Schema support for different AM file formats (including
STL, 3MF, and AMF).

(e) Information federation among distributed data sources.
(f) A modular structure to the model to facilitate the continued

maintenance and development of the model.

Our previous work resulted in a conceptual integrated data
model for the AM lifecycle [9]. The model was based on a classi-
cal PLM information modeling methodology named the Product-
Process-Resource (PPR) model. Based on the PPR model, we
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FIGURE 3: Core schema of an integrated AM data model [9].

were able to classify AM information into three domains: Prod-
uct, Process, and Resource. Product domain information in-
cludes any component-related information, from specifications
to as-designed and as-built product information. Process domain
information records the AM activity governance data (e.g., pro-
cess control) as well as dynamic data generated during the activ-
ities. Resource domain information can be further categorized
into material, equipment, personnel, and software tools. The
three types of AM information define a core schema to establish
the most general layer within the data model (Figure 3). Entities
defined in this layer can be referenced and specialized by other
entities. The conceptual data model may be applicable to differ-
ent types of AM technologies (e.g., powder bed fusion, directed
energy deposition, binder jetting, etc.).

3.2 Model representation
Model implementations are often dependent on platform and

language, limiting their capabilities to be reused and shared.
Reusability in models can be improved with the separation of
the model implementation and representation. There are vari-
ous XML-based predictive model interchange formats. As an
example, Figure 4 shows a regression model schema defined in
PMML [17, 18].

PMML is limited to data-driven predictive models. Physics-
based models, more common in the AM literature, are usually
developed in vendor-specific finite element analysis software.
Limited work has been found on defining a standard represen-
tation [19, 20]. In such scenarios, surrogate modeling could be
an approach to converting physics-based models to data-driven
predictive models, which can be represented using PMML.

3.3 An ontology for AM models
Physics-based models have been developed to determine the

influence of processing parameters in the overall quality of an
AM-produced-part [21–24]. Given the complexity of the physi-
cal processes involved in AM processes, simplifications and as-

FIGURE 4: Regression model schema in PMML [18].

FIGURE 5: OWL ontology used to represent modeling assump-
tions and predictive capabilities.

sumptions are often necessary. Specific models are often devel-
oped for particular applications, such as providing means for
thermal predictions, studying residual stresses, analyzing mi-
crostructural predictions, etc. Reusability in AM models is chal-
lenged by a users limited understanding of the assumptions and
approximations made in the development of a model.

An AM model-driven ontology is being developed by NIST
(see Figure 5) to capture key component attributes defining the
modeling of the different physical phenomena involved in AM
processes, as well as the underlying assumptions that set limita-
tions on the models. The proposed model ontology, along with
a set of instances of some available models, will help understand
in a more structured manner which modeling concepts are appro-
priate for a given physical phenomenon, and which assumptions
are playing important roles in the characterization and usage of a
given modeling concept.

Our AM ontology is expected to play a key role in model
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composition and integration, as it can help identify commonali-
ties between models, and provide understanding of their degree
of compatibility by verifying that they predict the same physical
phenomena, use consistent inputs, and return consistent outputs.

3.4 Surrogate modeling
Physics-based models for AM are developed for different

applications and predict different variables with different degrees
of uncertainty. The result of each AM model is a data set of
predictions that explore user-defined regions of the space of pro-
cessing conditions. Model predictions are often used for process
optimization, for which it is necessary to explore the entire space
of processing parameters (e.g. material, power, speed) to find the
most appropriate combination for a given goal. The search for
an optimum requires invoking computationally-expensive simu-
lations numerous times, which in the case of the complex models
used in AM is either time consuming or infeasible.

As an alternative, surrogate models (also known as meta-
models or “models of models”) are being explored as methods
to merge predictions (information) from different computational
models. In the field of additive manufacturing, surrogate mod-
els can serve two goals: 1) work as computationally-inexpensive
tools for process optimization, and 2) merge information (data)
from different models which explore different regions of the pa-
rameter space, creating global models.

The first goal of surrogate models has been the motivation
of numerous disciplines, such as design optimization [25]. The
second goal, however, is relatively new and a result of the high
value of data obtained from AM simulations. This approach in-
volves two new challenges: 1) determining what makes models
compatible for comparison and aggregation (see section 3.3), and
2) measuring prediction uncertainty in each individual model to
ensure the fidelity of the data set. The first challenge involves
knowledge of each individual model, as captured by the ontol-
ogy, while the second requires that each model be validated be-
fore being used [26].

3.5 Design rules for AM
Design rules are designated as a component of the Knowl-

edge Layer. It is critical to synthesize the model element for
design rules with elements from the Data and Data Management
Layers. Design rules in AM are not clear-cut constraints, but
instead provide baselines from which design constraints can be
tailored on a case-by-case basis.

Modular design rules can support a configuration-based ap-
proach to their development (Figure 6). Elements of design rule
modules can be classified based on the data and information they
represent, and how this data is used. By decomposing design
rules and properly classifying their constructs, the ability to reuse
these rules can be increased, and customization can be built in.
Related work at the National Institute of Standards and Tech-

FIGURE 6: Proposed approach for design rule principles [14].

nology [14] explored the formalization of design rules and their
constructs. An approach based on “primitives” and “modules”
was proposed to capture design rule fundamentals and their rela-
tionships. These same formalized fundamentals can be used as
a foundation for reusable and customizable design rules in the
proposed framework.

4 A CASE STUDY: MATERIALS INFORMATICS SYSTEM
To demonstrate the utility of the proposed analytical frame-

work, we partially applied the structure and implementation rules
of the analytical framework to building a material information
system (Figure 7). The basic implementation details are de-
scribed below.

(a) Data Layer: Complete process history, test data of AM
builds from NIST MSAM projects [27] are captured and
stored in a MongoDB database [28]. An XML-based AM
data schema was developed based on the conceptual model
presented in Section 3.1. Currently, the data is scoped
to metal powder bed fusion processes. The database is
wrapped with a REST API provided by the NIST Material
Data Curation System (MDCS) [29].

(b) Knowledge Layer: Empirical Models capturing the rela-
tionship between laser power, layer thickness and mechan-
ical properties are represented in PMML and stored in the
NoSQL (non relational) database as well.

(c) Data and Model Management Tools: A web-based data
curation system is provided by MDCS and used for the AM
data population. A similar model creation tool is used to cre-
ate regression models and save them into the database. Data
Analytics can be performed directly from R or MATLAB
through their MongoDB interfaces, and the results are man-
ually captured and imported into the Model Creation tool. A
Model Update tool can also be programmed to conduct au-
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FIGURE 7: A material informatics system based on the AM an-
alytical framework.

tomatic model adaptation upon the arrival of new data sets.
(d) Software Tool Layer: Three software tools are built to con-

duct a material informatics study. A web-based Material
Database Web Portal is built to query and view AM data. A
Material Analysis tool can query models by material type.
The material-part property relationship can be imported into
the software for selected material types. Comparisons can be
made through plots and figures. Using the Material Synthe-
sis tool, users can access the database and search for models
that relate chemical composition to material properties (e.g.,
thermal properties), and models that relate material proper-
ties (e.g., thermal conductivity, absorptivity, powder size) to
microstructure/part properties. Since both models are rep-
resented as surrogate input/output relationship models, they
can be composed sequentially to compose the relationship
between chemical composition and part properties. The new
predictive model can be used to optimize the material chem-
ical composition design.

5 CONCLUSIONS
Current AM production approaches rely on the generation

of large amounts of trial-and-error data and proven, set configu-
rations of processes and materials for a given product design. As
AM matures into a production-ready technology, greater empha-
sis will continue to be placed on rapid design-to-product transfor-
mations. AM will continue to become a more viable alternative
for applications such as reducing inventory in supply chain lo-
gistics and customized parts. To this end, this paper outlined an
AM-dedicated analytical framework that will support the func-

tionalities necessary to realize rapid, customizable, design-to-
product transformations.

Significant efforts have been dedicated to the development
of AM data management, high-fidelity models and design sup-
port tools for AM. These efforts are specialized based on the
data they are developed to support. None of the current works
are comprehensive enough to cover and manage the diversity of
AM activities discussed in the proposed framework. As of to-
day, it’s still a great challenge to bring together all the distributed
data and necessary models in AM domain and make them work
together properly for diverse software applications.

We outline a layered analytical framework aimed to support
rapid design-to-product transformations of AM parts. AM pro-
cess model components, representing the relationship between
process parameters, structure and part properties, as well as in-
dividual knowledge bases of AM material, product design, pro-
cess planning and manufacturing operations, are captured and
managed by the architecture. Configuring and reconfiguring
model components and knowledge bases in software tools will
allow engineers to explore “what if” analysis for decision mak-
ing through AM lifecycle. A streamlined information flow sup-
ports increased confidence in part quality while reducing build
times and costs.

The proposed framework for reusable data, models and
knowledge bases relies on modularity and composability prin-
ciples. The key technologies enabling the composability are dis-
cussed in the paper. These technologies can provide a suite of
tools to assist designers to create, select and assemble data and
knowledge components in various combinations into software
applications in AM development environments.
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