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Abstract— We present a new method for two-port vector
network analyzer (VNA) calibration, which uses multiple
offset-reflect standards and a flush thru connection. Offset-reflect
standards consist of sections of the same uniform transmission
line with different lengths, which are terminated with the same
highly reflective load. The unknown propagation constant of
the transmission line and the load reflection coefficient are
then determined simultaneously with the VNA calibration coef-
ficients. We compare our method with the multiline thru-reflect-
line (TRL) method and show that both methods yield similar
results. Our new multireflect-thru method is solely based upon
dimensional parameters of the calibration standards. Therefore,
like the multiline TRL method, it can be used to establish a
traceable VNA calibration. Thus, the multireflect-thru method
constitutes an alternative to the multiline TRL calibration in
environments in which the use of transmission lines is trou-
blesome, such as in the case of VNAs with very small coaxial
and waveguide connectors. The multireflect-thru method is also
useful in on-wafer measurements since it allows us to keep a
constant distance between the probes, which reduces the impact
of crosstalk and speeds up automated testing.

Index Terms— Calibration, error analysis, offset reflects,
redundancy, vector network analyzer (VNA).

I. INTRODUCTION

WE PRESENT a novel method of two-port vector
network analyzer (VNA) calibration, which uses mul-

tiple offset-reflect standards and a thru standard. Offset-reflect
standards consist of uniform transmission-line sections with
different lengths terminated with the same highly reflective
load, typically a short or an open circuit, while the thru is
realized as a direct connection of VNA ports (flush thru).

The problem of calibrating a VNA with such standards has
long been present in the literature [1]–[9]. References [1], [6]
present a one-port VNA calibration method which realizes
offset reflects with a sliding short. The sliding short is assumed
to be lossless, and its positions need not to be known. A circle
is then fitted to the sliding short measurements whose center
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and radius are related to calibration coefficients. Based on the
circle parameters and measurements of two other additional
standards (one of them can also be a sliding load [1]),
calibration is completed. Methods [1], [6] are, however, limited
to lossless offset shorts.

References [3]–[5] present a different implementation of
a one-port VNA calibration method that accounts for losses
in the sliding-short transmission line. This method requires
neither the sliding-short losses nor its positions to be known.
However, a measurement of an ideal matched termination [3]
or a sliding load [4], [5] is needed. Therefore, these methods
are inconvenient at higher frequencies where fixed termina-
tions with low reflections are unavailable, while the real-
ization of a sliding load is either difficult (e.g., for coaxial
connectors with small diameter) or impossible (e.g., on-wafer
environments).

Reference [7] extends the method of [3]–[5], and calibrates
a one-port VNA solely based on measurements of offset-
reflect standards. This method employs a model for frequency
dependence of offset-line phase-constant in order to estimate
the unknown lengths of the offset lines and their attenuation
constant. The resulting problem is solved iteratively with a
nonlinear least squares optimization. This method is further
extended in [9] to the problem of two-port VNA calibration
by assuming that the offset reflects are terminated with an
unknown load whose reflection coefficient is determined from
the thru measurement. The drawback of methods [7], [9] is the
requirement for the model of the phase constant which might
be difficult to obtain for transmission lines with large losses or
high dispersion. Also, these methods may not yield a unique
solution due to the use of optimization techniques that suffer
from the local-minima problem.

Reference [8] presents another method that requires the
attenuation constant of the offset shorts and the termination
reflection-coefficient to be known, while the phase shift of
the offset-short reflection coefficients is determined during the
calibration. The resulting problem is also solved iteratively
with a nonlinear least squares optimization. The drawback
of this approach is that it requires precise measurements of
conductor surface followed by electromagnetic simulations in
order to obtain the transmission-line attenuation constant and
the short-circuit impedance. Also, this method, similar to [7],
may not give a unique solution due to the use of optimization
techniques.

In this paper, we introduce a new method for calibrating
a two-port VNA with multiple offset-reflects and a flush
thru connection, which determines the unknown propagation
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Fig. 1. Two-port VNA measurement model used in the multireflect-thru
calibration method.

constant of the offset reflects and the terminating-impedance
reflection coefficient based only on the knowledge of the
offset-reflect lengths and without the use of troublesome
optimization techniques. The VNA calibration coefficients
and reflection coefficient of the termination impedance are
calculated from closed-form expressions, while the propaga-
tion constant is determined by solving N − 3 independent
complex-valued nonlinear equations, where N is the number of
offset-reflect standards. As a starting point for these equations,
we need only an approximate estimate of the propagation con-
stant which can be easily obtained based on the dimensional
and material parameters of the transmission-line sections in
the offset reflects.

The principle of our method is very similar to that of the
multiline thru-reflect-line (TRL) calibration [10], and is based
on averaging solutions of basic nonredundant calibrations that
are constructed from measurements of four different offset
reflects on each VNA port. These measurements, supple-
mented with a flush thru measurement, form the thru-reflect-
reflect-reflect-reflect (T4R) calibration, which we present in
Section II. In the following sections, we discuss the averaging
technique (see Section III), and then present an experimental
verification of our method (see Section IV), in which we
compare corrected measurements of a verification device per-
formed after calibrating a VNA with our new multireflect-
thru method and with the multiline TRL technique. Finally,
in Section V, we draw some conclusions.

II. THRU-REFLECT-REFLECT-REFLECT-REFLECT

CALIBRATION

In this section, we present the theory of the T4R calibration
method. We start off with an overview of the VNA model
and the calibration scheme. Then, we discuss calibration of
a single VNA reflectometer with four different offset-reflect
standards. Finally, we show how to complete the two-port
VNA calibration by use of a flush thru measurement.

A. VNA Model

A model for two-port VNA measurement we use is shown
in Fig. 1. This model is based on the error-box model of [11],
however, it uses an alternative set of parameters. We assume
that the switch terms have been measured separately and
corrected for by the use of approach [11]. We also assume
that the isolation terms are negligible. Based on that, for a
two-port device under test (DUT) with the scattering matrix S
and the corresponding transmission matrix T given by

S =
[

S11 S12
S21 S22

]
T = 1

S21

[ − det S S11
−S22 1

]
(1)

we have the corresponding measured (raw) scattering S̃ and
transmission T̃ matrices where the tilde “∼” on top of the
symbol denotes the measurement.

Now, matrix T̃ is the transmission matrix of the network
shown in Fig. 1, that is,

T̃ = 1

Et
EATEB (2)

where

EA =
[

E1A E2A

−E3A 1

]
EB =

[
E1B E3B

−E2B 1

]
(3)

and

Et = α

β
(E1B + E2B E3B). (4)

Thus, the VNA model parameters are E1A, E2A, and E3A

(which describe the left VNA reflectometer), E1B, E2B, and
E3B (which describe the right VNA reflectometer), and the
parameter Et .

B. Calibration Scheme

In the T4R calibration scheme, one measures four
offset-reflect standards on each VNA port, and a flush thru
connection of these ports. Offset-reflect standards consist of
uniform transmission-line sections terminated with a highly
reflective load. The transmission-line sections of the offset
reflects used on VNA ports A and B have lengths lAi and lBi,
for i = 0, . . . , 3, and propagation constants γA and γB, respec-
tively. The terminating load has the same reflection coefficient
�T for all of the offset reflects.1 Thus, the nominal reflection
coefficient of the offset-reflect standards can be written as2

�Ai = �T e−2γAlAi , �Bi = �T e−2γBlBi (5)

while their raw measurements are denoted by �̃Ai and �̃Bi .
Based on the flow graph in Fig. 1, we can write the

relationship between raw measurements and definitions the of
the offset reflects as

�̃Ai = E2A + E1A�Ai

1 − E3A�Ai
�̃Bi = E2B + E1B�Bi

1 − E3B�Bi
(6)

for i = 0, . . . , 3. We can further lump the unknown reflection
coefficient �T into the reflectometer parameters by rewrit-
ing (6) with normalized calibration coefficients

E ′
1A = E1A�T E ′

3A = E3A�T (7)

E ′
1B = E1B�T E ′

3B = E3B�T (8)

and with normalized reflection-coefficient of the offset reflects

ρAi = �Ai

�T
= e−2γAlAi ρBi = �Bi

�T
= e−2γBlBi (9)

1We assume that the characteristic impedance for offset sections on ports
A and B is the same, thus for the same terminating impedance ZT , we have
�TA = �TB = �T . In a general case, when these impedances are different,
we have �TA �= �TB. This case will not be considered here.

2Similar to the multiline TRL method [10], we assume that connection
interface is the same for all calibration standards and DUTs, and thus gets
lumped into the VNA calibration coefficients. Therefore, we do not include
its description in the definition of the calibration standards. This assumption
is very well met for typical on-wafer, coaxial, and rectangular-waveguide
measurement situations. However, it may be violated for smaller coaxial and
waveguide connectors. This last case will not be discussed here.
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that yields

�̃Ai = E2A + E ′
1AρAi

1 − E ′
3AρAi

�̃Bi = E2B + E ′
1BρBi

1 − E ′
3BρBi

. (10)

We will further on refer to the reflectometers described by
the parameters E ′

1A, E2A, E ′
3A, and E ′

1B, E2B, E ′
3B as reduced

reflectometers.
The thru standard is realized as a direct connection of the

VNA ports (flush thru), thus its transmission matrix Tt is the
identity matrix. The raw measurement of the thru standard is
thus given by

T̃t = 1

Et
EAEB (11)

which can be written with the normalized calibration
coefficients (7) and (8) as [9]

T̃t = 1

Et
E′

A��E′
B (12)

where

E′
A =

[
E ′

1A E2A

−E ′
3A 1

]
E′

B =
[

E ′
1B E ′

3B−E2B 1

]
(13)

are the reduced-reflectometers parameters and

� =
[

�−1
T 0
0 1

]
. (14)

In the following, we describe the solution of the set of
nonlinear equations (10) and (12). We first determine the
unknown propagation constants γA and γB, and parameters of
the reduced reflectometers. Then, we determine the remaining
terms �T and Et from the thru measurement.

C. Reduced-Reflectometer Calibration

The calibration equations (10) for both reflectometers are
independent of each other and have identical form, thus they
are solved in the same manner. Therefore, in the following,
we will omit the symbols A and B in subscripts.

The set (10) consists of four equations for four unknown
parameters: E ′

1, E2, E ′
3, and γ , where the dependence on γ

is given by (9). We may rewrite (10) as⎡
⎢⎢⎣

ρ0 1 ρ0�̃0 −�̃0

ρ1 1 ρ1�̃1 −�̃1

ρ2 1 ρ2�̃2 −�̃2

ρ3 1 ρ3�̃3 −�̃3

⎤
⎥⎥⎦

︸ ︷︷ ︸
P(γ )

⎡
⎢⎢⎣

E ′
1

E2
E ′

3
1

⎤
⎥⎥⎦

︸ ︷︷ ︸
x

= 0. (15)

Since the norm ||x|| of the vector x is by definition different
from zero, the homogeneous set of equations (15) is fulfilled
only if

det P(γ ) = 0 (16)

which yields a nonlinear equation for γ . This equation is
solved numerically by the use of a modified Newton–Raphson
method [12]. Details of this method are given in Appendix A.

Having solved for γ , we can remove one of the equations
in (15), plug the value of γ into (9) and solve the resulting set

of linear equations. Removing, for example, the first equation,
we obtain ⎡

⎣ E ′
1

E2
E ′

3

⎤
⎦ =

⎡
⎣ ρ1 1 ρ1�̃1

ρ2 1 ρ2�̃2

ρ3 1 ρ3�̃3

⎤
⎦

−1 ⎡
⎣ �̃1

�̃2

�̃3

⎤
⎦ (17)

which completes the reduced-reflectometer calibration.

D. Determining �T and Et

In the next step, we use the solutions of the reduced-
reflectometer calibration given by (16) and (17), and the thru
measurement (12) to determine �T and Et. We first write out
the diagonal terms of the matrix T̃t

T̃11t = E ′
1A E ′

1B − E2A E2B�2
T

Et�
2
T

T̃22t = �2
T − E ′

3A E ′
3B

Et�
2
T

. (18)

Now, from the ratio of these terms T̃11t/T̃22t = − det S̃t , where
S̃t is the measured (raw) scattering matrix of the thru, we
obtain the following equation:

�T = ±
√

E ′
1A E ′

1B − det S̃t E ′
3A E ′

3B

E2A E2B − det S̃t
. (19)

Similar to the classical TRL algorithm [13], [14], in order to
pick the root of (19), we use an estimate of �T phase.

In order to obtain Et , we first denormalize the calibration
coefficients E ′

1A, E ′
3A, and E ′

1B, E ′
3B based on the defini-

tions (7) and (8), and �T obtained from (19). We then take the
determinant of (11), which leads to the following equation:

det T̃t = S̃12t

S̃21t
= det EA det EB

E2
t

(20)

thus

Et = ±
√

S̃21t

S̃12t
det EA det EB. (21)

The sign of Et is chosen by inserting (21) into the predic-
tion (11) of the thru transmission matrix, and verifying for
which solution of (21), the norm (e.g., the Frobenius matrix
norm [15]) of the difference between this prediction and the
actual raw transmission matrix of the thru is smaller.

III. CALIBRATION WITH A REDUNDANT NUMBER OF

REFLECT STANDARDS

In this section, we present a technique for performing a
two-port VNA calibration with more than four reflect stan-
dards. This technique builds on the basic T4R calibration
method described in Section II.

A. Overview

When calibrating a two-port VNA with more than four
reflect standards, we proceed in a similar manner as in
the case of the T4R calibration. We first determine the
normalized calibration coefficients of both VNA reflectome-
ters, and then complete the calibration by determining the
parameters �T and Et .
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In order to determine the normalized calibration coefficients,
we average results of multiple reduced-reflectometer calibra-
tions constructed from different four-element subsets of the
entire set of N offset-reflect standards. Although there are
C N

4 = N !/(N − 4)!4! such subsets, we can construct only
K = N − 3 subsets that introduce new information. Indeed,
when using four reflect standards, we obtain a single solution
of the reduced-reflectometer calibration defined by (15). Thus,
by adding each offset-reflect standard, we add only one
degree of freedom, consequently we can only obtain N − 3
independent reduced-reflectometer calibrations.

Assuming that the reflect standards are numbered from
0 to N − 1, the kth subset is uniquely defined by a
four-element vector of ordered reflect-standard indices

ik = [ik0 , ik1 , ik2 , ik3 ]T (22)

where 0 ≤ ik0 < ik1 < ik2 < ik3 < N , and k = 0, . . . , K − 1.
We refer to a particular set of four-element subsets of the
reflect standards, which is defined by the vectors ik for
k = 0, . . . , K − 1, as an averaging scheme.

We perform the reduced-reflectometer calibration described
in Section II-C for each of the K subsets. As a result, for the
kth subset, we obtain the solution

βk = [
E ′

1k, E2k, E ′
3k, γk

]T
. (23)

The errors in reflection coefficients of offset reflects used in
the kth subset3

�yk =
[

�ρik0

ρik0

,
�ρik1

ρik1

,
�ρik2

ρik2

,
�ρik3

ρik3

]T

cause an error in the solution

�βk = [
�E ′

1k,�E2k,�E ′
3k,�γk

]T (24)

which based on (B.6) can be written as

Xk�βk = −�yk (25)

where

Xk = X0,kEk (26)

X0,k =

⎡
⎢⎢⎢⎢⎢⎣

ρik0
1 ρ−1

ik0
−2lik0

ρik1
1 ρ−1

ik1
−2lik1

ρik2
1 ρ−1

ik2
−2lik2

ρik3
1 ρ−1

ik3
−2lik3

⎤
⎥⎥⎥⎥⎥⎦

(27)

and

Ek =

⎡
⎢⎢⎣

−E ′
3k 0 E ′

1k 0
1 −E ′

3k E2k 0
0 1 0 0
0 0 0 E ′

1k + E2k E ′
3k

⎤
⎥⎥⎦. (28)

We see that each solution βk has in general different errors
which depend on the choice of the reflect standards in the
kth subset and relative errors �yk in their reflection coeffi-
cients. Therefore, in order to determine the estimate of

3We decided to express these errors in a relative-error form due to a
convenient interpretation for the practical case of offset reflects with low losses
(i.e., when |�| ≈ 1): the real and imaginary parts of the relative error �ρ/ρ
are then the in-phase and quadrature error component, respectively (see [16]).
Indeed, �� I Q = ��|�|/� ≈ �T �ρ/(�T ρ) = �ρ/ρ.

normalized calibration coefficient of a VNA reflectometer, we
determine a weighted average of these solutions.

B. Averaging Results of Reduced-Reflectometer Calibrations

The statistical model for the solutions βk can be written in
a compact form as an overdetermined set of equations

Iβ = β + �β (29)

where the vector β is comprised of solutions from individual
reduced-reflectometer calibrations and the vector �β contains
errors in those solutions. Both vectors have size 4K × 1 and
are given by

β =
⎡
⎢⎣

β0
...

βK−1

⎤
⎥⎦, �β =

⎡
⎢⎣

�β0
...

�βK−1

⎤
⎥⎦ (30)

while the matrix I has size 4K × 4 and is given by

I =
⎡
⎢⎣

I4
...

I4

⎤
⎥⎦ (31)

and I4 is a 4 × 4 identity matrix.
The relationship (29) could be directly used to determine the

estimate β based on the covariance matrix of �β. However, it
is more convenient to transform it to a form, in which the error
vectors �yk are given explicitly. To this end, we first rewrite
the relationship (25) between the error vectors �βk and �yk ,
for k = 0, . . . , K − 1, in a more compact form

X �β = −�y (32)

where the matrix X and vector �y have size 4K × 4K and
4K × 1, respectively, and are given by

X =
⎡
⎢⎣

X0
. . .

XK−1

⎤
⎥⎦, �y =

⎡
⎢⎣

�y0
...

�yK−1

⎤
⎥⎦. (33)

We then premultiply (29) by X, which after inserting (32)
yields

Yβ = X β − �y. (34)

with

Y = XI =
⎡
⎢⎣

X0
...

XK−1

⎤
⎥⎦. (35)

In order to solve the overdetermined set of equations (34)
for β, we first note that the covariance matrix for the error
vector �y is singular and cannot be inverted. Indeed, this
matrix has size 4K × 4K , where K = N − 3, while its rank
is N . Thus, (34) cannot be solved by use of the traditional
Gauss–Markov theorem [17]. Therefore, we need to use the
modification [18] of the Gauss–Markov theorem for the case
of a singular covariance matrix. To this end, we first construct
the covariance matrix for the vector �y. We can write

�y = Ce (36)
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where

e =
[
�ρ0

ρ0
, . . . ,

�ρN−1

ρN−1

]T

. (37)

Matrix C has size 4K × N and captures the averaging
scheme (22): if the nth reflect standard is used in the kth subset
at the position i ∈ {1, 2, 3, 4}, then the element c4k+i,n of
the matrix C equals one, and otherwise zero. Since we cannot
include the same reflect standard more than once in a single
reduced-reflectometer calibration, columns of the matrix C are
orthogonal.

With the use of this definition, the covariance matrix for �y
is given as

��y = C�eCH (38)

where the superscript “H” denotes the conjugate transpose,
and �e = E[eeH ] is the covariance matrix of relative
errors e in offset-reflect reflection coefficients.4 By use of the
Gauss–Markov theorem for the case of singular covariance
matrix [18], we can write the equation for averaged solution
β̂ of reduced-reflectometer calibration as(

YH�+
�yY

)
β̂ = YH �+

�yX β (39)

where the superscript + denotes the Moore–Penrose matrix
pseudoinverse [21]. Accounting for the properties of this
inverse, we can further write

�+
�y = (C+)H�−1

e C+ (40)

where C+ has size N × 4K . We can easily show that if the
nth reflect standard is used in the kth subset at the position
i ∈ {1, 2, 3, 4} then the element c+

n,4k+i of the matrix C+
will be equal to 1/Nn where Nn is the number of individual
reduced-reflectometer calibrations that include the nth reflect,
and otherwise zero.

Now, solving (39), we can finally write our main result, that
is, the averaged estimate of reduced-reflectometer parameters

β̂ = M−1YH �+
�yX β (41)

where

M = YH �+
�yY = (C+Y)H�e(C+Y) (42)

is the Fisher matrix [17]. The covariance matrix of this solution
may be further determined as

�
β̂

= E[β̂β̂
H ]

= M−1YH�+
�y�X β

(
�+

�y

)H YM−H . (43)

Taking into account that �X β = ��y, and (�+
�y)

H =
(�H

�y)
+ = �+

�y, and also accounting for the properties of

4We make an approximation that the real and imaginary parts of each error
�ρ/ρ have the same variance and are uncorrelated. This approximation allows
us to use a much simpler complex-valued notation for the error propagation,
however, at the cost of slightly larger variances of the calibration result
(see [19]). Generalization to the case of an arbitrary normal distribution is
straightforward, however, it involves a more complicated block-matrix-based
notation (see [20]).

Fig. 2. Photograph of the quartz wafer with two multireflect-thru sets
(middle-top and middle-bottom), and two multiline TRL sets (top-left and
top-right).

the Moore–Penrose pseudoinverse (A+AA+ = A+), we easily
obtain

�
β̂

= M−1MM−H = M−1 (44)

since the Fisher matrix is Hermitian.

C. Optimal Averaging Scheme

When developing the averaging technique in Section III-B,
we assumed that the N offset reflects are in some manner
divided into K = N − 3 four-element subsets; this division
was referred to as the averaging scheme. Below, we discuss the
choice of the averaging scheme that provides an accurate and
robust calibration. Our discussion will be based on the analysis
of how this scheme affects the covariance matrix (44).

We first note that, based on (26) and (35), we can write
matrix Y as

Y =
⎡
⎢⎣

X0
...

XK−1

⎤
⎥⎦ =

⎡
⎢⎣

X0,0E0
...

X0,K−1EK−1

⎤
⎥⎦. (45)

Now, if all of the basic calibrations are well-conditioned, all
of the individual results βk are close to the solution β̂ given
by (41), thus Ek ≈ Ê, for k = 0, . . . , K − 1, where

Ê =

⎡
⎢⎢⎣

−Ê ′
3 0 Ê ′

1 0
1 −Ê ′

3 Ê2 0
0 1 0 0
0 0 0 −Ê ′

1 + Ê2 Ê ′
3

⎤
⎥⎥⎦. (46)

Consequently, we can approximate

Y ≈
⎡
⎢⎣

X0,0
...

X0,K−1

⎤
⎥⎦ E = Y0Ê (47)

and therefore approximate the Fisher matrix as

M ≈ (C+Y0Ê)H�e(C+YÊ)

= ÊH (C+Y0)
H �e(C+Y0)Ê. (48)

Now, we can show that the approximate Fisher matrix (48),
and consequently the resulting covariance matrix given
by (44), do not depend on the particular choice of the
averaging scheme. Indeed, consider the product C+Y0. Let Nn

be the number of T4R calibrations that include the nth
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Fig. 3. Propagation constant obtained with the multireflect-thru calibration and from the reference multiline TRL method. (a) Phase constant β normalized
to vacuum phase constant β0 obtained from reduced-reflectometer calibrations on port A (blue solid line with squares) and port B (green solid line with
circles), and from the multiline TRL (red solid line with triangles) along with differences with respect to the multiline TRL result. (b) Attenuation constant
for both reduced reflectometer calibrations and differences with respect to the multiline TRL result (the same colors and markers as for the phase constant).

Fig. 4. Estimate of the worst case deviations in a measurement of a
two-port device with |Si j | ≤ 1 due to nonrepeatability of the multireflect-thru
calibration (blue solid line with squares), nonrepeatability of the reference
multiline TRL calibration (red solid line with circles), and difference between
both calibrations (green solid line with triangles).

reflect standard. The element c+
n,4k+i of the matrix C+ will

be equal to 1/Nn if the nth reflect standard is used in the kth
subset at the position i ∈ {1, 2, 3, 4}, and otherwise zeros.
On the other hand, we see from (35) if the nth reflect standard
is used in the kth subset at the position i ∈ {1, 2, 3, 4}, then
the (4k + i)th row of Y0 has the form [ρn, 1, ρ−1

n , −2ln].
Consequently, we can easily show that

C+Y0 =

⎡
⎢⎢⎢⎣

ρ1 1 ρ−1
1 −2l1

ρ2 1 ρ−1
2 −2l2

...
...

...
...

ρN 1 ρ−1
N −2lN

⎤
⎥⎥⎥⎦ (49)

and is independent of the averaging scheme.
Now, we postulate that the optimal averaging scheme should

be made up of K = N − 3 reduced-reflectometer calibrations
that are least sensitive to measurement errors. We quantify this
sensitivity with the quality factor (B.14) defined as the deter-
minant of the error covariance matrix. Finding such an averag-
ing scheme is a difficult combinatorial-optimization problem,

related to the weighted set-cover problem [22]. However,
obtaining the best solution of this problem is not necessary
in our case. Indeed, as we noted earlier on, for averaging
schemes that are constructed from well-conditioned reduced-
reflectometer calibrations, we obtain approximately the same
Fisher matrix (48). Thus, it is sufficient to find an averaging
scheme that is close to the optimal one. An algorithm for
finding such a scheme is described in Appendix C.

IV. MEASUREMENTS

In this section, we present an experimental verification of
our calibration method with on-wafer calibration standards.
We first compare the propagation constant obtained from the
multireflect-thru method and from a reference multiline TRL
calibration. Following that, we apply the calibration compari-
son method [23] to compare the VNA calibration coefficients
obtained with both methods. Finally, we evaluate results
of corrected measurements of a mismatched line section,
performed after calibrating VNA with our multireflect-thru
method and with the reference multiline TRL method.

We implemented the calibration standards on a 500 μm
thick quartz wafer (see Fig. 2). We used the coplanar
waveguide (CPW) with 100 μm wide center strip, 10 μm
gaps, and 240 μm wide ground strips. We implemented the
multireflect-thru method with a set of eight offset shorts and a
420 μm long thru connection. Lengths of the offset shorts are
(440, 1190, 1940, 2690, 3928, 6665, 10 790, and 17 390) μm.
The lower frequency of this calibration was estimated to
3.4 GHz [19]. In the multiline TRL method, we used six lines,
a 420 μm long thru connection, and a 920 μm long offset
short as a reflect standard. Lengths of the lines are (1000,
3135, 4200, 7615, 12 570, and 17 298) μm. Measurements
were performed with ZVA50 VNA in the frequency range
0.1–40 GHz, the IF bandwidth was set to 100 Hz. In order
to avoid the microstrip-like mode, the quartz wafer was put
on a 6 mm thick absorbing material.

In Fig. 3(a) and (b), we show the phase and attenua-
tion constant obtained from reduced-reflectometer calibrations
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Fig. 5. Measurement of a mismatched line section obtained with the multireflect-thru calibration and with the reference multiline TRL method.
(a), (b) Magnitude of S11 and S21, respectively, obtained from the multireflect-thru calibration (blue solid line with squares) and the reference multiline
TRL calibration (red solid line with circles) along with the difference (green solid line with triangles). (c), (d) Phase of S11 and S21, respectively, obtained
from the multireflect-thru calibration and from the reference multiline TRL calibration along with the difference (the same colors and markers as for the
magnitude).

on each VNA port and from the reference multiline TRL
calibration; we also show differences with respect to the
multiline TRL results. We see that the results for both methods
agree very well. Differences in the phase constant are smaller
than 0.8°/cm and in the attenuation constant smaller than
0.13 dB/cm. We notice that these differences become larger as
we approach the lower frequency of both calibrations, and thus
both methods are more sensitive to measurement and modeling
errors.

In Fig. 4, we compare the multireflect-thru and the reference
multiline TRL calibration by use of the calibration comparison
method [23]. In Fig. 4, we plot the estimates of worst case
deviations due to nonrepeatability of the multireflect-thru and
the reference multiline TRL calibrations (blue solid line with
squares and red solid line with circles) and compare it with the
estimate of worst case deviation due to the difference between
the multireflect-thru and the reference multiline TRL calibra-
tion (green solid line with triangles). We observe that both
calibration techniques have similar repeatability. We further
see the worst case deviation due to the difference between
these calibration techniques is comparable with the deviation
due to the nonrepeatability. This error is at most 0.04 for
frequencies above 4 GHz and increases to around 0.07 below

4 GHz where the multireflect-thru calibration is close to its
lower frequency, and therefore more sensitive to measurement
and modeling errors. Thus, since the method-to-method differ-
ence is on the same order as the inevitable repeatability errors,
we conclude that both calibration techniques yield the same
VNA calibration coefficients to an accuracy of repeatability
errors.

In Fig. 5, we compare measurements of a mismatched line
section obtained with the multireflect-thru and the reference
multiline TRL calibrations. We see that the magnitudes of
both S11 and S21 [see Fig. 5(a) and (b)] agree very well. The
differences in |S11| are less than 0.2 dB (2.3%) apart from
the regions with |S11| < 20 dB where the differences increase
to around 0.7 dB (8.4%). This can be explained by the fact
that the multireflect-thru calibration uses primarily calibration
standards with large reflection coefficients, hence its accuracy
deteriorates for well-matched DUTs. The differences between
the two calibrations for |S21| are less than 0.1 dB (1.2%) and
increase at frequencies close to the lower frequency of the
multireflect-thru calibration. We finally observe that the agree-
ment between the two calibrations for phase of S11 and S21
[see Fig. 5(c) and (d)] is also very good with errors less than
2° for arg S11 and 0.3° for arg S21. For the sake of comparison,
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a probe placement error of ±5 μm leads approximately to an
error in arg S11 and arg S21 on the order of ±0.8° and ±0.4°,
respectively (assuming β/β0 = 1.7 and f = 40 GHz).

V. CONCLUSION

We presented a new method for calibrating a two-port
VNA with multiple offset reflects and a flush thru con-
nection. Offset-reflect standards are constructed out of
transmission-line sections with the same unknown propagation
constant, and are terminated with the same unknown highly
reflective load. The propagation constant of these sections and
the load reflection coefficient are then determined simulta-
neously with the VNA calibration coefficients. In order to
determine the propagation constant, our method requires to
solve N − 3 independent complex-valued nonlinear equa-
tions where N is the number of offset reflects, while the
remaining unknown parameters (i.e., VNA calibration coef-
ficients and the load reflection coefficient) are calculated from
closed-form expressions. This makes our method more robust
than other similar approaches (see [7]–[9]) that may not yield
a unique solution due to the use of optimization techniques.
We verified our method experimentally by comparing on-wafer
multireflect-thru and multiline TRL calibrations performed
with CPW offset-reflects and transmission lines manufactured
on a 500 μm thick quartz wafer. Both calibrations yielded
similar values of the CPW propagation constant and of the
VNA calibration coefficients confirming the validity of our
calibration approach.

Our new multireflect-thru method, similar to the multiline
TRL, uses calibration standards whose definitions require only
dimensional measurement, thus it is possible to establish a
traceability path for our approach to dimensional metrology.
Thus, the multireflect-thru method constitutes an alternative
to the multiline TRL calibration in environments in which the
use of transmission lines is difficult, such as in the case VNAs
with very small coaxial and waveguide connectors. Also,
the multireflect-thru calibration, unlike the multiline TRL
methods, allows for a design of on-wafer calibration substrates
for which the distance between the probes is kept constant.
Thus, it may be used to speed up and thus reduce the cost of
large-scale automated testing in on-wafer environments.

APPENDIX A
NUMERICAL SOLUTION OF (16)

We first note that through some algebraic manipula-
tions, (16) can be expanded as

det P(γ ) = (ρ0 − ρ1)(ρ2 − ρ3)(�̃0 − �̃3)(�̃2 − �̃1) +
− (ρ0 − ρ3)(ρ2 − ρ1)(�̃0 − �̃1)(�̃2 − �̃3) = 0

(A.1)

which is equivalent to the condition

(ρ0 − ρ1)(ρ2 − ρ3)

(ρ0 − ρ3)(ρ2 − ρ1)
= (�̃0 − �̃1)(�̃2 − �̃3)

(�̃0 − �̃3)(�̃2 − �̃1)
(A.2)

which is known as the condition for the cross-ratio invariance
under the bilinear transformation. Now, in order to describe

the algorithm for numerical solution of (A.1), we first write
it in a more compact form

det P(γ ) ≡ f (γ )

= A(ρ0 − ρ1)(ρ2 − ρ3) − B(ρ0 − ρ3)(ρ2 − ρ1) = 0

(A.3)

where

A = (�̃0 − �̃3)(�̃2 − �̃1) (A.4)

B = (�̃0 − �̃1)(�̃2 − �̃3). (A.5)

In order to solve (A.3), we developed a modified
Newton–Raphson method, which has improved robustness
and convergence properties with respect to the classical
Newton–Raphson method. In this modified method, we control
the accuracy of the linear approximation such that the relative
error of this approximation is smaller than some predefined
value (in our case 5%). To this end, we write the first-order
Taylor series expansion

f (γ0 + �γ ) ≈ f (γ0) + f ′(γ0)�γ (A.6)

where the first derivative is given by

f ′(γ ) = 2A(l0 + l3)ρ0ρ3 + 2A(l1 + l2)ρ1ρ2 +
− 2B(l0 + l1)ρ0ρ1 − 2B(l2 + l3)ρ2ρ3 +
+ 2(B − A)(l0 + l2)ρ0ρ2 + 2(B − A)(l1 + l3)ρ1ρ3.

(A.7)

Then we proceed iteratively, where step in nth iteration is
determined by

�γn = −δ
f (γn−1)

f ′(γn−1)

∣∣∣∣ f ′(γn−1)

f (γn−1)

∣∣∣∣ (A.8)

where the real factor δ = |�γn| is the length of the step �γn .
We choose δ such that the error of the approximation (A.6) is
less than 5%.

We estimate this error in the following manner. We write the
expansion of the real and imaginary parts of f (γ ) = u(γ ) +
jv(γ ) separately as

u(γ ) = u(γ0) + Re
[

f ′(γ0)�γ
] + ru2(γ ) (A.9)

v(γ ) = v(γ0) + Im
[

f ′(γ0)�γ
] + rv2(γ ) (A.10)

where ru2(γ ) and rv2(γ ) are the reminders of the Taylor’s
series. These reminders can be written as

ru2(γ ) = 1

2
Re

[
f ′′(ξu)(�γ )2] (A.11)

rv2(γ ) = 1

2
Im

[
f ′′(ξv )(�γ )2] (A.12)

and ξu and ξv are unknown complex numbers, and

f ′′(γ ) = −4A(l0 + l3)
2ρ0ρ3 − 4A(l1 + l2)

2ρ1ρ2 +
+ 4B(l0 + l1)

2ρ0ρ1 + 4B(l2 + l3)
2ρ2ρ3 +

− 4(B− A)(l0+l2)
2ρ0ρ2−4(B − A)(l1+l3)

2ρ1ρ3.

(A.13)
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Now we can estimate the maximum value of ru2 as

|ru2(γ )| = 1

4

∣∣ f ′′(ξu)(�γ )2 + f ′′(ξu)∗(�γ ∗)2
∣∣ ≤

≤ 1

2

∣∣ f ′′(ξu)(�γ )2
∣∣ = 1

2

∣∣ f ′′(ξu)
∣∣|�γ |2 ≤ 1

2
H |�γ |2

(A.14)

where

H = sup | f ′′(ξu)| = 4|A|(l0 + l3)
2 + 4|A|(l1 + l2)

2

+ 4|B|(l0 + l1)
2 + 4|B|(l2 + l3)

2 +
+ 4|B − A|(l0 + l2)

2 + 4|B − A|(l1 + l3)
2.

In a similar manner, we can determine that also |ru2(γ )| ≤
1/2H |�γ |2. Thus, the maximum error we make by the
approximation (A.1) is

�ε = ∣∣ f (γ0 + �γ ) − f (γ0) − f ′(γ0)�γ
∣∣

≤
√

2

(
1

2
H |�γ |2

)2

= H |�γ |2√
2

. (A.15)

Now if the relative error δε = �ε/| f (γ )| should be less than
some constant δεmax, we have

�ε

| f (γ )| = H |�γ |2
| f (γ )|√2

≤ δεmax (A.16)

so we obtain

δ = |�γ | ≤
√

δεmax

√
2| f (γ )|

H
. (A.17)

APPENDIX B
ERROR ANALYSIS OF THE REDUCED-REFLECTOMETER

CALIBRATION

In this appendix, we present an error analysis of the
reduced-reflectometer calibration. Results of this analysis lay
foundation for the calibration with a redundant number of
offset-reflect standards (see Section III-B).

For a given set of measurements and definitions, we have a
solution

β = [E ′
1, E2, E ′

3, γ ]T (B.1)

of the reduced-reflectometer calibration problem (15). Let
us assume that the calibration-standard reflection coefficients
have relative errors

�y =
[
�ρ0

ρ0
,
�ρ1

ρ1
,
�ρ2

ρ2
,
�ρ3

ρ3

]T

which introduce a solution error

�β = [�E ′
1,�E2,�E ′

3,�γ ]T . (B.2)

We now want to find a relationship between errors �y and �β.
Assuming that errors are small, we can rewrite (15) to first
order as

[P(γ ) + �P(γ,�γ )](x + �x)

≈ P(γ )x + �P(γ,�γ )x + P(γ )�x

= �P(γ,�γ )x + P(γ )�x = 0 (B.3)

where

�x = [�E ′
1,�E2,�E ′

3, 0]T . (B.4)

Approximating matrix �P(γ,�γ ) by use of the first order
Taylor expansion e−2(γ+�γ )l ≈ e−2γ l(1 − 2l�γ ), we further
obtain

�P(γ,�γ ) ≈

⎡
⎢⎢⎣

�ρ0 0 �̃0�ρ0 0
�ρ1 0 �̃1�ρ1 0
�ρ2 0 �̃2�ρ2 0
�ρ3 0 �̃3�ρ3 0

⎤
⎥⎥⎦ +

− 2�γ

⎡
⎢⎢⎣

ρ0l0 0 �̃0ρ0l0 0
ρ1l1 0 �̃1ρ1l1 0
ρ2l2 0 �̃2ρ2l2 0
ρ3l3 0 �̃3ρ3l3 0

⎤
⎥⎥⎦. (B.5)

Inserting (B.5) into (B.3) leads after some straightforward
manipulations to

X�β = −�y (B.6)

where

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E1 + E3�̃0

ρ−1
0

E1 + E3�̃0

�̃0

E1 + E3�̃0
−2l0

1

E1 + E3�̃1

ρ−1
1

E1 + E3�̃1

�̃1

E1 + E3�̃1
−2l1

1

E1 + E3�̃2

ρ−1
2

E1 + E3�̃2

�̃2

E1 + E3�̃2
−2l2

1

E1 + E3�̃3

ρ−1
3

E1 + E3�̃3

�̃3

E1 + E3�̃3
−2l3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.7)

Equation (B.6) relates the error �β and �y through the
calibration coefficient E1 and E3, lengths li of the offset
reflects, and their raw measurements �̃i , for i = 0, . . . , 3.
However, it would be more informative to express this relation-
ship solely in terms of the reduced-reflectometer parameters
and calibration-standard reflection coefficients. In order to
obtain such a relationship, we eliminate �̃i by inserting (10)
into (B.7). We can show that this leads to the following
equation:

X = X0E (B.8)

where

X0 =

⎡
⎢⎢⎣

ρ0 1 ρ−1
0 −2l0

ρ1 1 ρ−1
1 −2l1

ρ2 1 ρ−1
2 −2l2

ρ3 1 ρ−1
3 −2l3

⎤
⎥⎥⎦ (B.9)

and

E = 1

E ′
1 + E2 E ′

3

⎡
⎢⎢⎣

−E ′
3 0 E ′

1 0
1 −E ′

3 E2 0
0 1 0 0
0 0 0 E ′

1 + E2 E ′
3

⎤
⎥⎥⎦ .

(B.10)

Equations (B.6) and (B.8) are our main result and are
used in the averaging technique discussed in Section III-B.
Based on these equations, we can also develop a qual-
ity factor for the reduced-reflectometer calibration which
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is used in the algorithm for choosing the best set of
reduced-reflectometer calibrations (i.e., the averaging scheme),
discussed in Section III-C. We define this factor as the deter-
minant of the covariance matrix of the solution (B.1) [17].
In order to calculate the covariance matrix of this vector, we
assume that the most important error sources are connection
nonrepeatability and errors in standard definitions, and we
neglect the VNA raw measurement errors. We further assume
that the real and imaginary parts of relative errors �y have the
same variance and are uncorrelated, while their mean value is
zero. This is only an approximation, as in fact often one of
the error components (typically the phase error) dominates.
However, as demonstrated in [19], this approximation leads
only to a slight overestimation of solution variances. Since
the quality factor we develop will be used only to compare
different reduced-reflectometer calibrations, we can accept this
approximation.

Based on the above, the covariance matrix of �y can be
written with the use of complex notation as

��y = E[�y�yH ]. (B.11)

Consequently, we can write

��β = E[�β�β H ] = E−1X−1
0 ��yX−H

0 E−H . (B.12)

The determinant of this matrix can be now written as

det ��β = |E ′
1 + E2 E ′

3|4 det ��y

det(XH
0 X0)

. (B.13)

We see that this determinant depends on calibration stan-
dard parameters, the covariance matrix of errors, and the
reduced-reflectometer parameters. Since the dependence on the
reduced-reflectometer parameters is by a constant multiplica-
tion factor, we can introduce the normalized determinant of
the covariance matrix

q = det ��β

|E ′
1 + E2 E ′

3|4
= det ��y

det XH
0 X0

(B.14)

which will be our quality factor. We finally observe that the
smaller is the quality factor q , the smaller are calibration
errors.

APPENDIX C
APPROXIMATE ALGORITHM FOR FINDING

THE AVERAGING SCHEME

We first analyze all of the C N
4 subsets to find the one with

the best quality factor (B.14). Let this first subset contain
offset reflects with indices i0 = [i00, i01, i02, i03]T . Let us
further define the set φ that contains indices of reflects that
have already been included in the averaging scheme. After
choosing the first four-element subset i0, we have φ0 =
{i00, i01, i02, i03}.

Now, when constructing the kth subset we look for the best
four-element subset according to the quality factor (B.14),
whose three elements belong to the set φk−1 while the fourth
element to the set {0, . . . , N − 1} \φk−1. Let this subset have
indices ik = [ik0 , ik1 , ik2 , ik3 ]T , where ik0 , ik1 , ik2 ∈ φk−1 and
ik3 ∈ {0, . . . , N − 1} \ φk−1. We then update φk = φk−1 ∪ ik3

Fig. 6. Quality factor (B.14) for K best subsets calculated for eight
quartz-CPW offset shorts discussed in Section IV.

and proceed to the choice of the (k + 1)th subset until all of
the reflects have been added to the averaging scheme.

In Fig. 6, we show results of this algorithm for eight CPW
offset shorts used to implement the multireflect-thru consid-
ered in Section IV. We show there the quality factor (B.14)
for K best subsets computed independently at each frequency.
We observe that (B.14) for all of the subsets is frequency
dependent and increases close to the lower frequency of the
calibration where the phase shifts off all offset shorts become
comparable.
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