
 1  

Proceedings of the ASME 2016 International Design Engineering Technical Conferences & 
Computers and Information in Engineering Conference 

IDETC/CIE 2016 
August 21-24, 2016, Charlotte, North Carolina, USA 

DETC2016-60506 

INVESTIGATING PREDICTIVE METAMODELING FOR ADDITIVE 
MANUFACTURING 

 
 

Zhuo Yang, Douglas Eddy, Sundar Krishnamurty, Ian Grosse 
University of Massachusetts Amherst 

Department of Mechanical and Industrial Engineering 
Amherst, MA 01003 

Email: [zhuoyang, dceddy]@engin.umass.edu, [skrishna, grosse]@ecs.umass.edu   
 

Peter Denno, Felipe Lopez 
National Institute of Standards and Technology 

Engineering Laboratory 
Gaithersburg, MD 20899 

Email: [peter.denno, felipe.lopez]@nist.gov  
 

 
 
ABSTRACT 
Additive manufacturing (AM) is a new and disruptive technology 
that comes with a set of unique challenges. One of them is the 
lack of understanding of the complex relationships between the 
numerous physical phenomena occurring in these processes. 
Metamodels can be used to provide a simplified mathematical 
framework for capturing the behavior of such complex systems. 
At the same time, they offer a reusable and composable paradigm 
to study, analyze, diagnose, forecast, and design AM parts and 
process plans. Training a metamodel requires a large number of 
experiments and even more so in AM due to the various process 
parameters involved. To address this challenge, this work 
analyzes and prescribes metamodeling techniques to select 
optimal sample points, construct and update metamodels, and 
test them for specific and isolated physical phenomena. A 
simplified case study of two different laser welding process 
experiments is presented to illustrate the potential use of these 
concepts. We conclude with a discussion on potential future 
directions, such as data and model integration while also 
accounting for sources of uncertainty. 
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1. INTRODUCTION 
Additive Manufacturing (AM) processes are more complex, 

variable, and difficult to understand than subtractive 
manufacturing [1, 2]. Typical AM processes implement material 
patterning, energy patterning, new layer creation, and support 
from previous layers [3] to realize shape, material, and 
hierarchical complexities [4]. 

Material properties of AM-produced parts often depend upon 
the process parameters. For example, platform temperature, 
building direction, and post heat treatment influence the part 
microstructure that determines fatigue properties of selective 
laser melting parts [5]. Further, variations in layer thickness and 
hatching distance settings have affected material porosity along 
with hardness and density [6].  

Various models have been developed in recent years to 
describe complex AM process-structure-property relationships. 
In spite of advances in model accuracy, the enormous 
computational cost of complex, high-fidelity physics-based 
simulations of AM makes these models impractical to adopt in 
industry [7, 8]. A more preferable strategy is to utilize surrogates, 
or metamodels, as they provide a “model of the model” to replace 
the expensive simulation model in design and optimization 

Certain commercial equipment, instruments, or materials are identified in this 
paper are not intended to imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor is it intended to imply that the 
materials or equipment are necessarily the best available for the purpose. 
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processes [9]. Metamodeling has been used successfully as an 
alternative to computationally expensive simulations in 
aerospace and other advanced manufacturing domains. [7, 10]. 

Currently, varieties of metamodeling techniques are applied 
in engineering design. Several comparative studies present the 
performance of these various techniques under different 
modeling criteria [7, 11]. Generally, different modeling methods 
show both advantages and disadvantages for different types of 
problems. These disadvantages include orders of nonlinearity 
and problem scales [7]. To simplify explanation in this paper, we 
mainly focus on the Polynomial Regression and Kriging Method 
for metamodel construction to illustrate selection of the most 
applicable metamodeling techniques for these specific cases. 

In spite of the benefits envisioned through the use of such 
metamodeling techniques, very little research has been done in 
this area. Some notable exceptions include a polynomial 
regression model of density, hardness, and porosity of a carbon 
steel selective laser sintering process [6], porosity predictions in 
selective laser melting [12] and an energy density model of 
CoCrMo powder material [13]. These approaches are limited to 
experimental designs for a specific portion of an AM process. 
There is a need for a complete AM metamodeling methodology 
to construct and integrate local metamodels [14] for robust 
prediction of AM process results. Challenges for the AM 
situation include cost of experimentation [15], accuracy of 
simulation capabilities [16], and complex interactions of 
different physical phenomena during the AM process [17]. 

This study aims to investigate metamodeling as a means to 
generate accurate predictive models compatible with a 
composable multilevel structure, defined as made up of highly 
reusable models that can be used together and mirror the general 
AM process model [14]. Such a metamodeling methodology will 
be able to address the challenges in AM processes such as high 
system complexity, uncertainty, and limitations of legacy data 
conducted by design of experiments (DOE) that designers may 
need to rely on due to the expense of producing experimental 
sample parts [14, 15, 18]. 

The following section covers the necessary background to set 
the stage for Section 3, which introduces methodical approaches 
to construct and test individual metamodels. A pair of case 
studies in Section 4 illustrates the potential effectiveness of these 
approaches. Section 5 discusses this work and potential future 
work.  

 
2. OVERVIEW OF METAMODELING TECHNIQUES 

This section provides a brief background summary of basic 
metamodeling approaches. These traditional metamodeling 
techniques consist of several steps. First, data sets are used to 
construct metamodels. The composition of these data sets 
depend upon the experimental design used to represent and 
sample that design space.  

Traditional sampling methods, such as full factorial, 
fractional factorial, and central composite, etc., have been 
frequently used for AM process modeling [13, 19]. Typically, 
variables could be either discrete or continuous [20]. Since some 
or most of the input variables are continuous in this case, it would 

be impossible to generate all possible combinations in a data set. 
These traditional experimental designs discretize the continuous 
variables to limit the number of experimental trials necessary.  

The full factorial design selects all possible combinations of 
input variables at specific locations to maximize the amount of 
information and data accuracy for a prescribed sample size. 
Fractional factorial design symmetrically selects a fraction of 
full factorial samples. Central Composite Design (CCD) 
includes center points that can estimate curvature of the response 
function [21]. CCD and other classical DOE methods tend to 
reduce the experimental cost and cover an entire design space by 
placing the samples at or near the boundary of the space. 
However, it leaves the interior of the design space unexplored 
[22]. In this study the data sources used to construct the 
metamodels consist of DOE data sets that represent 
manufacturing processes empirically. The goal is to develop a 
method that may be universally applied to all of these main types 
of classical DOE sampling methods.  

To capture the important characteristics of unknown systems, 
it is preferred to collect data that represents the entire design 
space to include information about the most critical regions [21, 
23]. This is necessary to overcome the limitations of classical 
DOE approaches. Unlike the random errors in results often 
exhibited by physical experiments, computer experiments are 
often deterministic [24]. This work focuses on metamodel 
construction from legacy empirical data rather than computer 
experiments to address the issues of difficulty with obtaining 
accurate simulations of AM processes and the high cost of 
producing sample parts for new experimental designs.  

Thus, any approach needs flexibility to accommodate larger 
DOE sample sizes and combinations of different DOE data sets, 
which may not conform to the classical DOE sample locations. 
For example, the welding test by	Khan et al. was based on full 
factorial DOE strategy that included 18 data points [25]. A 
similar experiment operated by Balasubramanian et al. with the 
same response was based on a fractional factorial design that 
included 15 data points [26]. Aforementioned experiments 
cannot conform to one uniform DOE method due to their 
different design space and levels of value. 

Space Filling Sampling (SFS) methods have been developed 
to address these various limitations of the classical DOE 
approaches [22]. Many SFS methods have been widely used in 
simulation-based metamodels, such as Grid Sampling, Lattice 
Design, Audze-Eglais, Orthogonal Array, and Latin Hypercube 
Design (LHD) [23, 27-30]. The number of sample points of LHD 
is the same as the number of discrete cells defined by the level, 
or grid spacing, of each input variable. For example, the Latin 
square that contains four sample points in two dimensions 
appears only once in each row and each column [21]. LHD fills 
each cell location with one sample point, but the location within 
each cell is randomized. LHDs are usually at least as accurate as 
random sampling and stratified sampling techniques [31]. Thus, 
Latin Hypercube can be a most suitable candidate for situations 
that involve nonflexible and non-uniform data locations in a 
design space [32]. 
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2.1 Traditional Metamodel Construction Techniques 
Since SFS is often not adequate to generate desired model 

accuracy, reliability, predictability, or robustness, Sequential 
Infilling Sampling (SIS) techniques are widely used. Unlike SFS 
methods that distribute sample points into a design space at one 
single stage, SIS methods assign sample points sequentially at 
“particular” locations [21]. SIS methods are more efficient for an 
unknown system [33] by providing options to a designer for 
determining when to stop the data collection process as sufficient 
information has been gathered [21]. The combination of SFS and 
SIS can significantly improve the results of metamodel 
construction [34]. The most popular construction techniques 
include polynomial, kriging, splines, artificial neural network, 
and hybrid methods [35].  

Response surface modeling (RSM) techniques were 
originally developed to analyze the results of physical 
experiments and create empirical models of the observed 
response values [36]. The typical form of RSM is: 

 
             y 𝑥 = 𝑓 x + ε                  (1) 

 
where 𝑦 𝑥  represents the unknown function, 𝑓 𝑥 is a known 
polynomial function of x derived statistically, and ε is random 
error assumed to be normally distributed. x is the set of the 
system’s independent input variables. A second order quadratic 
polynomial function would have the form of: 
 
     𝑦 = 𝛽* + 𝛽+𝑥+,

+-. + 𝛽++𝑥+/,
+-. + 𝛽+0𝑥+𝑥00+ 	     (2) 

 
where β0, βi, and βij are regression coefficients, and k is the 
number of design variables. 

RSM provides the advantage of generating a mathematical 
function that can easily compute the data location predicted by 
that equation. However, since RSM deploys curve-fitting 
techniques between the data points, it can tend to smooth out 
such regions without data to lessen predictive accuracy for 
highly nonlinear responses of systems [21]. 

Kriging methods were initially developed for analyses of 
random processes and have been known to outperform RSM and 
other metamodel construction techniques, especially when 
dimensionality of a system increases [37]. The fundamental 
assumption of predicting in the kriging method is modeled 
through the variogram, or spatial correlation functions, which 
describes spatial correlation of observed data [38, 39]. The 
general form of a kriging model is: 

 
           𝑦 = 𝑓 𝑥; 𝛽 + 𝜀(𝑥)                 (3) 

 
where 𝑓 𝑥; 𝛽  is a least squares fit regression to the global 
trend in the observed data, 𝜀(𝑥)  is the correlated prediction 
error, which is assumed to be the realization of a 
stochastic/Gaussian process with zero mean, non-zero variance, 
and covariance. Although defined as statistical error, this term 
represents an imposed spatial correlation in the parameter space 
that makes observations positively correlated when close. 

Kriging can potentially provide improved accuracy and 
reliability over other techniques available to AM metamodeling.  

 
3 METAMODEL CONSTRUCTION METHOD  

This section introduces a predictive metamodeling approach 
(Figure 1) to address some of the unique challenges particular to 
metamodel construction to represent the various sub-processes 
in AM. The following subsection explains the rationale of this 
methodical approach based on the challenges identified 
previously in this paper related to predictive metamodeling for 
AM processes.  

	 	 	
Figure 1. Maximum Predictive Error Updating (MPEU) 

Method 
 
3.1 Rationale of Approach 

One of the major objectives for developing a reusable 
metamodeling methodology is to give engineers the opportunity 
to use historical AM data to construct their own design, which 
can potentially save the cost of collecting DOE data. Thus, this 
work strives for compatibility with most of the AM processes 
and different empirical data sets. Existing data that conforms to 
classical DOE does not provide guidance towards selecting 
sample points. Further, existing data may not account for the 
same set of conditions (design space) provided by a metamodel. 
Variability of the classical DOE set-ups further complicates the 
quest for a method compatible with existing DOE data. The 
variability of different DOE methods deployed in data collection 
includes different numbers of levels, fractional factorials, or 
input variables relative to the problem non-uniformity. To 
overcome these disadvantages, the following subsection 
introduces the Minimum Euclidean Distance (MED) method for 
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selecting a limited number of data points for metamodel 
construction from nonflexible given data. 
 
 
3.2 Minimum Euclidean Distance (MED) Method 

The coauthors’ prior work addressed a similar situation of 
metamodel construction in non-ideal data locations for design 
space filling [32][Eddy 2015]. This work identified LHD as a 
potential approach for the reasons given in Section 2. Given the 
inability to choose the points at the exact locations identified by 
an LHD sample set generation, this work proposed a method to 
find the minimum Euclidean distance between each identified 
data location and the data point identified in the data set [32].  

The procedural steps begin with the generation of the desired 
amount of LHD points from a given data set. Next the Euclidean 
distance is calculated between each DOE data point to the 
generated LHD points by the Maximin method. Those points 
closest to the desired LHD points are selected for constructing 
the metamodel.  

Since the selected DOE points depend upon the LHD points, 
selection of the initial points from these LHD results is critical 
to improvement of metamodel construction. Such methods as 
Maximin LHD [40], orthogonal array-based LHD [30], and 
optimal Audze-Eglais uniform LHD [41] can generate optimal 
LHD sampling points.  
 
3.3 Maximum Predictive Error Updating (MPEU) Method 

As mentioned in Section 2, the initial step of space filling is 
often not adequate to obtain the desired accuracy and 
predictability of a metamodel. In such cases, SIS becomes a 
necessary next step.  

Utilizing the concepts from SIS, Shao and Krishnamurty 
developed a surrogate model based design optimization 
(SMBDO) method to sequentially update a surrogate model by 
capturing the critical features of an unknown system in a 
simulation-based experiment [42]. Similary, a comprehensive 
adaptive sampling methodology is presented in Sandia’s Dakota 
framework [43] to enable selection of successive sample points 
based on the maximum distance from existing points or the 
uncertainty of model prediction. Based on these methods, the 
initial LHD sample points are used to construct the initial 
surrogate model. During each updating step, potential optimal 
locations predicted by the current model are then validated. 
Those points that exhibit high predictive error are then added into 
the current model iteratively until the desired model accuracy is 
obtained. However, the clustering based multilocation search 
procedure of SMBDO and the adaptive sampling method both 
rely upon an ample supply of data points from efficient computer 
simulations, which is simply not realistic in this case. Thus, there 
is a need to develop a model updating method for the limited data 
sizes inherent with using historical data for metamodel 
construction.  

To address these challenges and limitations, we introduce the 
Maximum Predictive Error Updating (MPEU) method to 
gradually improve model accuracy. Figure 1 outlines the general 
framework of the MPEU method using the MED method to 

select the most appropriate sampling points from original DOE 
data. The method begins by generating LHD points using the 
maximin method in the design space given by the data. The 
kriging method with a Gaussian correlation function was 
employed to build the surrogate models. Then, the points are 
selected to construct the initial metamodel by using the MED 
method. A validation procedure next determines whether the 
current surrogate model needs further improvement. Maximum 
relative error magnitude (MREM) and average relative error 
magnitude (AREM) are calculated using the following equations 
to test the metamodel for predictability at each iterative stage of 
model updating:  

 

            𝑀𝑅𝐸𝑀 = max( :;<:=
:;

)             (4) 

            𝐴𝑅𝐸𝑀 = .
?
( :;<:;@

;AB
:;

)            (5) 
 

where yi is the observed value from given data, 𝑦 is the value 
predicted by the metamodel of the DOE points that were not 
selected to construct the metamodel, and m is the number of data 
points. 

If either error calculation exceeds a preset threshold for 
robustness, the point presenting the largest predictive error is 
added into the initial sample pool. A new model is created based 
on the new sample set. The model creating-validating procedure 
will iteratively proceed until both MREM and AREM satisfy the 
preset threshold value for robustness. This is the MPEU method 
that sequentially infills the sample set by updating the model to 
improve the resulting metamodel construction.   

Verification and validation techniques must test the 
metamodel at each stage [21]. Verification tests the internal 
consistency of constructed metamodels and validation tests 
reliability with external data [44]. To validate the newly built 
metamodel, a model validation criterion is established based on 
the prediction accuracies [21] of all non-selected DOE points. If 
the MREM and AREM are both greater than a specified preset 
threshold value for robustness, the data point with the lowest 
prediction accuracy (or highest MREM value) would be added 
into the current sample pool and the metamodel is updated 
accordingly. Subsequently, the newly built metamodel will be 
validated again with the same process iteratively until 
convergence to within the threshold MREM and AREM values. 
Thus, effective model construction can be achieved efficiently 
by combining predictive metamodel construction 
simultaneously with validation to robustness requirements.  

The preset threshold values of MREM and AREM are based 
on design requirements such as penetration depth and melt pool 
width. Both average and maximum error are involved in the 
validation process since they represent general and distinguished 
model performance. A designer would need to decide on what 
model accuracy and predictability are necessary or acceptable 
before model construction [32]. An unnecessarily low threshold 
value may significantly increase the computational cost. 
Conversely, an excessively high threshold value may reduce 
model predictability and utility. The following section 
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demonstrates the potential use of these proposed space filling 
and sequential infilling techniques in a pair of case study 
examples.  
 
4 CASE STUDY: PREDICTIVE METAMODELS IN 

LASER WELDING PROCESSES 
The laser welding process is used in the case studies reported 

in this section due to its similarities to directed energy deposition 
processes. In both applications, a heat source fuses metal as it is 
being deposited. The processes share similar process parameters 
and their quality is determined by similar metrics (dimensional 
accuracy, surface finish, residual stresses and mechanical 
properties, all of which can be traced back to the geometry of the 
melt pool).  With that said, data is more readily available for 
laser welding, making the process a good candidate for 
demonstrating proof-of-concept.  

The following two case studies illustrate the potential 
applicability of the proposed MPEU method for different DOE 
data. Both cases focus on the same response of the penetration 
depth (P). The cases have similar experimental methods but 
different DOE strategies. These two simple and somewhat 
similar experiments help to illustrate various results that can be 
expected from different data sets. This section shows the 
potential to deploy methods to construct and test various 
individual AM metamodels by use of the method introduced in 
the prior section.  

 
4.1 Full Factorial DOE with Different Levels of Value for 
Input Variables 

In the first case by Kahn, et al. [25], laser power (LP), 
welding speed (WS), and fiber diameter (FD) are the input 
variables. Among those three variables, LP and WS ranged from 
800–1100 W and 4.5–7.5 m/min by three linear levels, with 
midpoint 950 and 6.0 respectively. The third variable of FD has 
only two levels at values of 300 µm and 400 µm FD [25]. The 

full factorial DOE consists of eighteen total data points for 
penetration depth, measured in micrometers after a standard 
washing procedure and with no special heating treatment. 

The first step is generating an LHD sample set in the design 
space. In this case the LHD set consists of five points in order to 
give the initial model enough options for future updating. Fewer 
start points may not adequately cover the design space. Using the 
MED method described in the previous section, the Euclidean 
distance between each LHD point and DOE point are calculated. 
Table 1 lists the initial data points selected by the MED method. 
The first column represents the standard order number of each 
point in the original DOE. The initial metamodel would be 
constructed from these five points. 
 

Table 1. Initial data points generated by MED method 
 Input variables Observed value 

Data 
point 

number 

LP 
(W) 

WS 
(m/min) 

FD 
(µm) 

P (µm) 

1 800 4.5 300 960 
5 950 6 300 950 
6 1100 6 300 1180 

14 950 6 400 727 
17 950 7.5 400 580 

 
From the collected data, the initial metamodel is built using 

a standard kriging method. Kriging has built-in verification of 
internal consistency to prevent the error that can occur when 
RSM is used. The remaining thirteen data points next validate 
the metamodel by calculation of MREM and AREM as 
explained in the prior section. Model updating is next done 
iteratively by applying the MPEU method, as described in the 
prior section, to the preset thresholds for robustness of 
εCDEC≤10%, and εFDEC≤5% in this case. 

Table	2.	MREM	and	AREM	at	each	stage	

Iteration 
Data 
point 

number 

Input variables Observed value Predictive 
value MREM AREM LP (W) WS (m/min) FD (µm) P (µm) 

stage 1 

3 1100 4.5 300 1610 1108 31.12% 

28.37% 
7 800 7.5 300 560 891 59.18% 

12 1100 4.5 400 1307 875 33.02% 
13 800 6.0 400 577 818 41.86% 
16 800 7.5 400 492 759 54.43% 

stage 2 

3 1100 4.5 300 1610 1339 16.79% 

11.10% 
9 1100 7.5 300 880 1019 15.76% 

11 950 4.5 400 1043 899 13.82% 
12 1100 4.5 400 1307 1094 16.31% 
16 800 7.5 400 492 385 21.70% 

stage 3 

2 950 4.5 300 1290 1107 14.20% 

14.26% 
3 1100 4.5 300 1610 1244 22.71% 

11 950 4.5 400 1043 845 18.93% 
12 1100 4.5 400 1307 882 32.53% 
15 1100 6.0 400 920 806 12.37% 
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stage 4 

2 950 4.5 300 1290 1241 3.81% 

3.71% 
3 1100 4.5 300 1610 1472 8.57% 
8 950 7.5 300 730 702 3.87% 

13 800 6.0 400 577 539 6.65% 
15 1100 6.0 400 920 963 4.62% 

Table 2 lists the results for this example of the first four 
iterations of the MPEU method. Note that each sequential 
iteration represents the validation results calculated by the 
current updated metamodel. Only the points showing the most 
significant error are included in Table 2. At each iteration, the 
point with the greatest MREM is marked in grey in Table 2. At 
stage 1, the point at standard order 7 is selected by adding it into 
the initial sample pool since it shows the highest MREM 
(59.18%). As a result, after the third iteration both the MREM 
and the AREM values satisfy the preset threshold value. 
According to the MPEU method, the updating process converged 
to construct the final metamodel with eight DOE data points at 
8.57% MREM and 3.35% AREM. Figure 2 shows the error 
values at each iteration. Note that the MREM and AREM values 
did not always decrease monotonically prior to the final stage, as 
one would expect in the early stages in any numerical iterative 
approach, but shows monotonicity and convergence towards the 
end. Similar trends were observed in the application of SMBDO 
to several classical simulation-based model updating case studies 
[25]. 

 

 
Figure	2.	Error	at	iterations	

 
In this first case study a two level, three factor DOE strategy 

becomes the only choice if one prefers to create the model by 
classical DOE techniques without collecting new experimental 
data. Beyond the proposed MPEU method and a two level DOE 
method, another compatible sampling method is a random search 
method. However, this method is not recommended here due to 
its uncontrolled behavior. The comparison results of AREM and 
MREM between random search method, two level full factorial 
DEO method, and MPEU method with different threshold values 
are listed in Table 3.   

As shown in the table, both AREM and MREM of the model 
built by the MPEU method are significantly lower than the 

random search and DOE methods when the sample size is the 
same. When gradually reducing the threshold values of AREM 
and MREM, the MPEU method typically incorporates a few 
more points to improve the model accuracy to the new 
convergence requirements.  

With the MPEU method, the model is iteratively improved 
by updating sample points. However, only the initial sample 
points can evenly distribute across the given design space by use 
of the MED method. Newly updated points are selected based on 
the validation results from previous iterations without 
considering their location in a design space. As shown in Table 
4 the metamodel that is constructed by sequential infilling 
reduces prediction errors at comparable sample sizes. Thus, 
despite the possibility of the initial five data points not 
adequately filling the design space, the MPEU method shows 
potential to generate a more accurate model through the updating 
strategy. The following subsection examines the results of 
applying this same method to a situation that provides fewer data 
points in a data set.  
 
Table 3. AREM and MREM results of random search method, 
two levels full factorial DOE method, and MPEU method 

 Random DOE MPEU 

Sample 
size n=8 n=8 n=8 n=10 n=12 

AREM 22.76% 7.76% 3.35% 2.44% 1.94% 

MREM 59.16% 12.99% 8.57% 4.74% 5.18% 

 
Table	4.	Comparison	of	different	point	selection	strategies	

 Single stage 
sampling 

MPEU 
method Improvement 

Sample size n=8 n=8 
AREM 7.60% 3.35% 55% 

MREM 12.66% 8.57% 32% 
 
4.2 Fractional Factorial DOE with Same Levels of Value 

The second case study of laser welding DOE data is based on 
a three factor, three level Box-Behnken design with full 
replication [26]. “Beam angle” (BA) in this experiment replaced 
the input of “fiber diameter” from the first case study. The 
experimental design generated fifteen data points. A mean value 
of the data set’s three replicate points reduces the size of the data 
set from fifteen to thirteen.   

Table 5 lists the MREM and AREM values at each stage for 
those points having significant predictive error. As shown, the 
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MREM started with five sample points from 82.00% and 
gradually decreased to 4.80% after five updates, or six stages. 
The error at the start could have a significant effect on the 
number of iterations required. It is notable that the error at the 
first stage is 39% higher than the amount shown for the first stage 
in Table 2 for the first case study. It is also notable that this 
second case study is covering more levels with less data than the 
first case study.  

After applying the MPEU method, accuracies of the final 
model satisfied the threshold values (εCDEC≤10%, εFDEC≤5%). 
The error convergence progression is shown in Figure 3. Both 
MREM and AREM increased slightly during the middle stages 
as new points were added into the previous sample pool.  

 
Table 5. MREM and AREM at each stage 

iteration Std. order MREM AREM 

stage 1 

3 45.89% 

34.93% 4 82.00% 
6 52.50% 
8 54.79% 

stage 2 

1 15.46% 

11.09% 6 22.16% 
8 21.71% 

13 4.79% 

stage 3 

1 41.51% 

15.71% 3 33.93% 
8 0.85% 

13 16.64% 

stage 4 

3 4.48% 

4.60% 8 1.30% 
9 2.71% 

13 13.32% 

stage 5 

3 17.07% 

6.16% 8 3.69% 
9 3.22% 

12 0.65% 
stage 6 9 4.80% 3.72% 

 
 
 

	

	
Figure	3.	Error	at	iterations	

 
5 DISCUSSION AND FUTURE WORK 

The objective of this work was to explore a metamodeling 
methodology tailored for AM and adaptable to different types of 
empirical data. To address the challenges identified, this work 
introduces an MED method to select usable sample points from 
different types of given data and an MPEU method with an 
updating procedure to create predictive metamodels to 
predetermined robustness requirements from limited data sets. 
The proposed MED method can select usable initial sample 
points from various types of DOE data since its foundation is 
based on the LHD sampling method, which is adaptable for most 
any design space. Though the generated LHD sample locations 
may not be occupied by given DOE data, the MED method can 
improve selection of more appropriate existing points over other 
methods.  

The MPEU method allows model developers to balance the 
tradeoff between model accuracy and computational cost by 
adjusting the threshold values of MREM and AREM to achieve 
specified levels of robustness. As shown in Table 3, with the 
same number of sample points, the MPEU method, which also 
utilizes the MED method, provides a more accurate model than 
the random search and eight DOE data points for the example 
that was tested. The MPEU method also provides an option if 
one intends to improve the model at the expense of slightly 
higher computational costs. In the first case study, two added 
new points can significantly reduce the MREM from 8.57% to 
4.74%. Furthermore, the updating strategy of the proposed 
method can contribute more to capture the critical features of an 
unknown system than simply picking up points from the given 
data set. As shown in Table 4, MPEU method significantly 
reduces both MREM and AREM. In other words, the proposed 
method focuses more on capturing the critical system features 
rather than the point locations. 

Despite the advantages in model construction with the MED 
and MPEU methods, there are some limitations. Such 
disadvantages can potentially limit the application of proposed 
methods. For example, since the MED method selects the initial 
points through randomly generated LHD samples, each time the 
MPEU method may produce different models to the same 
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convergence criteria. It cannot guarantee that the generated LHD 
sampling set is optimal in a given DOE design space. Rather, the 
updating procedure depends highly upon the initial MED 
selected points. Without a confirmed starting point, the overall 
performance of the MPEU method may decrease. For example, 
in Section 4.2, the final model required ten points for 
construction but left only three points for validation. Thus, 
another limitation relates to model validation. Unlike 
metamodels generated by computer simulations, historical DOE 
data is often not reproducible. One can only rely on the existing 
data since it is impossible to gather additional information. In 
this second case study, the start point accuracy and resulting 
number of points remaining to validate the model were not as 
acceptable as found in the first case study. This second case study 
also had less data than the first case study. While not conclusive, 
this supports the assertion that the amount of data or information 
can have a significant effect on the results of using metamodeling 
methods. Methods such as Grey System Theory	that work with 
little data or information may be introduced along with this 
current proposed method [45]. Nonetheless, future work could 
potentially improve the MPEU method by adding a check and 
adjustment process based on the error at the first stage.  

Two laser welding case studies in the prior section show that 
the proposed MPEU method is compatible with different DOE 
data sets in these cases. The two data sets have similar 
experimental conditions such as the same laser source, common 
input variables of laser power and welding speed, the same 
response of penetration depth. However, one must use these two 
metamodels separately due to their different ranges of data 
locations in the design space. To overcome such a shortcoming 
or data limitation, a future goal is to build towards a global 
metamodel by combing two local data sets. Such a development 
may more efficiently utilize different historical data sources to 
know more about a process and also raises the issue of 
uncertainty between data sets with different sources.  

Another aspect to explore in future studies is the uncertainty 
in data points, which may be measurement error for experimental 
data or prediction uncertainty for computational predictions. 
Experimental variability is significant in additive manufacturing 
processes due to the random interactions between powder 
particles and melt pool, variations between different machines 
and models, and different manufacturing practices followed in 
different shops. Additive manufacturing models have a large 
degree of variability as well because of the different modeling 
assumptions that may be taken in the development of 
computational models. Merging of data sets of different sources 
requires knowledge of the amount of uncertainty in each source, 
to ensure that the metamodels stay closer to more accurate points 
and that an appropriate metric is adopted to determine the 
adequacy of the metamodels. The methods presented in this 
paper originate from the metamodeling literature, which has 
traditionally dealt with deterministic data. Extensions to 
stochastic data sets are under development.  

 The MPEU method lays the foundation for a predictive 
metamodeling methodology to use in AM. Future work could 
investigate development of a hybrid metamodeling method 

through the application of clustering techniques [34] and multi-
surrogate approximation (MSA) methods [46] to build the global 
model by combining data sets with different input variables, 
process conditions, or material parameters. 
 
ACKNOWLEDGEMENTS 

This material is based upon work supported by the National 
Science Foundation (NSF) under Grant No. 1439683, the 
National Institute of Standards and Technology (NIST) under 
Cooperative Agreement number NIST 70NANB15H320, and 
industry members of the NSF Center for e-Design.  
 

REFERENCES  

[1] Gibson, I., Rosen, D.W., and Stucker, B., 2010, "Additive 
manufacturing technologies," Springer, .  

[2] Kim, D. B., Witherell, P., Lipman, R., 2015, "Streamlining 
the Additive Manufacturing Digital Spectrum: A Systems 
Approach," Additive Manufacturing, 5pp. 20-30.  

[3] Williams, C. B., Mistree, F., and Rosen, D. W., 2011, "A 
Functional Classification Framework for the Conceptual 
Design of Additive Manufacturing Technologies," Journal of 
Mechanical Design, 133(12) pp. 121002.  

[4] Rosen, D.W., 2007. Design for additive manufacturing: a 
method to explore unexplored regions of the design space. In 
Eighteenth Annual Solid Freeform Fabrication Symposium pp. 
402-415. 

[5] Brandl, E., Heckenberger, U., Holzinger, V., 2012, 
"Additive Manufactured AlSi10Mg Samples using Selective 
Laser Melting (SLM): Microstructure, High Cycle Fatigue, and 
Fracture Behavior," Materials & Design, 34pp. 159-169.  

[6] Chatterjee, A., Kumar, S., Saha, P., 2003, "An Experimental 
Design Approach to Selective Laser Sintering of Low Carbon 
Steel," Journal of Materials Processing Technology, 136(1) pp. 
151-157.  

[7] Jin, R., Chen, W., and Simpson, T. W., 2001, "Comparative 
Studies of Metamodelling Techniques Under Multiple 
Modelling Criteria," Structural and Multidisciplinary 
Optimization, 23(1) pp. 1-13.  

[8] Khairallah, S. A., Anderson, A. T., Rubenchik, A., 2016, 
"Laser Powder-Bed Fusion Additive Manufacturing: Physics of 
Complex Melt Flow and Formation Mechanisms of Pores, 
Spatter, and Denudation Zones," Acta Materialia, 108pp. 36-45.  

[9] Kleijnen, J.P., 1986, "Statistical tools for simulation 
practitioners," Marcel Dekker, Inc., .  



 9  

[10] Kleijnen, J. P., and Sargent, R. G., 2000, "A Methodology 
for Fitting and Validating Metamodels in Simulation," 
European Journal of Operational Research, 120(1) pp. 14-29.  

[11] Varadarajan, S., Chen, W. and Pelka, C.J., 2000, “Robust 
concept exploration of propulsion systems with enhanced 
model approximation capabilities,” Engineering Optimization 
A35, 32(3), pp. 309-334.   

[12] Tapia, G., and Elwany, A., 2015, “Prediction of porosity in 
SLM parts using a MARS statistical model and Bayesian 
inference,” Proceedings of the 2015 Annual International Solid 
Freeform Fabrication Symposium, pp. 1205-1219. 

[13] Ciurana, J., Hernandez, L., and Delgado, J., 2013, "Energy 
Density Analysis on Single Tracks Formed by Selective Laser 
Melting with CoCrMo Powder Material," The International 
Journal of Advanced Manufacturing Technology, 68(5-8) pp. 
1103-1110.  

[14] Witherell, P., Feng, S., Simpson, T. W., 2014, "Toward 
Metamodels for Composable and Reusable Additive 
Manufacturing Process Models," Journal of Manufacturing 
Science and Engineering, 136(6) pp. 061025.  

[15] Thomas, D. S., and Gilbert, S. W., 2014, "Costs and Cost 
Effectiveness of Additive Manufacturing," .  

[16] Ding, J., Colegrove, P., Mehnen, J., 2014, "A 
Computationally Efficient Finite Element Model of Wire and 
Arc Additive Manufacture," The International Journal of 
Advanced Manufacturing Technology, 70(1-4) pp. 227-236.  

[17] Michopoulos, J. G., Lambrakos, S., and Iliopoulos, A., 
2014, "Multiphysics challenges for controlling layered 
manufacturing processes targeting thermomechanical 
performance," ASME 2014 International Design Engineering 
Technical Conferences and Computers and Information in 
Engineering Conference, Anonymous American Society of 
Mechanical Engineers, pp. V01AT02A050-V01AT02A050.  

[18] Van Elsen, M., Al-Bender, F., and Kruth, J., 2008, 
"Application of Dimensional Analysis to Selective Laser 
Melting," Rapid Prototyping Journal, 14(1) pp. 15-22.  

[19] Spierings, A., Levy, G., and Wegener, K., 2014, 
"Designing material properties locally with additive 
manufacturing technology SLM," ETH-Zürich, .  

[20] Montgomery, D.C., 2008, "Design and analysis of 
experiments," John Wiley & Sons, .  

[21] Shao, T., 2007, “Toward a structured approach to 
simulation-based engineering design under uncertainty,” Ph.D. 
Thesis, University of Massachusetts Amherst, Amherst, MA. 

[22] Giunta, A. A., Wojtkiewicz, S. F., and Eldred, M. S., 2003, 
"Overview of modern design of experiments methods for 
computational simulations," Proceedings of the 41st AIAA 
aerospace sciences meeting and exhibit, AIAA-2003-0649, 
Anonymous .  

[23] Husslage, B. G., Rennen, G., van Dam, E. R., 2011, 
"Space-Filling Latin Hypercube Designs for Computer 
Experiments," Optimization and Engineering, 12(4) pp. 611-
630.  

[24] Simpson, T. W., Booker, A. J., Ghosh, D., 2004, 
"Approximation Methods in Multidisciplinary Analysis and 
Optimization: A Panel Discussion," Structural and 
Multidisciplinary Optimization, 27(5) pp. 302-313.  

[25] Khan, M., Romoli, L., Fiaschi, M., 2010, "Experimental 
Investigation on Laser Beam Welding of Martensitic Stainless 
Steels in a Constrained Overlap Joint Configuration," Journal 
of Materials Processing Technology, 210(10) pp. 1340-1353.  

[26] Balasubramanian, K., Siva Shanmugam, N., 
Buvanashekaran, G., 2008, "Numerical and Experimental 
Investigation of Laser Beam Welding of AISI 304 Stainless 
Steel Sheet," Adv.Produc.Engineer.Manag, 3(2) pp. 93-105.  

[27] Cole, R., Healy, T., Wood, M., 2001, "Statistical Analysis 
of Spatial Pattern: A Comparison of Grid and Hierarchical 
Sampling Approaches," Environmental Monitoring and 
Assessment, 69(1) pp. 85-99.  

[28] Wang, Y., and Hickernell, F.J., 2002, "An historical 
overview of lattice point sets," Springer, .  

[29] Audze, P., and Eglais, V., 1977, "New Approach for 
Planning Out of Experiments," Problems of Dynamics and 
Strengths, 35pp. 104-107.  

[30] Tang, B., 1993, "Orthogonal Array-Based Latin 
Hypercubes," Journal of the American Statistical Association, 
88(424) pp. 1392-1397.  

[31] McKay, M. D., Beckman, R. J., and Conover, W. J., 2000, 
"A Comparison of Three Methods for Selecting Values of Input 
Variables in the Analysis of Output from a Computer Code," 
Technometrics, 42(1) pp. 55-61.  

[32] Eddy, D. C., Krishnamurty, S., Grosse, I. R., 2015, "A 
Predictive Modelling-Based Material Selection Method for 



 10  

Sustainable Product Design," Journal of Engineering Design, 
26(10-12) pp. 365-390.  

[33] Sacks, J., Welch, W. J., Mitchell, T. J., 1989, "Design and 
Analysis of Computer Experiments," Statistical Science, pp. 
409-423.  

[34] Shao, T., and Krishnamurty, S., 2008, "A Clustering-
Based Surrogate Model Updating Approach to Simulation-
Based Engineering Design," Journal of Mechanical Design, 
130(4) pp. 041101.  

[35] Wang, G. G., and Shan, S., 2007, "Review of 
Metamodeling Techniques in Support of Engineering Design 
Optimization," Journal of Mechanical Design, 129(4) pp. 370-
380.  

[36] Box, G.E., and Draper, N.R., 1987, "Empirical model-
building and response surfaces," Wiley New York, .  

[37] Simpson, T. W., 1998, "Comparison of Response Surface 
and Kriging Models in the Multidisciplinary Design of an 
Aerospike Nozzle," .  

[38] Shan, S., and Wang, G. G., 2010, "Survey of Modeling 
and Optimization Strategies to Solve High-Dimensional Design 
Problems with Computationally-Expensive Black-Box 
Functions," Structural and Multidisciplinary Optimization, 
41(2) pp. 219-241.  

[39] Cressie, N., 2015, "Statistics for spatial data," John Wiley 
& Sons, .  

[40] Van Dam, E. R., Husslage, B., Den Hertog, D., 2007, 
"Maximin Latin Hypercube Designs in Two Dimensions," 
Operations Research, 55(1) pp. 158-169.  

[41] Bates, S. J., Sienz, J., and Langley, D. S., 2003, 
"Formulation of the Audze–Eglais Uniform Latin Hypercube 
Design of Experiments," Advances in Engineering Software, 
34(8) pp. 493-506.  

[42] Shao, T., and Krishnamurty, S., 2009, "A Preference-
Performance Hybrid Method for Surrogate Model Updating in 
Engineering Design Optimisation," International Journal of 
Product Development, 9(1-3) pp. 218-264.  

[43] Eldred, M.S., Giunta, A.A., van Bloemen Waanders, Bart 
G, 2007, "DAKOTA, a multilevel parallel object-oriented 
framework for design optimization, parameter estimation, 
uncertainty quantification, and sensitivity analysis: Version 4.1 
reference manual," Citeseer, .  

[44] Sargent, R. G., 2005, "Verification and validation of 
simulation models," Proceedings of the 37th conference on 
Winter simulation, Anonymous winter simulation conference, 
pp. 130-143.  

[45] Deng, J., 1989, "Grey Information Space," The Journal of 
Grey System, 1(1) pp. 103-117.  

[46] Zhao, D., and Xue, D., 2011, "A Multi-Surrogate 
Approximation Method for Metamodeling," Engineering with 
Computers, 27(2) pp. 139-153.  

 


