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Abstract. Construction of Covering Arrays (CA) with minimum possible
number of rows is challenging. Often the available CA have redundant combinato-
rial interaction that could be removed to reduce the number of rows. This paper
addresses the problem of removing redundancy of CA using a metaheuristic post-
optimization (MPO) approach. Our approach consists of three main components:
a redundancy detector (RD); a row reducer (RR) ; and a missing-combinations
reducer (MCR). The MCR is a metaheuristic component implemented using a
simulated annealing algorithm. MPO was instantiated with 21,964 CA taken
from the National Institute of Standards and Technology (NIST) repository. It is
a remarkable result that this instantiation of MPO has delivered 349 new upper
bounds for these CA.
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1 Introduction

The use of software has permeated many areas of human activity, so the
reliability of software has become important worldwide. It is estimated that
software testing consumes about 50% of the cost of developing a new piece of
software. A 2002 NIST report [23] indicates that the cost of an inadequate
infrastructure for software testing was in the range of $22.2 to $59.5 billion
(US dollars). Reducing this cost is not only important but the design and



implementation of adequate software testing procedures is critical for the re-
liability of many electronic and mechanical systems, even more so in complex
and important systems, such as space shuttles [16].

According to Myers et al. [17] functional software testing methods may
be divided into two main categories: white-box testing and black-box test-
ing. The design of white-box testing suites requires source code of the soft-
ware under examination. Some testing strategies based on the white-box
approach are: statement coverage, decision coverage, condition coverage,
decision-condition coverage and multiple-condition coverage. The building of
test suites using white-box strategies is more challenging than for black-box
strategies, since white-box strategies are based on knowledge of the internal
structure of the system. Furthermore, if the system is modified, then tests
must be redesigned to satisfy the new version of the system. On the other
hand, the design of black box testing suites does not require source code
of the software under examination. It compares actual behaviour against
expected behaviour based on the functionality and the specification of the
software system under examination. Some black-box testing strategies are:
exhaustive input testing, equivalence partitioning, boundary-value analysis,
cause-effect graphing, error guessing, and combinatorial interaction testing.

It is easy to construct test suites using a random black-box approach,
but they rarely cover a large percentage of the functionality of the system
under examination. A black-box approach that covers 100 percent of the
functionality is the exhaustive approach, but it is impractical in most cases
because too many tests are required. As an example: if we need to design
a test suite for a system that has 20 parameters and each parameter has 10
possible values, it would require 10%° tests; however, using a combinatorial
interaction testing approach that covers the combinations of all pairs of pa-
rameter values, the test suite will require only 155 tests. The number of tests
required with combinatorial interaction testing grows logarithmically accord-
ing to the number of parameters [11]. Empirical studies in software testing
have shown that combinatorial interaction testing is a useful approach [14, 4].
The mathematical objects that support combinatorial interaction testing are
Covering Arrays (CA) and Mixed Covering Arrays (MCA).

CA and MCA are combinatorial structures that have been used success-
fully in various areas. The most reported application of CA and MCA is in
the design of test suites for software combinatorial interaction testing [7, 8],
which is based on the concept that software faults are caused by unexpected
combinatorial interactions of certain size between components. Another ap-
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Figure 1: Transposed matrix of a C'A(9;2,4, 3).
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Figure 2: Transposed matrix of an MCA(6;2,4,3'23).

plication is found in the field of parameter fine-tuning of metaheuristic algo-
rithms [12, 19, 22, 20).

A CA, denoted by CA(N; t, k, v), is an N x k array, where every entry
of the array takes values from a set of symbols of size v, such that every N
X t sub-array contains at least once all possible v* t-tuples of symbols. An
MCA is a generalization of a CA where the alphabets of the columns could
have different cardinalities. The test cases are represented by the rows, the
parameters are represented by the columns, the parameter values are taken
from the set {0,1...,v—1} which is called the alphabet, and t is the strength
or combinatorial interaction degree between parameters covered by the CA.
Figure 1 shows an example of a CA(9;2,4,3), and an MCA(6;2,4,3'23) is
shown in figure 2.

The Covering Array Number (CAN) is the minimum N such that for
fixed k, v, and t a CA exists. The CAN is denoted by CAN(tk,v). The
construction of CA with N=CAN(t,k,v) is a challenging problem whether we
use mathematical structures or metaheuristic algorithms.

When we have non-optimal CA (i.e. a CA with N > CAN(tk,v)), it
usually has many t-tuples that are covered more than once. This fact presents
the opportunity to reduce number of rows of CA, given that it may then be
possible to identify redundant rows [18] that can be removed.

In this paper we introduce a Metaheuristic Post-Optimization (MPO)
approach to reduce the size of a CA by exploiting redundant elements in CA.



MPO is composed of three main components: a) a redundancy detector (RD);
a row reducer (RR); and a missing-combination reducer (MCR) implemented
using a simulated annealing algorithm (the metaheuristic component of our
approach). MPO was extensively tested using 21,964 CA (taken from the
CA NIST repository). We have improved almost all 21,964 CA, but the most
remarkable result is that MPO has set 349 new upper bounds for these CA.

The remaining of the paper is structured in three sections. In section 2
we present in detail MPO approach giving details of the redundancy detec-
tor, row reducer and missing-combination reducer components. In section
3 we present the results of instantiating the MPO with the whole National
Institute of Standards and Technology repository of covering arrays. Finally
in section 4 we present some conclusions.

2 Metaheuristic Post-Optimization (MPO)

In this section we present implementation details of the MPO approach. We
firstly give an overview of the whole process of MPO, secondly, we present
details of each of the components RD, RR, MCR.

2.1 Design of MPO Approach

The design and implementation of MPO approach is briefly described in
algorithm 1, where it can be observed that it has three components and two
main loops. The inner loop executes the components: Redundancy Detector
(RD) and Row Reducer (RR). After the inner loop is executed, the Missing-
Combinations Reducer (MCR) runs. When the MCR (implemented with
a simulated annealing (SA) algorithm) is not able to make the number of
missing combinations equal to zero, MPO ends.

MPO (algorithm 1) receives as input A =CA(N;t,k,v) and gives as out-
put B=CA(N’; t, k, v) with N” < N and no missing t-wise combinations.
The function 7 computes the number of missing t-wise combinations of the
parameter passed to it. 7 has temporal complexity O(N (IZ)) (a more detailed
description of how to compute the missing interactions for CA was presented
by Avila-George et al. [3]).
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Algorithm 1 Metaheuristic Post-Optimization (MPO) algorithm.
input : A= CA(N;t,k,v)
output: B=CA(N';t,k,v)|[N' <N
begin
B+ A
repeat
repeat
B' < Redundancy Detector (B'); if (B’ =0) then B «+ B’
B' + Row Reducer(B’); if (B’ =0) then B+ 5’
until 7(B’) > 0;
B' + Simulated Annealing (B'); if (B’ =0) then B+ 5’
until 7(B’) > 0;
return 5

end

2.2 Redundancy Detector (RR)

The goal of the Redundancy Detector (RD) algorithm is to find a large num-
ber of redundant entries in the CA given as input. RD does its job by doing
three scans of the input, the first two scans visiting all t-wise combinations
of the matrix (each scan with temporal complexity O (N (IZ))), the third scan
visiting all elements of the matrix, searching for rows that are totally redun-
dant (with temporal complexity O(Nk)). The total temporal complexity is
O@2N(}) + Nk).

The purpose of the first scan is to set as ‘Fixed Symbol’ (FS) cells that
participate in t-wise combinations covered only once, and as ‘Possible Redun-
dant Cell’ (PRC) all other cells. The second scan works with cells marked as
PRC and decides which cells transform to the status of 'S, while making sure
coverage property (all t-wise combinations must be covered at least once) is
satisfied, and number of cells with status of PRC is maximized. The third
scan removes all rows in which all elements have status of PRC.

2.3 Row Reducer (RR)

The Row Reducer algorithm receives as input a CA and works in a greedy
manner searching for a row ¢ such that its removal minimizes missing com-
binations. In the worst case RR tests all rows of CA, but when a row with
no missing t-wise combinations is found RR ends. If this is not the case
the row removed is the one that gives the fewest number of missing t-wise



combinations.

The logic of the operation of the RR algorithm is simple: replace the FS
cells of the i-th row in all PRC cells of remaining rows, and then verify number
of missing t-wise combinations (after removal of row 7). RR removes the first
row that minimizes missing t-wise combinations. The worst case temporal
complexity of the algorithm is O(/N (N —1) (f)) for the determination of row to
be removed, and O(Nk) for the removal of the row. Then the total temporal
complexity of the RR algorithm is O(N(N —1)(¥) + Nk).

2.4 Missing-Combinations Reducer (MCR)

The MCR component of MPO is in charge of reducing to zero the number of
missing t-tuples of the input parameter (a matrix with missing combinations).
We decided to implement MCR using a simulated annealing (SA) algorithm
given that SA has been applied succesfully for solving related problems [2, 6,
24, 21]. The core elements of the SA are: the neighbourhood functions N F;
and the cooling schedule.

We used two neighbourhood functions N'F; and N Fy. N F; searches
for a random missing t-tuple and sets one such tuple in every row, selecting
the row that gives the fewest number of missing t-wise combinations. N F,
selects t cells in a row (cells and rows are selected randomly) then tests
every v' possible t-tuple in those cells, and selects combination that gives
the lower number of missing t-wise combinations. SA uses a mixture of
the two neighbourhood functions in such a way that N F; is applied with a
probability pr and consequently N F, is applied with a probability 1 — pr.

The cooling schedule configuration in SA involves [1, 15]: (a) an initial
temperature (tempg); (b) a decreasing function to reduce the temperature
value; (c) an ending temperature (tempy); and (d) a finite number of iter-
ations of the local search at the same temperature (L) (L size of a Markov
chain [5]). The parameters of the cooling schedule control the behaviour of
the algorithm and therefore affect drastically the quality of the final solution.
We selected static geometric cooling schedule controlled by a parameter a.
The parameter L is static during execution of the algorithm [2, 24]. Also a
parameter called frozen factor (ff) was added to control number of temper-
ature reductions without improvement towards solution, which works as an
alternative termination criterion that is triggered when search stagnates.

SA algorithm (algorithm 2) is based on definition given by Kirkpatrick et
al. [13]. Parameter values were selected after a parameter fine-tuning, and
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they are: tempy = 1; @ = 0.99; L=Nkv?; pr = 0.5; temp; = 1 x 107!4; and
FE =11.

Algorithm 2 Simulated Annealing algorithm.
input : AcA(N;t, k,v),pr, tempo,tempys, L, o, FE
output: A” | 7(A") <7(A)
begin
A" — A
temp < tempg
while temp > temp; do
for i< 0to L —1do
if pr then A’ « NF(A)
else A NF3(A)
A <+ A’ with a probability min{1, 67%}
if 7(A,...) <7(A”,...) then

A" — A

if 7(A”,...) =0 then return A"
end

end

temp < temp - «

if there was an improvement in A” then CE < 1 else CE++
if CE == ff then return A"

end
return A"

end

2.5 Implementation Note

The proposed algorithms were coded using C language and compiled with
GCC 4.3.5 with -O3 optimization flag, and run in cores of the type AMD®) 8435
(2.6 Ghz).

3 Results

To measure the effectiveness of MPO, the NIST repository of CA [10] was
processed. NIST repository of CA consists of 21,964 CA with v € {2,...,6}
andt € {2,...,6}. For each instance we report: average percentage reduction
of rows (), average time in minutes (I'), and number of instances (I).



Table 1: Results of MPO algorithm after processing entire repository [10].
Information is organized in triplets containing: average percentage reduc-
tion of rows (Y); average time in minutes (I'); and number of instances (I)
(Continues in table 2).

v\t 2 3 4 5

T T (m) I T T (m) I T T (m) I T ' (m) I
2 16.21 3.27 1998 2.95 670.96 1997 1.17 19809.28 90 2.09 6650.83 186
3 6.16 9.25 1998 1.42 1753.65 1997 1.06 21141.30 496 2.35 10851.70 111
4 5.20 9.01 1998 0.57  2140.89 1997 0.89 8161.35 304 2.47 16584.87 76
5 3.82 23.95 1998 0.35 2280.55 1968 0.99 9531.80 204 2.60 11895.09 56
6 3.37 64.55 1998 0.37  5097.92 1303 1.07 13944.75 159 2.93 12399.77 41
avg 6.95 20.47 1998 1.19 2236.92 1852.4 1.08 21384.18 250.6 2.35 16769.35 94

Table 2: (Continued from table 1) Results of MPO algorithm after processing
entire repository [10]. Information is organized in triplets containing: average
percentage reduction of rows (Y); average time in minutes (I'); and number
of instances (I).

v\t 6

T T (m) 1
2 3.83 4045.90 80
3 4.08 8526.52 45
4 4.20 8715.07 30
5
6

5.16 9690.55 19

avg 4.10 11647.32 43.5

Table 1 and table 2 summarize the results of processing NIST repository
[10]. Information is organized in triplets containing: Y, I', and I. It is
shown that many instances were optimized, resulting in the construction of
349 state of the art upper bounds for CA by using MPO algorithm. The
comparison between the MPO new upper bounds and the IPOG-F bounds
is shown in tables 3, 4 and 5. Results are shown in figures 3, 4, 5, 6, and
7 where instances are grouped by combinatorial interaction coverage degree

().
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Figure 3: Results of MPO after processing instances of repository [10] with
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Figure 4: Results of MPO after processing instances of repository [10] with
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Figure 5: Results of MPO after processing instances of repository [10] with
t=4. (-A=N-N')
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Figure 6: Results of MPO after processing instances of repository [10] with
t=5 (-A=N-N')
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Figure 7: Results of MPO after processing instances of repository [10] with
t=6. (—-A=N-N')

4 Conclusions

In this paper we have presented a Metaheuristic Post-Optimization (MPO)
approach to reduce the cardinality of Covering Arrays. MPO was imple-
mented using three components: a redundancy detector, a row reducer, and
a missing-combination reducer. The redundancy detector has the mission of
detecting elements in CA that could be changed without affecting degree of
coverage of CA. The row reducer takes advantage of redundant elements of
CA to reduce number of rows. When the removal of a row produces missing
combinations, then control is given to the missing-combination reducer. The
missing-combination reducer is implemented with simulated annealing (the
metaheuristic component of MPO) and tries to make the number of missing
combinations equal to zero. Even though all three components are key to the
success of MPO, we believe metaheuristic component is the most important
part of MPO, given that through its use it is possible to reduce iteratively
number of rows of CA.

We have conducted big-scale experimentation through instantiation of
MPO with the whole NIST repository of CA. NIST repository consists of

11



Table 3: New best upper bounds constructed with MPO algorithm. Part 1
of 3.

v3t4 v3t4 v6t4

id k IPOG-F [9] MPO id k IPOG-F [9] MPO id k IPOG-F [9] MPO
1 315 968 964 44 377 1011 1003 85 85 11441 11384
2 316 969 964 45 379 1013 1007 86 86 11484 11407
3 317 969 963 46 386 1017 1009 87 87 11533 11478
4 318 971 965 47 405 1027 1024 88 88 11577 11504
5 319 971 963 48 439 1046 1045 89 89 11625 11581
6 320 971 963 49 447 1052 1050 90 90 11666 11591
7 321 974 965 v6t4 91 91 11710 11630
8 322 974 966 id k IPOG-F [9] MPO 92 92 11753 11671
9 323 975 970 50 49 9323 9212 93 93 11790 11729
10 324 976 965 51 50 9393 9294 94 94 11833 11762
11 325 976 970 52 51 9466 9397 95 95 11874 11800
12 326 976 974 53 52 9550 9463 96 96 11913 11884
13 327 977 973 54 53 9623 9540 97 97 11956 11918
14 328 978 969 55 55 9762 9673 98 98 11997 11924
15 329 979 975 56 56 9828 9742 99 99 12038 11949
16 330 979 976 57 57 9900 9813 100 100 12085 12003
17 331 981 977 58 58 9964 9869 101 101 12120 12036
18 332 981 973 59 59 10032 9948 102 102 12148 12140
19 333 983 975 60 60 10097 10013 103 103 12194 12120
20 335 983 979 61 61 10163 10067 104 104 12231 12185
21 336 983 978 62 62 10219 10142 105 105 12267 12196
22 337 984 977 63 63 10282 10198 106 106 12306 12240
23 338 985 977 64 64 10347 10250 107 107 12343 12268
24 339 986 977 65 65 10398 10328 108 109 12408 12388
25 340 987 978 66 66 10463 10368 109 110 12445 12380
26 341 987 979 67 67 10520 10441 110 112 12517 12449
27 342 987 981 68 68 10578 10478 111 116 12651 12593
28 343 990 985 69 69 10633 10572 112 118 12716 12698
29 345 991 984 70 70 10693 10599 113 120 12785 12734
30 346 992 985 71 71 10745 10676 114 121 12816 12757
31 347 992 985 72 72 10798 10744 115 128 13036 13007
32 348 992 987 73 73 10850 10758 116 129 13062 13056
33 349 992 986 74 74 10909 10821 117 133 13192 13146
34 351 993 991 75 75 10958 10882 118 149 13634 13606
35 353 994 987 76 76 11012 10959 v3t5

36 360 999 994 7 7 11057 10992 id k IPOG-F [9] MPO
37 361 1001 995 78 78 11110 11017 119 35 1867 1826
38 362 1001 996 79 79 11158 11100 120 36 1895 1850
39 364 1002 997 80 80 11203 11121 121 37 1920 1882
40 368 1007 1002 81 81 11253 11187 122 38 1947 1909
41 370 1008 1001 82 82 11303 11219 123 39 1974 1933
42 373 1009 1003 83 83 11353 11282 124 40 1997 1949
43 375 1009 1005 84 84 11397 11319 125 41 2023 1975
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Table 4: New best upper bounds constructed with MPO algorithm. Part 2
of 3.

v3t5 v3t5 v4t5
id k IPOG-F [9] MPO id k IPOG-F [9] MPO id k IPOG-F [9] MPO
126 42 2046 2002 169 85 2739 2700 210 45 9227 9104
127 43 2070 2022 170 86 2749 2706 211 46 9320 9176
128 44 2091 2050 171 87 2762 2728 212 47 9406 9262
129 45 2112 2071 172 88 2770 2736 213 48 9501 9357
130 46 2130 2086 173 89 2783 2747 214 49 9588 9453
131 47 2150 2112 174 90 2792 2761 215 50 9673 9520
132 48 2174 2134 175 91 2805 2772 216 51 9755 9621
133 49 2191 2154 176 92 2815 2783 217 52 9835 9682
134 50 2213 2182 177 93 2825 2798 218 53 9922 9769
135 51 2231 2198 178 94 2836 2797 219 54 9998 9849
136 52 2251 2217 179 95 2847 2813 220 55 10079 9927
137 53 2269 2232 180 96 2857 2819 221 56 10155 10007
138 54 2289 2246 181 97 2868 2834 222 57 10232 10082
139 55 2309 2277 182 98 2877 2838 223 59 10379 10231
140 56 2327 2281 183 99 2885 2854 224 60 10454 10302
141 57 2342 2304 184 100 2895 2862 225 62 10590 10442
142 58 2358 2316 185 101 2909 2871 226 63 10650 10509
143 59 2373 2335 186 102 2920 2878 v5t5
144 60 2394 2347 187 103 2028 2898 id k  IPOG-F[9] MPO
145 61 2408 2370 188 104 2938 2901 227 21 18779 18260
146 62 2425 2387 189 105 2945 2908 228 22 114775 111818
147 63 2440 2397 190 107 2962 2928 229 23 118587 115802
148 64 2451 2413 v4t5 230 24 122201 119500
149 65 2468 2439 id k IPOG-F [9] MPO 231 25 125683 123108
150 66 2482 2447 191 26 6957 6775 v6t5
151 67 2498 2459 192 27 7116 6937 id k IPOG-F [9] MPO
152 68 2512 2477 193 28 7267 7088 232 17 40334 38976
153 69 2527 2487 194 29 7414 7247 233 18 42102 40820
154 70 2542 2504 195 30 7555 7379 234 19 43833 42554
155 71 2555 2518 196 31 7691 7527 235 20 45425 44224
156 72 2573 2531 197 32 7816 7649 236 21 46970 45784
157 73 2584 2546 198 33 7939 7782 237 22 48479 47352
158 74 2597 2564 199 34 8064 7907 238 23 49924 48838
159 75 2609 2588 200 35 8183 8023 239 24 51287 50180
160 76 2625 2593 201 36 8301 8137 240 25 52604 51505
161 7 2639 2608 202 37 8420 8259 241 26 53850 52814
162 78 2648 2615 203 38 8530 8376 242 27 55069 54032
163 79 2661 2625 204 39 8629 8477 243 28 56225 55275
164 80 2673 2635 205 40 8737 8583 244 29 57363 56353
165 81 2686 2651 206 41 8847 8693 245 30 58468 57503
166 82 2700 2668 207 42 8945 8791 246 31 59529 58576
167 83 2710 2677 208 43 9035 8890 247 32 60570 59612
168 84 2725 2684 209 44 9137 8979 248 33 61562 60608
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Table 5: New best upper bounds constructed with MPO algorithm. Part 3
of 3.

v6t5 v2t6 v4t6
id k IPOG-F [9] MPO id k IPOG-F [9] MPO id k IPOG-F [9] MPO
249 34 62527 61612 290 79 782 770 329 26 33369 32513
250 35 63471 62557 291 80 785 771 330 27 34187 33356
251 36 64399 63519 292 81 791 772 331 28 35006 34198

v2t6 293 82 794 778 332 29 35791 34971
id k IPOG-F [9] MPO 294 83 796 787 333 30 36570 35778
252 41 572 547 295 84 800 784 334 31 37305 36515
253 42 579 550 296 85 804 790 335 32 38015 37255
254 43 590 565 297 86 809 799 v5t6
255 44 594 565 v3t6 id k IPOG-F [9] MPO
256 45 603 578 id k IPOG-F [9] MPO 336 11 56615 52471
257 46 611 588 298 26 5709 5544 337 12 63620 59622
258 47 617 590 299 27 5853 5667 338 13 70190 66275
259 48 625 600 300 28 6003 5827 339 14 76390 72680
260 49 630 604 301 29 6150 5969 340 15 82139 78480
261 50 636 612 302 30 6281 6103 341 16 87559 84102
262 51 643 620 303 31 6413 6245 342 18 97605 94263
263 52 650 630 304 32 6535 6348 343 19 102208 98994
264 53 656 630 305 33 6656 6461 344 20 106642 103514
265 54 662 640 306 34 6772 6583 345 21 110842 107773
266 55 667 645 307 35 6877 6715 346 22 114775 111818
267 56 672 650 308 36 6989 6832 347 23 118587 115802
268 57 677 663 309 37 7092 6932 348 24 122201 119500
269 58 683 665 310 38 7194 7036 349 25 125683 123108
270 59 689 665 311 39 7293 7131
271 60 695 675 312 40 7391 7233
272 61 699 675 313 41 7490 7315
273 62 703 685 314 42 7574 7411
274 63 709 685 315 43 7672 7506
275 64 715 695 316 44 7757 7600
276 65 721 695 317 45 7845 7702
277 66 725 705 318 46 7938 7766
278 67 728 705 319 47 8013 7856
279 68 732 710 320 50 8256 8108
280 69 738 724 321 51 8333 8179
281 70 743 729 v4t6
282 71 747 734 id k IPOG-F [9] MPO
283 72 751 736 322 19 26392 25430
284 73 755 743 323 20 27534 26564
285 74 761 749 324 21 28625 27676
286 75 766 751 325 22 29640 28735
287 76 770 755 326 23 30636 29720
288 7 773 758 327 24 31591 30724
289 78 77 760 328 25 32501 31654

14



21,964 CA, and while improving almost all CA in repository, the most re-
markable result is that we have set 349 new upper bounds for these CA.
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