Metaheuristic Post-Optimization of the NIST Repository of Covering Arrays

Jose Torres-Jimenez ${ }^{1}$, Arturo Rodriguez-Cristerna ${ }^{1}$
${ }^{1}$ CINVESTAV-Tamaulipas, Information Technology Laboratory,
Km. 5.5 Carretera Cd., Victoria, Tamaulipas, Mexico
jtj@cinvestav.mx arodriguez@tamps.cinvestav.mx

Abstract

Construction of Covering Arrays (CA) with minimum possible number of rows is challenging. Often the available CA have redundant combinatorial interaction that could be removed to reduce the number of rows. This paper addresses the problem of removing redundancy of CA using a metaheuristic postoptimization (MPO) approach. Our approach consists of three main components: a redundancy detector (RD); a row reducer (RR) ; and a missing-combinations reducer (MCR). The MCR is a metaheuristic component implemented using a simulated annealing algorithm. MPO was instantiated with 21,964 CA taken from the National Institute of Standards and Technology (NIST) repository. It is a remarkable result that this instantiation of MPO has delivered 349 new upper bounds for these CA.

Key words. Covering Arrays ; NIST Repository of Covering Arrays ; Metaheuristic Post-processing Algorithms

1 Introduction

The use of software has permeated many areas of human activity, so the reliability of software has become important worldwide. It is estimated that software testing consumes about 50% of the cost of developing a new piece of software. A 2002 NIST report [23] indicates that the cost of an inadequate infrastructure for software testing was in the range of $\$ 22.2$ to $\$ 59.5$ billion (US dollars). Reducing this cost is not only important but the design and
implementation of adequate software testing procedures is critical for the reliability of many electronic and mechanical systems, even more so in complex and important systems, such as space shuttles [16].

According to Myers et al. [17] functional software testing methods may be divided into two main categories: white-box testing and black-box testing. The design of white-box testing suites requires source code of the software under examination. Some testing strategies based on the white-box approach are: statement coverage, decision coverage, condition coverage, decision-condition coverage and multiple-condition coverage. The building of test suites using white-box strategies is more challenging than for black-box strategies, since white-box strategies are based on knowledge of the internal structure of the system. Furthermore, if the system is modified, then tests must be redesigned to satisfy the new version of the system. On the other hand, the design of black box testing suites does not require source code of the software under examination. It compares actual behaviour against expected behaviour based on the functionality and the specification of the software system under examination. Some black-box testing strategies are: exhaustive input testing, equivalence partitioning, boundary-value analysis, cause-effect graphing, error guessing, and combinatorial interaction testing.

It is easy to construct test suites using a random black-box approach, but they rarely cover a large percentage of the functionality of the system under examination. A black-box approach that covers 100 percent of the functionality is the exhaustive approach, but it is impractical in most cases because too many tests are required. As an example: if we need to design a test suite for a system that has 20 parameters and each parameter has 10 possible values, it would require 10^{20} tests; however, using a combinatorial interaction testing approach that covers the combinations of all pairs of parameter values, the test suite will require only 155 tests. The number of tests required with combinatorial interaction testing grows logarithmically according to the number of parameters [11]. Empirical studies in software testing have shown that combinatorial interaction testing is a useful approach [14, 4]. The mathematical objects that support combinatorial interaction testing are Covering Arrays (CA) and Mixed Covering Arrays (MCA).

CA and MCA are combinatorial structures that have been used successfully in various areas. The most reported application of CA and MCA is in the design of test suites for software combinatorial interaction testing [7, 8], which is based on the concept that software faults are caused by unexpected combinatorial interactions of certain size between components. Another ap-

0	1	2	2	0	1	1	2	0
0	1	2	1	2	0	2	0	1
0	1	2	0	1	2	0	1	2
0	0	0	1	1	1	2	2	2

Figure 1: Transposed matrix of a $C A(9 ; 2,4,3)$.

0	1	1	0	0	1
0	1	0	1	1	0
0	1	0	1	0	1
0	0	1	1	2	2

Figure 2: Transposed matrix of an $M C A\left(6 ; 2,4,3^{1} 2^{3}\right)$.
plication is found in the field of parameter fine-tuning of metaheuristic algorithms [12, 19, 22, 20].

A CA, denoted by $\mathrm{CA}(\mathrm{N} ; \mathrm{t}, \mathrm{k}, \mathrm{v})$, is an $\mathrm{N} \times \mathrm{k}$ array, where every entry of the array takes values from a set of symbols of size v, such that every N $\times \mathrm{t}$ sub-array contains at least once all possible v^{t} t-tuples of symbols. An MCA is a generalization of a CA where the alphabets of the columns could have different cardinalities. The test cases are represented by the rows, the parameters are represented by the columns, the parameter values are taken from the set $\{0,1 \ldots, v-1\}$ which is called the alphabet, and t is the strength or combinatorial interaction degree between parameters covered by the CA. Figure 1 shows an example of a $\mathrm{CA}(9 ; 2,4,3)$, and an $\operatorname{MCA}\left(6 ; 2,4,3^{1} 2^{3}\right)$ is shown in figure 2.

The Covering Array Number (CAN) is the minimum N such that for fixed k , v , and t a CA exists. The CAN is denoted by $\operatorname{CAN}(\mathrm{t}, \mathrm{k}, \mathrm{v})$. The construction of CA with $\mathrm{N}=\mathrm{CAN}(\mathrm{t}, \mathrm{k}, \mathrm{v})$ is a challenging problem whether we use mathematical structures or metaheuristic algorithms.

When we have non-optimal CA (i.e. a CA with $\mathrm{N}>\operatorname{CAN}(\mathrm{t}, \mathrm{k}, \mathrm{v})$), it usually has many t-tuples that are covered more than once. This fact presents the opportunity to reduce number of rows of CA, given that it may then be possible to identify redundant rows [18] that can be removed.

In this paper we introduce a Metaheuristic Post-Optimization (MPO) approach to reduce the size of a CA by exploiting redundant elements in CA.

MPO is composed of three main components: a) a redundancy detector (RD); a row reducer (RR); and a missing-combination reducer (MCR) implemented using a simulated annealing algorithm (the metaheuristic component of our approach). MPO was extensively tested using 21,964 CA (taken from the CA NIST repository). We have improved almost all $21,964 \mathrm{CA}$, but the most remarkable result is that MPO has set 349 new upper bounds for these CA.

The remaining of the paper is structured in three sections. In section 2 we present in detail MPO approach giving details of the redundancy detector, row reducer and missing-combination reducer components. In section 3 we present the results of instantiating the MPO with the whole National Institute of Standards and Technology repository of covering arrays. Finally in section 4 we present some conclusions.

2 Metaheuristic Post-Optimization (MPO)

In this section we present implementation details of the MPO approach. We firstly give an overview of the whole process of MPO, secondly, we present details of each of the components RD, RR, MCR.

2.1 Design of MPO Approach

The design and implementation of MPO approach is briefly described in algorithm 1, where it can be observed that it has three components and two main loops. The inner loop executes the components: Redundancy Detector (RD) and Row Reducer (RR). After the inner loop is executed, the MissingCombinations Reducer (MCR) runs. When the MCR (implemented with a simulated annealing (SA) algorithm) is not able to make the number of missing combinations equal to zero, MPO ends.

MPO (algorithm 1) receives as input $\mathcal{A}=\mathrm{CA}(\mathrm{N} ; \mathrm{t}, \mathrm{k}, \mathrm{v})$ and gives as output $\mathcal{B}=\mathrm{CA}\left(\mathrm{N}^{\prime} ; \mathrm{t}, \mathrm{k}, \mathrm{v}\right)$ with $\mathrm{N}^{\prime} \leq \mathrm{N}$ and no missing t -wise combinations. The function τ computes the number of missing t -wise combinations of the parameter passed to it. τ has temporal complexity $O\left(N\binom{k}{t}\right.$) (a more detailed description of how to compute the missing interactions for CA was presented by Avila-George et al. [3]).

```
Algorithm 1 Metaheuristic Post-Optimization (MPO) algorithm.
input : \(\mathcal{A}=C A(N ; t, k, v)\)
output: \(\mathcal{B}=C A\left(N^{\prime} ; t, k, v\right) \mid N^{\prime} \leq N\)
begin
    \(\mathcal{B}^{\prime} \leftarrow \mathcal{A}\)
    repeat
        repeat
                \(\mathcal{B}^{\prime} \leftarrow\) Redundancy Detector \(\left(\mathcal{B}^{\prime}\right)\); if \(\left(\mathcal{B}^{\prime}=0\right)\) then \(\mathcal{B} \leftarrow \mathcal{B}^{\prime}\)
                    \(\mathcal{B}^{\prime} \leftarrow\) Row Reducer \(\left(\mathcal{B}^{\prime}\right) ; \quad\) if \(\left(\mathcal{B}^{\prime}=0\right)\) then \(\mathcal{B} \leftarrow \mathcal{B}^{\prime}\)
            until \(\tau\left(\mathcal{B}^{\prime}\right)>0\);
        \(\mathcal{B}^{\prime} \leftarrow\) Simulated Annealing \(\left(\mathcal{B}^{\prime}\right) ; \quad\) if \(\left(\mathcal{B}^{\prime}=0\right)\) then \(\mathcal{B} \leftarrow \mathcal{B}^{\prime}\)
    until \(\tau\left(\mathcal{B}^{\prime}\right)>0\);
    return \(\mathcal{B}\)
end
```


2.2 Redundancy Detector (RR)

The goal of the Redundancy Detector (RD) algorithm is to find a large number of redundant entries in the CA given as input. RD does its job by doing three scans of the input, the first two scans visiting all t -wise combinations of the matrix (each scan with temporal complexity $O\left(N\binom{k}{t}\right)$), the third scan visiting all elements of the matrix, searching for rows that are totally redundant (with temporal complexity $O(N k)$). The total temporal complexity is $O\left(2 N\binom{k}{t}+N k\right)$.

The purpose of the first scan is to set as 'Fixed Symbol' (FS) cells that participate in t -wise combinations covered only once, and as 'Possible Redundant Cell' (PRC) all other cells. The second scan works with cells marked as PRC and decides which cells transform to the status of FS, while making sure coverage property (all t-wise combinations must be covered at least once) is satisfied, and number of cells with status of PRC is maximized. The third scan removes all rows in which all elements have status of PRC.

2.3 Row Reducer (RR)

The Row Reducer algorithm receives as input a CA and works in a greedy manner searching for a row i such that its removal minimizes missing combinations. In the worst case RR tests all rows of CA, but when a row with no missing t-wise combinations is found RR ends. If this is not the case the row removed is the one that gives the fewest number of missing t-wise
combinations.
The logic of the operation of the RR algorithm is simple: replace the FS cells of the i-th row in all PRC cells of remaining rows, and then verify number of missing t -wise combinations (after removal of row i). RR removes the first row that minimizes missing t-wise combinations. The worst case temporal complexity of the algorithm is $O\left(N(N-1)\binom{k}{t}\right.$) for the determination of row to be removed, and $O(N k)$ for the removal of the row. Then the total temporal complexity of the RR algorithm is $O\left(N(N-1)\binom{k}{t}+N k\right)$.

2.4 Missing-Combinations Reducer (MCR)

The MCR component of MPO is in charge of reducing to zero the number of missing t-tuples of the input parameter (a matrix with missing combinations). We decided to implement MCR using a simulated annealing (SA) algorithm given that SA has been applied succesfully for solving related problems [2, 6, 24, 21]. The core elements of the SA are: the neighbourhood functions $\mathcal{N F}$; and the cooling schedule.

We used two neighbourhood functions $\mathcal{N} \mathcal{F}_{1}$ and $\mathcal{N} \mathcal{F}_{2} . \mathcal{N} \mathcal{F}_{1}$ searches for a random missing t-tuple and sets one such tuple in every row, selecting the row that gives the fewest number of missing t-wise combinations. $\mathcal{N} \mathcal{F}_{2}$ selects t cells in a row (cells and rows are selected randomly) then tests every v^{t} possible t-tuple in those cells, and selects combination that gives the lower number of missing t -wise combinations. SA uses a mixture of the two neighbourhood functions in such a way that $\mathcal{N} \mathcal{F}_{1}$ is applied with a probability $p r$ and consequently $\mathcal{N} \mathcal{F}_{2}$ is applied with a probability $1-p r$.

The cooling schedule configuration in SA involves [1, 15]: (a) an initial temperature $\left(\right.$ temp $\left._{0}\right)$; (b) a decreasing function to reduce the temperature value; (c) an ending temperature (temp_{f}); and (d) a finite number of iterations of the local search at the same temperature (L) (L size of a Markov chain [5]). The parameters of the cooling schedule control the behaviour of the algorithm and therefore affect drastically the quality of the final solution. We selected static geometric cooling schedule controlled by a parameter α. The parameter L is static during execution of the algorithm [2, 24]. Also a parameter called frozen factor $(f f)$ was added to control number of temperature reductions without improvement towards solution, which works as an alternative termination criterion that is triggered when search stagnates.

SA algorithm (algorithm 2) is based on definition given by Kirkpatrick et al. [13]. Parameter values were selected after a parameter fine-tuning, and
they are: temp $_{0}=1 ; \alpha=0.99 ; \mathrm{L}=\mathrm{Nkv}^{2} ; p r=0.5 ;$ temp $_{f}=1 \times 10^{-14}$; and $F E=11$.

```
Algorithm 2 Simulated Annealing algorithm.
input : \(\mathcal{A}_{C} A(N ; t, k, v), p r\), temp \(_{0}\), temp \(_{f}, L, \alpha, F E\)
output: \(\mathcal{A}^{\prime \prime} \quad \mid \quad \tau\left(\mathcal{A}^{\prime \prime}\right) \leq \tau(\mathcal{A})\)
begin
    \(\mathcal{A}^{\prime \prime} \leftarrow \mathcal{A}\)
    temp \(\leftarrow\) temp \(_{0}\)
    while temp \(>\) temp \(_{f}\) do
            for \(i \leftarrow 0\) to \(L-1\) do
                if \(p r\) then \(\mathcal{A}^{\prime} \leftarrow \mathcal{N} \mathcal{F}_{1}(\mathcal{A})\)
                else \(\quad \mathcal{A}^{\prime} \leftarrow \mathcal{N} \mathcal{F}_{2}(\mathcal{A})\)
                    \(\mathcal{A} \leftarrow \mathcal{A}^{\prime}\) with a probability \(\min \left\{1, e^{-\frac{\tau\left(\mathcal{A}^{\prime} \ldots\right)-\tau(\mathcal{A} \ldots . \ldots)}{\text { tem }}}\right\}\)
                if \(\tau(\mathcal{A}, \ldots)<\tau\left(\mathcal{A}^{\prime \prime}, \ldots\right)\) then
                \(\mathcal{A}^{\prime \prime} \leftarrow \mathcal{A}\)
                if \(\tau\left(\mathcal{A}^{\prime \prime}, \ldots\right)=0\) then return \(\mathcal{A}^{\prime \prime}\)
                end
            end
            temp \(\leftarrow\) temp \(\cdot \alpha\)
                if there was an improvement in \(\mathcal{A}^{\prime \prime}\) then \(C E \leftarrow 1\) else \(C E++\)
                if \(C E==f f\) then return \(\mathcal{A}^{\prime \prime}\)
    end
    return \(\mathcal{A}^{\prime \prime}\)
end
```


2.5 Implementation Note

The proposed algorithms were coded using C language and compiled with GCC 4.3.5 with -O3 optimization flag, and run in cores of the type AMD®8 8435 (2.6 Ghz).

3 Results

To measure the effectiveness of MPO, the NIST repository of CA [10] was processed. NIST repository of CA consists of $21,964 \mathrm{CA}$ with $v \in\{2, \ldots, 6\}$ and $t \in\{2, \ldots, 6\}$. For each instance we report: average percentage reduction of rows (Υ), average time in minutes (Γ), and number of instances (I).

Table 1: Results of MPO algorithm after processing entire repository [10]. Information is organized in triplets containing: average percentage reduction of rows (Υ); average time in minutes (Γ); and number of instances (I) (Continues in table 2).

$v \backslash t$		2										
	Υ	$\Gamma(\mathrm{~m})$	I									
2	16.21	3.27	1998	2.95	670.96	1997	1.17	19809.28	90	2.09	6650.83	
3	6.16	9.25	1998	1.42	1753.65	1997	1.06	21141.30	496	2.35	10851.70	111
4	5.20	9.01	1998	0.57	2140.89	1997	0.89	8161.35	304	2.47	16584.87	76
5	3.82	23.95	1998	0.35	2280.55	1968	0.99	9531.80	204	2.60	11895.09	56
6	3.37	64.55	1998	0.37	5097.92	1303	1.07	13944.75	159	2.93	12399.77	41
avg	6.95	20.47	1998	1.19	2236.92	1852.4	1.08	21384.18	250.6	2.35	16769.35	94

Table 2: (Continued from table 1) Results of MPO algorithm after processing entire repository [10]. Information is organized in triplets containing: average percentage reduction of rows (Υ); average time in minutes (Γ); and number of instances (I).
\(\left.\begin{array}{llll}\hline v \backslash t \& \& \begin{array}{c}6

\Upsilon\end{array} \& \Gamma(\mathrm{~m})\end{array}\right] I \quad\)| 2 | 3.83 | 4045.90 | 80 |
| :--- | :--- | :--- | :--- |
| 3 | 4.08 | 8526.52 | 45 |
| 4 | 4.20 | 8715.07 | 30 |
| 5 | 5.16 | 9690.55 | 19 |
| 6 | - | - | - |
| avg | 4.10 | 11647.32 | 43.5 |

Table 1 and table 2 summarize the results of processing NIST repository [10]. Information is organized in triplets containing: Υ, Γ, and I. It is shown that many instances were optimized, resulting in the construction of 349 state of the art upper bounds for CA by using MPO algorithm. The comparison between the MPO new upper bounds and the IPOG-F bounds is shown in tables 3,4 and 5 . Results are shown in figures $3,4,5,6$, and 7 where instances are grouped by combinatorial interaction coverage degree (t).

Figure 3: Results of MPO after processing instances of repository [10] with $t=2 .\left(-\Delta=N-N^{\prime}\right)$

Figure 4: Results of MPO after processing instances of repository [10] with $t=3 .\left(-\Delta=N-N^{\prime}\right)$

Figure 5: Results of MPO after processing instances of repository [10] with $t=4$. $\left(-\Delta=N-N^{\prime}\right)$

Figure 6: Results of MPO after processing instances of repository [10] with $t=5 .\left(-\Delta=N-N^{\prime}\right)$

Figure 7: Results of MPO after processing instances of repository [10] with $t=6 .\left(-\Delta=N-N^{\prime}\right)$

4 Conclusions

In this paper we have presented a Metaheuristic Post-Optimization (MPO) approach to reduce the cardinality of Covering Arrays. MPO was implemented using three components: a redundancy detector, a row reducer, and a missing-combination reducer. The redundancy detector has the mission of detecting elements in CA that could be changed without affecting degree of coverage of CA. The row reducer takes advantage of redundant elements of CA to reduce number of rows. When the removal of a row produces missing combinations, then control is given to the missing-combination reducer. The missing-combination reducer is implemented with simulated annealing (the metaheuristic component of MPO) and tries to make the number of missing combinations equal to zero. Even though all three components are key to the success of MPO, we believe metaheuristic component is the most important part of MPO, given that through its use it is possible to reduce iteratively number of rows of CA.

We have conducted big-scale experimentation through instantiation of MPO with the whole NIST repository of CA. NIST repository consists of

Table 3: New best upper bounds constructed with MPO algorithm. Part 1 of 3 .

$v 3 t 4$				$v 3 t 4$				$v 6 t 4$			
id	k	IPOG-F [9]	MPO	id	k	IPOG-F [9]	MPO	id	k	IPOG-F [9]	MPO
1	315	968	964	44	377	1011	1003	85	85	11441	11384
2	316	969	964	45	379	1013	1007	86	86	11484	11407
3	317	969	963	46	386	1017	1009	87	87	11533	11478
4	318	971	965	47	405	1027	1024	88	88	11577	11504
5	319	971	963	48	439	1046	1045	89	89	11625	11581
6	320	971	963	49	447	1052	1050	90	90	11666	11591
7	321	974	965			$v 6 t 4$		91	91	11710	11630
8	322	974	966	id	k	IPOG-F [9]	MPO	92	92	11753	11671
9	323	975	970	50	49	9323	9212	93	93	11790	11729
10	324	976	965	51	50	9393	9294	94	94	11833	11762
11	325	976	970	52	51	9466	9397	95	95	11874	11800
12	326	976	974	53	52	9550	9463	96	96	11913	11884
13	327	977	973	54	53	9623	9540	97	97	11956	11918
14	328	978	969	55	55	9762	9673	98	98	11997	11924
15	329	979	975	56	56	9828	9742	99	99	12038	11949
16	330	979	976	57	57	9900	9813	100	100	12085	12003
17	331	981	977	58	58	9964	9869	101	101	12120	12036
18	332	981	973	59	59	10032	9948	102	102	12148	12140
19	333	983	975	60	60	10097	10013	103	103	12194	12120
20	335	983	979	61	61	10163	10067	104	104	12231	12185
21	336	983	978	62	62	10219	10142	105	105	12267	12196
22	337	984	977	63	63	10282	10198	106	106	12306	12240
23	338	985	977	64	64	10347	10250	107	107	12343	12268
24	339	986	977	65	65	10398	10328	108	109	12408	12388
25	340	987	978	66	66	10463	10368	109	110	12445	12380
26	341	987	979	67	67	10520	10441	110	112	12517	12449
27	342	987	981	68	68	10578	10478	111	116	12651	12593
28	343	990	985	69	69	10633	10572	112	118	12716	12698
29	345	991	984	70	70	10693	10599	113	120	12785	12734
30	346	992	985	71	71	10745	10676	114	121	12816	12757
31	347	992	985	72	72	10798	10744	115	128	13036	13007
32	348	992	987	73	73	10850	10758	116	129	13062	13056
33	349	992	986	74	74	10909	10821	117	133	13192	13146
34	351	993	991	75	75	10958	10882	118	149	13634	13606
35	353	994	987	76	76	11012	10959			$v 3 t 5$	
36	360	999	994	77	77	11057	10992	id	k	IPOG-F [9]	MPO
37	361	1001	995	78	78	11110	11017	119	35	1867	1826
38	362	1001	996	79	79	11158	11100	120	36	1895	1850
39	364	1002	997	80	80	11203	11121	121	37	1920	1882
40	368	1007	1002	81	81	11253	11187	122	38	1947	1909
41	370	1008	1001	82	82	11303	11219	123	39	1974	1933
42	373	1009	1003	83	83	11353	11282	124	40	1997	1949
43	375	1009	1005	84	84	11397	11319	125	41	2023	1975

Table 4: New best upper bounds constructed with MPO algorithm. Part 2 of 3 .

$v 3 t 5$				v3t5				$v 4 t 5$			
id	k	IPOG-F [9]	MPO	id	k	IPOG-F [9]	MPO	id	k	IPOG-F [9]	MPO
126	42	2046	2002	169	85	2739	2700	210	45	9227	9104
127	43	2070	2022	170	86	2749	2706	211	46	9320	9176
128	44	2091	2050	171	87	2762	2728	212	47	9406	9262
129	45	2112	2071	172	88	2770	2736	213	48	9501	9357
130	46	2130	2086	173	89	2783	2747	214	49	9588	9453
131	47	2150	2112	174	90	2792	2761	215	50	9673	9520
132	48	2174	2134	175	91	2805	2772	216	51	9755	9621
133	49	2191	2154	176	92	2815	2783	217	52	9835	9682
134	50	2213	2182	177	93	2825	2798	218	53	9922	9769
135	51	2231	2198	178	94	2836	2797	219	54	9998	9849
136	52	2251	2217	179	95	2847	2813	220	55	10079	9927
137	53	2269	2232	180	96	2857	2819	221	56	10155	10007
138	54	2289	2246	181	97	2868	2834	222	57	10232	10082
139	55	2309	2277	182	98	2877	2838	223	59	10379	10231
140	56	2327	2281	183	99	2885	2854	224	60	10454	10302
141	57	2342	2304	184	100	2895	2862	225	62	10590	10442
142	58	2358	2316	185	101	2909	2871	226	63	10650	10509
143	59	2373	2335	186	102	2920	2878			$v 5 t 5$	
144	60	2394	2347	187	103	2928	2898	id	k	IPOG-F [9]	MPO
145	61	2408	2370	188	104	2938	2901	227	21	18779	18260
146	62	2425	2387	189	105	2945	2908	228	22	114775	111818
147	63	2440	2397	190	107	2962	2928	229	23	118587	115802
148	64	2451	2413			$v 4 t 5$		230	24	122201	119500
149	65	2468	2439	id	k	IPOG-F [9]	MPO	231	25	125683	123108
150	66	2482	2447	191	26	6957	6775				
151	67	2498	2459	192	27	7116	6937	id	k	IPOG-F [9]	MPO
152	68	2512	2477	193	28	7267	7088	232	17	40334	38976
153	69	2527	2487	194	29	7414	7247	233	18	42102	40820
154	70	2542	2504	195	30	7555	7379	234	19	43833	42554
155	71	2555	2518	196	31	7691	7527	235	20	45425	44224
156	72	2573	2531	197	32	7816	7649	236	21	46970	45784
157	73	2584	2546	198	33	7939	7782	237	22	48479	47352
158	74	2597	2564	199	34	8064	7907	238	23	49924	48838
159	75	2609	2588	200	35	8183	8023	239	24	51287	50180
160	76	2625	2593	201	36	8301	8137	240	25	52604	51505
161	77	2639	2608	202	37	8420	8259	241	26	53850	52814
162	78	2648	2615	203	38	8530	8376	242	27	55069	54032
163	79	2661	2625	204	39	8629	8477	243	28	56225	55275
164	80	2673	2635	205	40	8737	8583	244	29	57363	56353
165	81	2686	2651	206	41	8847	8693	245	30	58468	57503
166	82	2700	2668	207	42	8945	8791	246	31	59529	58576
167	83	2710	2677	208	43	9035	8890	247	32	60570	59612
168	84	2725	2684	209	44	9137	8979	248	33	61562	60608

Table 5: New best upper bounds constructed with MPO algorithm. Part 3 of 3 .

$v 6 t 5$				$v 2 t 6$				$v 4 t 6$			
id	k	IPOG-F [9]	MPO	id	k	IPOG-F [9]	MPO	id	k	IPOG-F [9]	MPO
249	34	62527	61612	290	79	782	770	329	26	33369	32513
250	35	63471	62557	291	80	785	771	330	27	34187	33356
251	36	64399	63519	292	81	791	772	331	28	35006	34198
$v 2 t 6$				293	82	794	778	332	29	35791	34971
id	k	IPOG-F [9]	MPO	294	83	796	787	333	30	36570	35778
252	41	572	547	295	84	800	784	334	31	37305	36515
253	42	579	550	296	85	804	790	335	32	38015	37255
254	43	590	565	297	86	809	799	$v 5 t 6$			
255	44	594	565	$v 3 t 6$				id	k	IPOG-F [9]	MPO
256	45	603	578	id	k	IPOG-F [9]	MPO	336	11	56615	52471
257	46	611	588	298	26	5709	5544	337	12	63620	59622
258	47	617	590	299	27	5853	5667	338	13	70190	66275
259	48	625	600	300	28	6003	5827	339	14	76390	72680
260	49	630	604	301	29	6150	5969	340	15	82139	78480
261	50	636	612	302	30	6281	6103	341	16	87559	84102
262	51	643	620	303	31	6413	6245	342	18	97605	94263
263	52	650	630	304	32	6535	6348	343	19	102208	98994
264	53	656	630	305	33	6656	6461	344	20	106642	103514
265	54	662	640	306	34	6772	6583	345	21	110842	107773
266	55	667	645	307	35	6877	6715	346	22	114775	111818
267	56	672	650	308	36	6989	6832	347	23	118587	115802
268	57	677	663	309	37	7092	6932	348	24	122201	119500
269	58	683	665	310	38	7194	7036	349	25	125683	123108
270	59	689	665	311	39	7293	7131				
271	60	695	675	312	40	7391	7233				
272	61	699	675	313	41	7490	7315				
273	62	703	685	314	42	7574	7411				
274	63	709	685	315	43	7672	7506				
275	64	715	695	316	44	7757	7600				
276	65	721	695	317	45	7845	7702				
277	66	725	705	318	46	7938	7766				
278	67	728	705	319	47	8013	7856				
279	68	732	710	320	50	8256	8108				
280	69	738	724	321	51	8333	8179				
281	70	743	729	$v 4 t 6$							
282	71	747	734	id	k	IPOG-F [9]	MPO				
283	72	751	736	322	19	26392	25430				
284	73	755	743	323	20	27534	26564				
285	74	761	749	324	21	28625	27676				
286	75	766	751	325	22	29640	28735				
287	76	770	755	326	23	30636	29720				
288	77	773	758	327	24	31591	30724				
289	78	777	760	328	25	32501	31654				

21, 964 CA , and while improving almost all CA in repository, the most remarkable result is that we have set 349 new upper bounds for these CA.

Acknowledgements

The authors acknowledge "Xiuhcoatl"-CGSTIC of CINVESTAV and ABA-CUS-CINVESTAV, CONACYT grant EDOMEX-2011-COI-165873, for providing access to high performance computing. This research was partially funded by the project: CONACyT 238469 - Métodos Exactos para Construir Covering Arrays. Part of this paper was written during first author's research stay at NIST in 2014-2015.

Disclaimer

Any mention of commercial products in this paper is for information only; it does not imply recommendation or endorsement by NIST.

References

[1] E.H.L. Aarts and J.K. Lenstra. Local search in combinatorial optimization. Princeton Univ Pr, 2003. ISBN: 0691115222.
[2] H. Avila-George, J. Torres-Jimenez, V. Hernández, and L. GonzalezHernandez. Simulated annealing for constructing mixed covering arrays. In Proceedings of the 9th International Symposium on Distributed Computing and Artificial Intelligence - DCAI, volume 151 of Advances in Intelligent and Soft Computing, pages 657-664, Salamanca, Spain, from 28th to 30th March, 2012. Springer Berlin / Heidelberg.
[3] Himmer Avila-George, Jose Torres-Jimenez, Loreto GonzalezHernandez, and Hernndez Vicente. Metaheuristic approach for constructing functional test-suites. IET Software, 7(2):104-117, 2013.
[4] K.Z. Bell. Optimizing effectiveness and efficiency of software testing: A hybrid approach. PhD thesis, North Carolina State University, 2006.
[5] D. Bertsimas and J. Tsitsiklis. Simulated annealing. Statistical Science, 8(1):10-15, 1993.
[6] M.B. Cohen, C.J. Colbourn, and A.C.H. Ling. Augmenting simulated annealing to build interaction test suites. In Software Reliability Engineering, 2003. ISSRE 2003. 14th International Symposium on, pages 394 - 405, November 2003.
[7] M.B. Cohen, P.B. Gibbons, W.B. Mugridge, and C.J. Colbourn. Constructing test suites for interaction testing. In Proceedings of the 25th International Conference on Software Engineering, pages 38 - 48, Portland, Oregon, USA, May 2003.
[8] Myra B Cohen. Designing test suites for software interaction testing. PhD thesis, University of Auckland, 2004.
[9] M. Forbes, J. Lawrence, Y. Lei, R.N. Kacker, and D.R. Kuhn. Refining the in-parameter-order strategy for constructing covering arrays. Journal of Research of the National Institute of Standards and Technology, 113(5):287-297, 2008.
[10] M. Forbes, J. Lawrence, Y. Lei, R.N. Kacker, and D.R. Kuhn. Repository of CAs. last access September, 2014.
[11] A. Hedayat, N.J.A. Sloane, and J. Stufken. Orthogonal arrays: theory and applications. Springer Verlag, 1999. ISBN: 0-387-98766-5.
[12] A. Jose-Garcia, H. Romero-Monsivais, C. Hernandez-Morales, A. Rodriguez-Cristerna, I. Rivera-Islas, and J. Torres-Jimenez. A simulated annealing algorithm for the problem of minimal addition chains. In Progress in Artificial Intelligence, volume 7026 of Lecture Notes in Computer Science, pages 311-325. Springer Berlin / Heidelberg, 2011.
[13] S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi. Optimization by simulated annealing. science, 220(4598):671-680, 1983.
[14] D.R. Kuhn, D.R. Wallace, and A.M. Gallo Jr. Software fault interactions and implications for software testing. IEEE Transactions on Software Engineering, 30(6):418-421, 2004.
[15] J Lam. An efficient simulated annealing schedule. PhD thesis, Yale University New Haven CT, 1988.
[16] J.L. Lions and et al. Ariane 5 flight 501 failure, accesed 2014-09. Technical report, http://www.di.unito.it/ damiani/ariane5rep.htm, 092014.
[17] G.J. Myers, C. Sandler, T. Badgett, and T.M. Thomas. The art of software testing. John Wiley \& Sons Inc, 2 edition, 2004. ISBN: 0471469122.
[18] P. Nayeri, C. Colbourn, and G. Konjevod. Randomized postoptimization of covering arrays. In Combinatorial Algorithms, volume 5874 of Lecture Notes in Computer Science, pages 408-419. Springer Berlin / Heidelberg, 2009.
[19] N. Rangel-Valdez, J. Torres-Jiménez, J. Bracho-Rıos, and P. QuizRamos. Problem and algorithm fine-tuning - a case of study using bridge club and simulated annealing. In A. Dourado, A. C. Rosa, and K. Madani, editors, IJCCI, IJCCI 2009 - Proceedings of the International Joint Conference on Computational Intelligence, Funchal, Madeira, Portugal, October 5-7, 2009, pages 302-305. INSTICC Press, 2009.
[20] A. Rodriguez-Cristerna, J. Torres-Jimnez, I. Rivera-Islas, C. HernandezMorales, H. Romero-Monsivais, and A. Jose-Garcia. A mutationselection algorithm for the problem of minimum brauer chains. In Ildar Batyrshin and Grigori Sidorov, editors, Advances in Soft Computing, volume 7095 of Lecture Notes in Computer Science, pages 107-118. Springer Berlin / Heidelberg, 2011.
[21] Arturo Rodriguez-Cristerna and Jose Torres-Jimenez. A simulated annealing with variable neighborhood search approach to construct mixed covering arrays. Electronic Notes in Discrete Mathematics, 39(0):249 256, 2012. EURO Mini Conference.
[22] Arturo Rodriguez-Cristerna and Jose Torres-Jimenez. A genetic algorithm for the problem of minimal brauer chains for large exponents. In Soft Computing Applications in Optimization, Control, and Recognition, pages 27-51. Springer, 2013.
[23] G. Tassey. The economic impacts of inadequate infrastructure for software testing. Technical report, Research Triangle Institute, National Institute of Standards and Technology, U.S. Deparment of Commerce, 052002.
[24] J. Torres-Jimenez and E. Rodriguez-Tello. New bounds for binary covering arrays using simulated annealing. Information Sciences, 185(1):137152, February 2012.

