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We demonstrate the violation of an Einstein-Podolsky-Rosen steering inequality developed for single-
photon path entanglement with displacement-based detection. We use a high-rate source of heralded single-
photonpath-entangled states, combinedwith high-efficiency superconducting-based detectors, in a scheme that
is free of any postselection and thus immune to the detection loophole. This result conclusively demonstrates
single-photon entanglement in a one-sided device-independent scenario, and opens the way towards
implementations of device-independent quantum technologies within the paradigm of path entanglement.
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Single-photon entanglement is not only one of the
simplest forms of entanglement to generate, it is both
fundamentally fascinating and potentially practical. At
times its mere existence was debated [1,2]; however, today
it lies at the heart of key quantum information protocols,
such as quantum repeaters [3]. Path entanglement is
generated when a single photon is delocalized over several
modes, or paths, e.g., via a 50=50 beam splitter (BS), where
it produces a state of the form

jΨi ¼ 1ffiffiffi
2

p ðj0iAj1iB þ j1iAj0iBÞ; ð1Þ

where A and B denote the two entangled output modes. The
versatility of this type of entanglement has been demon-
strated in experiments for teleportation [4,5], entanglement
swapping [6,7], purification [8], and the characterization of
multipartite entanglement [9,10], and is the underlying
resource for heralded photon amplification [11–13].
Another direction of interest is to use single-photon

entanglement for demonstrations of quantum nonlocality
and related device-independent (DI) applications. Building
on initial theoretical proposals [14,15] and proof-of-prin-
ciple experiments [16,17], its combination with weak
displacement-based local measurements has been shown
to provide a practical platform for demonstrating loophole-
free Bell-inequality violations [18,19] and more efficient
DI protocols for quantum information processing [20].
Notably, this approach for single-photon path entanglement
offers a promising alternative to standard setups based on
two-photon entanglement, with clear practical advantages,
as the entanglement is heralded, and at high rates, e.g.,
compared to atomic systems [21–24], as well as being
easily scalable to networks involving more parties [25].

Here we report the observation of Einstein-Podolsky-
Rosen steering via local weak displacements performed
on single-photon entanglement, as illustrated in Fig. 1.
Proposed by Schrödinger, steering was only recently cast in
an operational form within quantum information theory
[26]. In a steering experiment, as in Fig. 1, two separate
parties (Alice and Bob) share an entangled state. By
performing a local measurement on her system, Alice can
remotely steer the state of Bob’s system. By observing this
effect, Bob can verify that the shared state is indeed
entangled without trusting (or equivalently, without any
knowledge of) the measurements performed by Alice. This
can be seen as a more stringent test of entanglement than
experiments using an entanglement witness, where the
measurements of both parties must be well characterized,
and less stringent than a Bell inequality test, where none of
the parties need to be characterized. Steering represents the
key resource for one-sided DI protocols [27,28] and has
recently been demonstrated in detection loophole-free

FIG. 1. Conceptual view of our steering experiment. Single-
photon path entanglement is created by splitting a single photon
on a beam splitter. Entanglement between the output modes of the
beam splitter is certified in a one-sided DI scenario, via violation
of a steering inequality. Alice’s device is untrusted (black box),
while Bob’s device implements characterized (hence trusted)
displacement-based detections where the displacement DðαÞ is a
function of a measurement input y.
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experiments in polarization [29–31] aswell as single-photon
entanglement, although using homodyne detection [32].
In the following, we first theoretically develop a steering

test (a so-called steering inequality [33]) tailored to our
scheme. We then present an experimental violation of our
steering inequality by four standard deviations, using a
heralded single-photon source (HSPS) and an all-fiber
displacement-based measurement scheme featuring high-
efficiency superconducting nanowire single-photon detec-
tors. As our scheme is inherently free of any postselection, it
is immune to the detection loophole [34]. Our experiment
thus provides a conclusive demonstration of single-photon
path entanglement in a one-sided DI scenario. Moreover,
unlike homodyne-based schemes [32], our approach is
directly extensible to a loophole-free Bell-inequality test,
and thus to the implementation of fully DI protocols [21,35].
Steering.—In a steering test, as in Fig. 1., Alice remotely

steers the state of Bob’s system by performing a local
measurement on a shared quantum state ρ. Specifically, let
σajx ¼ tr½ρðMajx ⊗ 1Þ� denote the (unnormalized) state of
Bob when Alice measures x and obtains outcome a,
corresponding to a measurement operator Majx. The set
of conditional states fσajxga;x (an assemblage) is termed
unsteerable if it can be created by a local strategy without
using entanglement, that is, if there exists a local hidden
state (LHS) model [26] compatible with it,

σajx ¼
X
λ

πðλÞpðajxλÞσλ ∀ a; x; ð2Þ

where σλ represents the LHS, distributed with density πðλÞ,
and pðajxλÞ is Alice’s response function. To verify steer-
ing, Bob must rule out the existence of a LHS model
reproducing the data. This can be certified via violation of
so-called steering inequalities [33] (analogous to Bell
inequalities).
Steering inequality for displacements.—The demonstra-

tion of steering requires the use of several incompatible
local measurement bases. In the case of single-photon
entanglement, it is natural to consider the Fock basis, i.e.,
the Z basis, where perfect anticorrelations are expected for

state (1). In order to access other (incompatible) bases, the
use of an additional physical system must be considered,
the role of which is essentially to provide a common
reference frame [2,19]. Here, we consider displacement-
based measurements, which consist in an optical displace-
ment DðαÞ followed by single-photon detections (without
photon-number resolution). In practice they can be imple-
mented by interfering the mode to be measured with a weak
local oscillator (LO) on a highly transmissive beam splitter,
and then detecting the transmitted mode, while the reflected
mode is discarded [36] (see the inset of Fig. 2). A no-click
outcome corresponds to the projectorΠðαÞ ¼ jαihαj, where
jαi is a coherent state corresponding to the displacement
α ¼ reiθ, where r ≥ 0 and θ ∈ ½0; 2π� [14,18]. Assigning
outcomes �1 to the click and no-click events, respectively,
a displacement measurement then corresponds to the
observable MðαÞ ¼ 2jαihαj − 1. Note that such measure-
ments are always conclusive, as no-click events are not
discarded.
Deriving a steering inequality for our setup is nontrivial

because Bob’s measurement operator, with binary out-
comes, lives in an infinite-dimensional Hilbert space.
However, we can take advantage of the fact that our target
state [of the form (1)] lives in the 0–1 photon subspace, i.e.,
a simple qubit subspace. We thus first derive a steering
inequality valid in the qubit subspace (using existing
methods developed for discrete systems [37,38]) and then
extend it to the full space.
Specifically, we derive a steering inequality for a

scenario with four measurements for Alice (x ¼ 1, 2, 3,
4) and binary output a ¼ �1 of the form

S0 ¼ tra

�
G0

Rσ
0
R þ

X4
x¼1

G0
xσ

0
þjx

�
≤ S0max; ð3Þ

where σ0R ¼ σ0þjx þ σ0−jx is the reduced state of Bob, andG
0
R

and G0
x are 2 × 2 matrices (see [39] for details). The

inequality holds for any unsteerable assemblage [i.e.,
admitting a decomposition of the form (2)]; hence,
violation of the inequality certifies steering. The bound
S0max is given by the largest eigenvalue of the matrices
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FIG. 2. Experimental setup. A heralding single-photon source is coupled into fiber and incident on a fiber BS, generating heralded
entanglement, while local oscillator states, switched by an EOM, are coupled into the same BS with orthogonal polarization. Weak
displacements, D̂ðαÞ, D̂ðβÞ, are performed in an all-fiber configuration (inset) followed by single-photon detectors that constitute the
displacement-based detection. See the main text for details and notation.
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G0
R þP

xlxG
0
x, considering any possible deterministic

strategy labeled by lx ¼ 0, 1 (see [39]).
Next, we consider the restriction of ΠðαÞ to the qubit

subspace,

Π0ðαÞ ¼
�

e−r
2

e−r
2−iθr

e−r
2þiθr e−r

2

r2

�
: ð4Þ

By choosing a set of amplitudes αy, we can get a set of
operators that spans the 2 × 2 space together with the
identity. The G0 matrices can then be resolved on these
[note that the decomposition is not necessarily unique when
the operators Π0ðαyÞ are not linearly independent],

G0
ν ¼

X4
y¼1

cνyΠ0ðαyÞ þ cν01; ð5Þ

for some real coefficients cνy. For our experiment, we take
four settings on Bob’s side (labeled by y ¼ 1;…; 4), given
by amplitudes αy, with fixed r > 0 and phases
θ ∈ f0; π=2; π; 3π=2g. The measurement outcome is
denoted b ¼ �1. We now construct an expression analo-
gous to (3) in the full space as follows. We define

S ¼ tr

�
GRσR þ

X4
x¼1

Gxσþjx

�
; ð6Þ

with

Gν ¼
X4
y¼1

cνyΠðαyÞ þ cν01; ð7Þ

where we are no longer restricted to the 0–1 photon
subspace. Similarly to S0, the quantity S defines a steering
inequality with the bound given by the maximal eigenvalue
of the matrices GR þP

xlxGx (where as before lx ¼ 0, 1).
This value can be found approximately by introducing a
cutoff in photon number. We increase the cutoff until the
numerically found maximal eigenvalue no longer changes.
For small r, the cutoff does not need to be very large, e.g.,
for r ¼ 0.2, a cutoff at n ≤ 4 is sufficient. Thus, we arrive at
a steering inequality S ≤ Smax. In general, the bound is
larger than in the subspace, i.e., Smax > S0max.
The expression S can be computed directly from the

experimental data. Using (7) and the definitions of σR and
σþjx we can rewrite S in terms of the observed conditional
probabilities pða; bjx; yÞ, and obtain the steering inequality

S ¼
X4
x;y¼1

X
a;b¼�1

cabxypða; bjx; yÞ þ c0 ≤ Smax; ð8Þ

for a new set of real coefficients cabxy , c0 (see [39]).
Numerical optimization shows that the violation of the
above steering inequality is possible using a single-photon
entangled state (1), provided the total transmission and
detection efficiency is above ∼43%.

Experiment.—The experimental setup is shown in Fig. 2.
The HSPS is based on type-II spontaneous parametric
down conversion in a PPKTP crystal satisfying the phase-
matching condition 772 nm → 1541 nmþ 1546 nm. The
HSPS is pumped by a Ti:sapphire laser in the picosecond
regime to generate pure (> 90%) photons without fre-
quency filters [40]. The probability of generating a photon
pair was set to 10−3. The photons are then separated by a
polarizing beam splitter. Detection of one photon at
1546 nm heralds the presence of a single photon at
1541 nm in the mode of an optical fiber with a heralding
efficiency close to 80%. A 0.5 nm interference filter is
placed on the heralding photon path of the HSPS so that the
purity of the heralded photon approaches unity. The
heralded single photon is subsequently sent to a 50∶50
BS, and delocalized over two distinct spatial modes, thus
producing the path entangled state (1).
To generate the LO in the same time and frequency

mode as the heralded photons a second nonlinear crystal
configured for difference frequency generation (DFG) is
employed. For that, the crystal is pumped by the same laser
as the HSPS and seeded with a cw laser at 1546 nm [41]. A
delay line on the pump laser, between the two sources, is
used to temporally synchronize them and is also varied to
measure the Hong–Ou–Mandel (HOM) type interference,
confirming the indistinguishability between the single
photon and the coherent state (> 97%; see [39]). The LO
is coupled into a single mode optical fiber, with an
orthogonal polarization with respect to that of the path-
entangled state at the same 50∶50 BS used to generate the
entangled state. In this way, any phase fluctuations that
affect the single photon equally affect the LO, and the
relative phases between the two are maintained even when
propagating through fiber. At this stage the coherent states
contain roughly 100 photons per pulse.
Weak displacement measurements are performed in an

all-fiber configuration by Alice, D̂ðαÞ, and Bob, D̂ðβÞ,
interfering their respective share of the entangled state with
the LO into a single polarization mode. In the inset of Fig. 2
we see the conceptual version of a displacement operation
using a variable BS and the equivalent fiber implementa-
tion. This is achieved through a set of polarization rotators
(PC) followed by a polarizer (LP), which effectively acts as
a variable ratio BS. The polarization rotators consist of
three piezo actuators that introduce small pressure-induced
birefringence in the optical fiber. The polarizers project part
of the LO and the photon onto the same polarization mode,
where we can vary both the phase θ and amplitude r of the
displacement operations.
The challenge of this experiment is to optimize each

element for maximum transmission. The fields in the
output modes are finally detected using MoSi supercon-
ducting nanowire single-photon detectors (SNSPD) [42]:
efficiency 85%, noise 10 kHz, jitter 100 ps, and temper-
ature 1 K. Considering the coupling efficiency of 80% and
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the total transmission of all optical elements in the setup of
78% (five fiber connectors 90%, BS 98%, PC 98%, and LP
90%), we obtain a probability of 52% to detect the heralded
photon in the case of no displacement. After a detection the
SNSPDs are inactive for a short 100 ns recovery time, so we
placed a pulse picker, based on electro-optic (amplitude)
modulation (EOM), at the output of the DFG source to
reduce the rate of the experiment to 9.5 MHz. We then use a
logic gate to only herald entangled states when the coherent
state is present, achieving a repetition rate for heralded
entanglement of ∼2 kHz. To perform the data analysis all
the detection events are recorded using a time-to-digital
converter (ID Quantique, ID801).
The bound Smax corresponds to an ideal displacement

and perfect single-photon detection. In the experiment, the
displacement is implemented using a BS of finite trans-
mittivity, and the single-photon detectors have finite
efficiency. Since Bob is a trusted party, this can, in
principle, be accounted for if these parameters are mea-
sured, and leads to a lower value of the bound. However, we
use the more stringent bound, which is not influenced by
experimental uncertainties on the detector efficiency, i.e.,
that all the losses due to the detector inefficiency are
considered as losses before the displacement.
To set the displacement amplitudes, we measure the

probability of obtaining a detection when only the coherent
state is present and obtain rA ¼ 0.233� 0.013 and
rB ¼ 0.217� 0.005, which according to theoretical mod-
eling should give a clear violation of (8). In order to
implement the different measurement settings, we must
vary the phase of the displacements. We implement an
active phase change on Alice’s side, while Bob’s remains
fixed. We vary Alice’s phase (thus changing the relative
phase between Alice and Bob) in small steps and record the
number of detection and nondetection events. From the
results, we extract the joint probabilities pða; bÞ as a
function of Alice’s phase, shown in Fig. 3.
To obtain the probabilities pða; bjx; yÞ, we then pick four

points on the curve (indicated by arrows) corresponding to
x ¼ 1, 2, 3, 4 and y ¼ 1. In order to obtain the probabilities
for y ¼ 2, 3, 4, we observe that fixing Bob’s phase
corresponds to choosing a given reference frame. Note
that the phase of the LO is not well defined; in other words
there is no preferred reference frame. If the amplitude rA is
independent of the phase, then going from one frame to
another (i.e., changing Bob’s phase) corresponds to a
permutation of the labels of Alice’s measurements. Here
we assume the latter, which allows us to extract all
probabilities pða; bjx; yÞ from the data, and hence test
the steering inequality.
This analysis leads to ΔSexp ¼ S − Smax ¼ ð4.95�

1.24Þ × 10−3, i.e., a violation of the steering inequality
by four standard deviations (error calculation details are
given in Supplemental Material [39]). To cross-check this
result, we fit the data of Fig. 3 to a cosine (as expected from

theoretical modeling) and extract pða; bjx; yÞ from the fit.
We obtain ΔSfit ¼ ð2.19� 1.05Þ × 10−3. This is in good
agreement with theoretical predictions (obtained from the
estimated density matrix and experimental parameters):
ΔStheo ¼ ð3.23� 0.21Þ × 10−3. The fact that ΔSexp gives a
larger value is primarily due to the data point corresponding
to maximal correlations being slightly above the fit.
Discussion.—We have demonstrated steering of a single-

photon entangled state via local weak-displacement mea-
surements based on a novel steering inequality adapted to
our setup. The four standard deviation violation represents
a conclusive measurement of single-photon entanglement
in a one-sided DI scenario, with applications to partially DI
protocols, such as one-sided DI cryptography.
As our setup is completely free of any postselection, it is,

in principle, directly amenable to a loophole-free Bell
inequality test. This requires increasing the global detection
efficiency from about 50% tomore than 83.5% for a bipartite
test, or > 74% for four-partite Bell tests with three settings
per party. As efficiencies of 75%have already been achieved
in the bipartite case [43,44], and three-partite single-photon
entanglement has been demonstrated [25], the prospects are
promising. In particular, the losses due to optical elements
can be significantly reduced by removing the fiber con-
nectors, currently used for alignment, e.g., by splicing, as
well as incorporating approaches of Refs. [43,44] to imple-
ment the polarization projection for the displacements. This
platform thus has clear potential for future implementations
of DI and semi-DI protocols at high rates.
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FIG. 3. Observed joint probabilities pða; bÞ for click and no-
click events of Alice and Bob as functions of the relative phase
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identify which points (arrows) are used to compute the steering
value. Error bars (sometimes smaller than the points) correspond
to one standard deviation.
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