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Abstract: Acetylene separation is a very important but chal-

lenging industrial separation task. Here, through the solvo-
thermal reaction of CuI and 5-triazole isophthalic acid in dif-

ferent solvents, two metal–organic frameworks (MOFs, FJU-
21 and FJU-22) with open O donor sites and controllable ro-
bustness have been obtained for acetylene separation. They

contain the same paddle-wheel {Cu2(COO2)4} nodes and
metal–ligand connection modes, but with different helical

chains as secondary building units (SBUs), leading to differ-
ent structural robustness for the MOFs. FJU-21 and FJU-22
are the first examples in which the MOFs’ robustness is con-
trolled by adjusting the helical chain SBUs. Good robustness

gives the activated FJU-22 a, which has higher surface area

and gas uptakes than the flexible FJU-21 a. Importantly, FJU-

22 a shows extraordinary separation of acetylene mixtures
under ambient conditions. The separation capacity of FJU-
22 a for 50:50 C2H2/CO2 mixtures is about twice that of the
high-capacity HOF-3, and its actual separation selectivity for
C2H2/C2H4 mixtures containing 1 % acetylene is the highest

among reported porous materials. Based on first-principles
calculations, the extraordinary separation performance of

C2H2 for FJU-22 a was attributed to hydrogen-bonding inter-
actions between the C2H2 molecules with the open O

donors on the wall, which provide better recognition ability
for C2H2 than other functional sites, including open metal

sites and amino groups.

Introduction

Removal of acetylene from C2H2/C2H4 mixtures is an important
and highly challenging industrial process.[1–5] Ethylene, the larg-
est volume organic chemical, is widely used for the production

of polymers. Ethylene produced in steam crackers typically
contains on the order of 1 % of acetylene,[6] which should be
reduced to an accepted level in the ethylene feed before poly-
merization, because acetylene can poison Ziegler–Natta cata-
lysts and also lower the resulting product quality.[7] Current ap-

proaches to remove acetylene include partial hydrogenation
over a noble metal catalyst[8] and the solvent extraction of

cracked olefins,[9] but both of these are cost and energy con-
sumptive.

The emerging microporous metal–organic frameworks

(MOFs)[10–13] based on physical adsorption are promising as
cost-effective and efficient materials for gas separation, which

has been a topic of interest because the ability to rationally
design and chemically tune their architecture of the MOFs
allows chemists to establish various methods to achieve highly

selective gas adsorption.[10–29] Since the pioneered work of Kita-
gawa and co-workers,[14] some MOFs with high acetylene stor-

age have been realized by using immobilized open metal sites
(OMS).[30, 31] For C2H2/C2H4 separation, after the first work realiz-

ed by using the flexible MOFs on the basis of metalloligands in
2011,[2] the series of MOF-74[3] with high densities of open
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metal sites and NOTT-300[4] with multiple weak supramolecular
interactions were also employed. However, these three kinds

of MOFs are not the ideal materials ; the former exhibit very
low acetylene uptake and the latter two show very low selec-

tivity toward acetylene. A recent MOF, UTSA-100, containing
amino groups[5] is a unique example for actual column break-
through experiments of C2H2/C2H4 mixtures, giving moderate
selectivity and moderate acetylene uptake. Additionally, owing
to the similar fluid properties of acetylene and CO2, the effi-

cient separation of C2H2/CO2 mixture is another technologically
interesting issue.[14, 28] A few MOFs and zeolites with relevant
differences in capacity for C2H2/CO2 have been developed,
mainly through tuning the cross-section size of the pore.[32] To

date, no MOFs or other porous materials have been found
with actual C2H2/CO2 breakthrough experiments, except one

hydrogen-bonded organic framework (HOF-3),[33] however, this

has low separation capacity. The MOFs for the separation of
C2H2 mixtures have not been fully explored. It is still desirable

to explore new ways to construct the MOFs with excellent per-
formance for the challenging separations of C2H2/CO2 and

C2H2/C2H4 mixtures.
In this work, through solvothermal reactions of 5-triazole iso-

phthalic acid (H2L), CuI, and various solvents, two MOFs

{[Cu(L)](DMF)(H2O)1.5}n (FJU-21, DMF = N,N’-dimethylformamide)
and {[Cu(L)]·(DMA)(H2O)1.5}n (FJU-22, DMA = N,N’-dimethylacet-

amide) with open O donor sites and controllable robustness
have been obtained for the highly selective separation of both

C2H2/CO2 and C2H2/C2H4 mixtures. This was done on the base
of the following considerations. (1) The remarkable difference

between C2H2 and other gases including CO2 and ethylene is

the acidic hydrogen atoms at both ends of acetylene. Thus,
the different framework flexibilities, different OMS and amino

groups, and the open O donors can endow the MOFs with ex-
clusive recognition ability for C2H2 through extra hydrogen-

bonding interactions. (2) The use of 5-triazole isophthalic acid
(H2L) containing one heterocyclic and two carboxylate groups

to construct the MOFs may generate rich open O donor sites

(without H riding) standing on the framework wall to recog-
nize acetylene. (3) Solvent-induced structure diversity with con-
trollable robustness may be observed to further control the
acetylene separation capacity. As expected, the open O donors

can provide the MOFs better recognition ability for C2H2 than
other functional sites, including the OMS and amino groups.

The activated FJU-22 a with open O donors and good robust-
ness exhibits extraordinary separation performances for both
C2H2/CO2 and C2H2/C2H4 mixtures at ambient conditions as

demonstrated by gas adsorption, breakthrough simulations,
actual column breakthrough experiments, and first-principles

calculations.

Results and Discussion

Solvent-induced structure diversity

Green needle-like crystals of FJU-21 could be obtained in

DMF/H2O (3:2, v/v) mixed solvent at 85 8C for 1 day, and bulk
crystals of FJU-22 could be obtained by the same method

except that DMF was replaced by DMA. Single-crystal X-ray dif-
fraction analyses reveal that FJU-21 and FJU-22 have the same

metal nodes and metal–ligand connection modes (Figure 1). In
each crystallographically independent unit, there is one CuII

ion and one ligand. The CuII ion is fivefold coordinated by four

oxygen atoms and one triazolyl N donor from five ligands and
has a square-pyramidal coordination environment. Two CuII

ions are bridged by four carboxylate groups to give a paddle-
wheel node (PWN). The axial site of the PWN is occupied by tri-

azolyl N donors. The ligand L employs its one triazole N and

four carboxylate O atoms to link three PWNs. In FJU-22, the
twist angle between the triazole ring and the plane of the ben-

zene ring of the ligand L (46.98) is higher than that of FJU-21
(41.38), as shown in Figure 1 i and b. The non-planarity of

ligand L with various twist angles endows the two MOFs with
various helical chains that act as secondary building units

Figure 1. The structures of FJU-21 (a–g) and FJU-22 (h–m) showing: the co-
ordination environment of FJU-21 (a) and FJU-22 (h) ; the twist angle be-
tween the triazole ring and the plane of the benzene ring of the ligand in
FJU-21 (b) and FJU-22 (i) ; the two kinds of helical chain SBUs of FJU-21 (c
and d) along the b axis ; the unique kind of helical chain SBUs with various
pitches along the a and c axes in FJU-22 (j and k); the triazole-pillared
[Cu2(isophthalate)4] bilayers in the orientation of the (200) plane of FJU-
21 (e) ; the [Cu2(isophthalate)4] monolayers in the orientation of the (100)
plane of FJU-21 (f) ; 3D framework of FJU-21 along the b axis (g); and 3D
framework of FJU-22 view along the a and c axes (l and m). Color code: Cu,
green; C, gray; O, red; N, blue.
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(SBUs). FJU-22 has a unique type of helical chain SBU with dif-
ferent pitches composed of the PWNs and N-benzene triazole

linkers along the a and c axes (Figure 1 j and k). The linkage
between adjacent SBUs sharing the PWNs results in a three-di-

mensional (3D) skeleton (Figure 1 l and m). FJU-21 has two
types of helical chain SBUs along the b axis. One has the

same composites as that in FJU-22 (Figure 1 c), which connects
with the neighboring SBUs to give triazole-pillared

[Cu2(isophthalate)4] bilayers in the orientation of the (200)

plane (Figure 1 e), whereas the other is made up of the PWNs
and isophthalate linkers (Figure 1 d), and connects with the ad-
jacent SBUs to produce [Cu2(isophthalate)4] monolayers orient-
ed at the (100) plane (Figure 1 f). The bilayers and monolayers

stack on each other by layer-sharing along the a axis to form
the 3D framework (Figure 1 g). By considering the PWN as

a six-connected octahedral node and the ligand as a three-con-

nected trigonal linker, the whole frameworks of FJU-21 and
FJU-22 can be simplified to a (3,6)-connected net with rutile

(rtl) and a-PbO2 (apo) topology, respectively. FJU-21 shows
a 1D channel along the a axis (5.00 Õ 9.60 æ2), whereas FJU-22
also has a 1D channel, but along the c axis (7.10 Õ 7.10 æ2 ; Fig-
ure S1 in the Supporting Information). PLATON calculations[34, 35]

of FJU-21 and FJU-22 indicate their void volumes are 923.7 æ3

(52.1 % of the unit cell volume of 1773.3 æ3) and 1908 æ3

(52.8 % of the unit cell volume of 3614.2 æ3), respectively.

Owing to the same metal node and metal–ligand connec-
tion mode, FJU-21 and FJU-22 have similar pore surface struc-

tures. Nevertheless, it is worth noting that the solvent-induced
structural diversity gives the two MOFs distinct robustness

properties. The two as-synthesized MOFs were exchanged with

CH3OH and CH2Cl2, respectively, several times, then heated to
60 8C, and evacuated under high vacuum to obtain the desol-

vated frameworks FJU-21 a and FJU-22 a. FJU-21 a is flexible,
whereas FJU-22 a shows good robustness, as proved by

powder X-ray diffraction experiments (PXRD; Figure S2 in the
Supporting Information). For FJU-22, with the one unique type

of helical chain SBU, the 2q values are not shifted for the acti-

vated sample compared to the as-synthesized sample pattern.
However, for FJU-21, which contains one more type of helical

chain SBU, the values of 2q for the (100) and (002) planes are
shifted to higher angles for the activated sample, and no shift
for the (020) plane is seen, indicating that the dynamic fea-
tures are down to the [Cu2(isophthalate)4] monolayers oriented

at the (100) plane and constructed from the helical chains ex-
clusively in FJU-21 and not observed in FJU-22. In addition, if
exposed to air or water vapor, the values of 2q for FJU-21 are

shifted, whereas for FJU-22 there is no obvious change under
the same conditions, further indicating that FJU-22 has better

stability than FJU-21. Although several methods including
those using high-valent metal ions,[36] modulated synthesis,[37]

N-donor ligands,[38] and superhydrophobic ligands[39] have

been proposed to enhance MOF stability, FJU-21 and FJU-22
are the first examples to demonstrate control of MOF stability

and robustness by adjusting the helical chain SBUs.

Gas adsorption

To assess the permanent porosity, the N2 sorption isotherms of
the activated FJU-21 a and FJU-22 a materials were examined

at 77 K (Figure 2), which yielded a reversible type I isotherm for
the microporous nature of the samples with Brunauer–

Emmett–Teller (BET) surface areas of 369.10 and 828.19 m2g¢1,
respectively. FJU-21 a shows a bimodal pore size distribution
centered at 5.2 and 8.7 æ, and FJU-22 a has a distribution cen-

tered at 8.0 æ, as calculated by the non-local (NL)-DFT method;
these values are close to the pore sizes determined from the

crystal structures (Figure S1 in the Supporting Information). Al-
though their void volumes from the Platon calculations are
close, the BET surface area for FJU-21 a, with the dynamic
framework, is only about half that for FJU-22 a. The flexible

character of FJU-21 is further confirmed by a hysteresis loop in
the N2 adsorption isotherm at 77 K.

The unique pore structures encouraged us to examine the

capacities of the two MOFs for gas adsorption. The low-pres-
sure sorption isotherms of CO2, C2H2, and C2H4 were collected

at 273 and 296 K (Figure 2 and Figure S3 in the Supporting In-
formation). At 296 K and 1 bar, FJU-22 a can adsorb 111.3,

114.8, and 85.8 cm3g¢1 of CO2, C2H2, and C2H4, respectively. The

adsorption isotherms for C2H2, CO2, and C2H4 on FJU-21 a are
very similar to those for FJU-22 a and the adsorption capacity

follows the same hierarchy: C2H2>CO2>C2H4. This phenomen-
on may be attributed to the same pore surface structure re-

sulting from the same metal node and ligand connection
mode. However, the halved BET surface area for FJU-21 a
makes its various gas uptakes fall to half the corresponding

values of FJU-22 a. Furthermore, it is worth noting that the
acetylene uptake isotherms for FJU-21 a and FJU-22 a at 296 K

show a very sharp uptake at low pressure, whereas carbon di-
oxide uptake is much lower at this pressure. This discovery

motivated us to examine their feasibility for the industrially im-
portant C2H2/CO2 separation.

C2H2/CO2 column breakthrough experiments

We first performed breakthrough simulations for a 50:50 (v/v)
C2H2/CO2 mixture on FJU-21 a and FJU-22 a by using the estab-
lished methodology.[40] As shown in Figure S4 (in the Support-
ing Information), FJU-21 a and FJU-22 a are able to separate

C2H2 from the C2H2/CO2 mixture at room temperature. Clearly,
FJU-22 a, with good robustness, is more effective than FJU-
21 a for the C2H2/CO2 separation. Thus, we only studied the

actual performance of FJU-22 a in the experimental column
breakthrough.

In the actual column breakthrough experiment, an equimo-
lar C2H2/CO2 mixture was flowed over a packed column of the

FJU-22 a solid with a total flow of 5 cm3 min¢1 at 296 K

(Figure 3). CO2 was detected after the gas mixture has been in-
troduced into the column for about 12 min, whereas C2H2 was

not detected until a breakthrough time of 23 min was reached.
Thus, the separation of C2H2/CO2 mixture gases through

a column packed with FJU-22 a solid can be achieved efficient-
ly. The breakthrough times of CO2 and C2H2 on the unique
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pore material HOF-3 were 5.5 and 9 min, respectively.[33] From

the breakthrough curve, the separation selectivity, a = (q1y2)/
(y1q2), for FJU-22 a is 1.9, and close to 2.0 for HOF-3. However,

FJU-22 a has a separation capacity of 44.13 cm3g¢1, which is
much higher than the value of 25.54 cm3g¢1 for HOF-3. At the

same separation conditions, FJU-22 a, with the open O donors,

shows better performance than HOF-3, containing functional
amino groups. FJU-22 a is the first example of a MOF whose

separation of a C2H2/CO2 mixture has been clearly established
by column breakthrough experiments.

First-principles calculations

To further understand the C2H2 and CO2 adsorption on FJU-
22 a, detailed computational investigations were performed.
We first optimized the bare FJU-22 a structure by first-princi-

ples DFT-D (dispersion-corrected density-functional theory) cal-

culations,[41] and then carried out Grand Canonical Monte Carlo
(GCMC) simulations by using the classical force-field method.

Based on the probability distribution of adsorbed gas mole-
cules generated from the GCMC simulations, we introduced

C2H2/CO2 accordingly into the FJU-22 a channel pore, and fur-
ther optimized the structures by using DFT-D. We found that

the guest molecules are associated with particular adsorption
sites. Upon adsorption, both C2H2 and CO2 sit right at the small

cage connecting the two adjacent channel pores (Figure 4 and
Figure S5 in the Supporting Information). Although the linker
triazole ring has van der Waals (vdW) interactions with C2H2,

the relatively strong binding between C2H2 and FJU-22 a clear-
ly comes from the hydrogen-bonding interactions between

the C2H2 and the framework O (d[O(-CO2)···H(C2H2)] = 2.290 æ);
this interaction does not exist between CO2 and FJU-22 a and

CO2 adsorption in the structure is mainly vdW-type in nature.

The static C2H2 and CO2 binding energies for FJU-22 a, derived
from the DFT-D calculations, are 33.3 and 22.6 kJ mol¢1, respec-

tively. This difference in the gas/MOF framework interaction
strength is likely the reason why the performance of separa-

tion for C2H2/CO2 is outstanding in FJU-22 a at room tempera-
ture.

Figure 2. N2 sorption isotherm and pore-size distributions at 77 K of FJU-
21 a (a) and FJU-22 a (b). Adsorption isotherms for C2H2, CO2, and C2H4 on
FJU-21 a (c) and FJU-22 a (d) at 296 K (solid symbols: adsorption; open sym-
bols: desorption).

Figure 3. Experimental column breakthrough curve for an equimolar C2H2/
CO2 mixture in an adsorber bed packed with FJU-22 a (c) or HOF-3 a
(a) at ambient conditions (296 K, 1 bar). The total flow is of 5 cm3 min¢1.
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C2H2/C2H4 breakthrough experiments

The performance of FJU-22 a for the removal of acetylene

from C2H2/C2H4 mixtures containing 1 % acetylene was exam-
ined through experimental column breakthrough in which

a C2H2/C2H4 (1:99, v/v) mixture was flowed over a packed
column of the FJU-22 a solid with a total flow of 1.8 cm3 min¢1

at 296 K. As shown in Figure 5, the separation of the C2H2/C2H4

mixture gases through a column packed with FJU-22 a solid
can be efficiently achieved, and the separation selectivity, a,

for C2H2/C2H4 is 25.8. The adsorption and separation data for

C2H2 and C2H4 gases on FJU-22 a and some representative
MOFs are given in Figure 6 and Table S4 (in the Supporting In-

formation). M’MOF-3 a, with a flexible framework, exhibits rela-
tive high separation selectivity (24.0), but very low acetylene

uptakes, because of narrow pores and high sieving effects.[2]

High densities of open metal sites can significantly endow the

series of MOF-74 with high acetylene uptakes, but their selec-

tivities for C2H2/C2H4 separation are systemically quite low[3] as
the open metal sites have quite strong interactions toward

both ethylene and acetylene molecules. NOTT-300 has multiple
weak supramolecular interactions aligned within the host to

form an optimal geometry for the selective binding of hydro-

carbons, but the selectivity toward C2H2/C2H4 is still very low.[4]

The multiple supramolecular interactions in NOTT-300 include

the hydrogen-bonding interactions between C(C2H2 or C2H4)
and H-O(framework), which are clearly distinct from those be-

tween O(framework) and H-C(C2H2) in FJU-22 a. The former
cannot recognize acetylene and ethylene very well, whereas

the latter endows FJU-22 a with exceptionally high selectivity.

UTSA-100 a,[5] containing amino groups with dual functionali-
ties to simultaneously bind acetylene and sieve ethylene, has

a relative high selectivity, about five times that for MOFs con-
taining OMS. It is worth noting that FJU-22 is isostructural

with UTSA-100. The enthalpies of acetylene adsorption on
both MOFs are almost same, but the separation selectivity, a,

of FJU-22 a is more than twice that for UTSA-100 a, indicating

that even in UTSA-100 a (Figure S6 in the Supporting Informa-
tion), the main contribution for its high selectivity toward acet-

ylene may also come from the open O donor sites on the
framework wall, rather than the amino groups. Conversely, the

extra amino groups of UTSA-100 a, to a certain extent, de-
crease its static C2H2 uptake. Despite its moderate static acety-

lene uptake, FJU-22 a has the highest separation selectivity for
the C2H2/C2H4 mixture among the reported porous materials.
Based on the discussion above, open O donors on the pore

wall can provide MOFs with better recognition for C2H2/C2H4

mixtures than the OMS and amino groups. FJU-22 a is thus su-

perior to the other MOFs, exhibiting highly efficient removal of
acetylene from ethylene/acetylene mixtures containing 1 %

acetylene.

Conclusions

We have observed solvent-induced topological diversity ena-

bling controllable robustness in two metal–organic frameworks
(FJU-21 and FJU-22) and have demonstrated that microporous

Figure 4. The C2H2 (a) and CO2 (b) molecules sit right at the small cage con-
necting the two adjacent channel pores. Multiple-point interactions of the
C2H2 with framework: d[O(-CO2)···H(C2H2)] = 2.290 æ, d[center(-triazolyl)-
···C(C2H2)] = 3.563 æ; multiple-point interactions between CO2 molecule and
the framework: d[O(-CO2)···C(CO2)] = 3.316 æ, d[C(-benzene)-
···O(CO2)] = 3.389 æ. Color code: Cu, green; C, gray; H, yellow; O, red; N, blue.

Figure 5. Experimental column breakthrough curve for an C2H2/C2H4 (1:99,
v/v) mixture in an adsorber bed packed with FJU-22 a (c) and UTSA-100a
(a) at ambient conditions (296 K, 1 bar). The total flows are 1.8 cm3 min¢1

for FJU-22 a and 2 cm3 min¢1 for UTSA-100 a.

Figure 6. Selectivity for C2H2/C2H4 mixtures of some representative MOFs.
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MOFs with open O sites are highly selective for the separation
of C2H2/CO2 and C2H2/C2H4 at ambient conditions. Control of

the MOFs’ robustness through tuning the helical chain SBUs is
shown to be an efficient design approach for the first time.

The good robustness of the activated FJU-22 a, with open O
donors, results in the extraordinary separation performance for

mixtures of C2H2/CO2 and C2H2/C2H4 ; this performance is supe-
rior to all the reported MOFs including the flexible FJU-21 a.
The separation capacity of FJU-22 a for 50:50 C2H2/CO2 mix-

tures is about twice that of HOF-3, the unique example for
separation before our experiments. The actual selectivity of
FJU-22 a for C2H2/C2H4 mixtures containing 1 % C2H2 is highest
among the reported porous materials. Such preferential ad-

sorption for C2H2 by FJU-22 a rather than CO2 and C2H4 is at-
tributed to the open O donor sites on its framework wall.

Open O donors can provide MOFs with better recognition abil-

ity for C2H2 than other functional sites, including open metal
sites (OMS) and amino groups. It is expected that extensive re-

search endeavors on porous MOFs will facilitate the discoveries
of better C2H2 separation materials.

Experimental Section

General

All reagents and solvents were used as received from commercial
suppliers without further purification. Thermogravimetric analyses
(TGA) were performed with a Mettler Toledo TGA/SDTA851e ana-
lyzer with a nitrogen flow and a heating rate of 10 K min¢1 from
30 8C to 600 8C. Elemental analysis was collected with a Vario EL III
elemental analyzer to give a ratio of C/H/N. Powder X-ray diffrac-
tion (PXRD) was carried out with a PANalytical X’Pert3 powder dif-
fractometer equipped with a Cu sealed tube (l= 1.54178 æ) at
40 kV and 40 mA over the 2q range 5–258.

Synthesis

N,N-Dimethylformamide azine dihydrochloride (DMAz): The
DMAz used in this study was synthesized by a modified version of
the method in refs. [42, 43] . Thionyl chloride (SOCl2, 28.6 mL,
0.4 mol) was added with stirring to DMF (150 mL) at 5 8C. After ad-
dition, this mixture was kept at 5 8C for 24 h and then aqueous hy-
drazine hydrate (5 mL, 0.1 mol) in DMF (20 mL) was added slowly.
After addition, the mixture was stirred at room temperature for
48 h and the white precipitate of N,N-dimethylformamide azine di-
hydrochloride was collected by filtration and washed with DMF
and diethyl ether. Yield: 19.1 g; m.p. : 251 8C.

5-Triazole isophthalic acid (H2L): A mixture of N,N-dimethylform-
amide azine dihydrochloride (4.0 g, 18.66 mmol) and 5-amino iso-
phthalic acid (3.38 g, 18.66 mmol) was heated at reflux in 1,2-dime-
thylbenzene (50 mL) for 16 h to obtain a white solid. The solid was
filtered and washed with ethanol (2 Õ 15 mL) and diethyl ether (1 Õ
17 mL). Yield: 1.62 g, 37.3 %.

{[Cu(L)](DMF)(H2O)1.5}n (FJU-21): A mixture of CuI (0.1 mmol,
0.0191 g), H2L (0.1 mmol, 0.0223 g), DMF (3 mL), and H2O (2 mL)
was stirred for 10 min. Then, the solution was transferred to
a 23 mL glass reactor and heated to 85 8C. After 24 h, the system
was cooled to room temperature and green needle-like crystals
were obtained (32 % yield with regard to H2L). Elemental analysis
calcd (%) for FJU-21: C 39.49, H 3.80, N 14.18; found: C 40.23, H
3.87, N 14.42.

{[Cu(L)]·(DMA)(H2O)1.5}n (FJU-22): FJU-22 was obtained by the
same procedure used for preparation of FJU-21 except that the
DMF was replaced with DMA. Green bulk crystals of FJU-22 were
obtained (37 % yield with regard to H2L). Elemental analysis calcd
(%) for FJU-22 : C 41.08, H 4.16, N 13.69; found: C 41.78, H 4.21, N
14.05.

Single-crystal X-ray structure determination

Data collection and structural analysis of the crystals were collect-
ed on an Agilent Technologies SuperNova Single Crystal Diffrac-
tometer equipped with graphite monochromatic Cu Ka radiation
(l= 1.54184 æ). The crystal was kept at 293(10) K during data col-
lection. Using Olex2,[44] the structure was solved with the Superflip
structure solution program by using charge flipping and refined
with the ShelXL refinement package by using least-squares minimi-
zation. The hydrogen atoms on the ligands were placed in ideal-
ized positions and refined by using a riding model. We employed
PLATON[34]/SQUEEZE[35] to calculate the diffraction contribution of
the solvent molecules in FJU-21 and FJU-22 and thereby produce
a set of solvent-free diffraction intensities. The formulae of the
crystals were calculated by elemental analysis. The detailed crystal-
lographic data and structure refinement parameters for these com-
pounds are summarized in the Supporting Information, Table S1.
CCDC 1421052 (FJU-21) and 1421054 (FJU-22) contain the supple-
mentary crystallographic data for this paper. These data are provid-
ed free of charge by The Cambridge Crystallographic Data Centre.

Gas adsorption measurements

A Micromeritics ASAP 2020 surface area analyzer was used to mea-
sure the gas adsorption. The sorption measurements were per-
formed at 77 K with liquid nitrogen and at 273 K with an ice/water
bath (slush). A water bath was used for adsorption isotherms at
296 K. DFT pore size distributions and pore sizes were calculated
from the N2 adsorption at 77 K.

Transient breakthrough simulations

The performance of industrial fixed-bed adsorbers is dictated by
a combination of adsorption selectivity and uptake capacity. For
a proper comparison of various MOFs, we performed transient
breakthrough simulations by using the simulation methodology.[40]

For the breakthrough simulations, the following parameter values
were used: length of packed bed, L = 0.3 m; voidage of packed
bed = 0.4; superficial gas velocity at inlet, u = 0.04 m s¢1. The frame-
work density of FJU-21 is 1104 kg m¢3 and for FJU-22 it is
1083 kg m¢3.

Column breakthrough test set-up, procedures, and measure-
ments

The mixed-gas breakthrough separation experiment was conduct-
ed at 296 K by using a laboratory-scale fix-bed reactor. In a typical
breakthrough experiment (Figure S7 in the Supporting Informa-
tion) for the C2H2/CO2 mixture, FJU-22 powder (1.2 g) was packed
into a quartz column (5.8 mm I.D. Õ 150 mm) with silica wool filling
the void space. The sorbent was activated in situ in the column
with a vacuum pump at 333 K for 24 h. A helium flow
(5 cm3 min¢1) was introduced after the activation process to purge
the adsorbent. The flow of He was then turned off while a gas mix-
ture of C2H2/CO2 (50:50, v/v) at 5 cm3 min¢1 was allowed to flow
into the column. The effluent from the column was monitored by
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using a mass spectrometer (MS). The absolute adsorbed amount of
gas i (qi) is calculated from the breakthrough curve by Equation (1):

qi ¼
F i xt0¢Vdead¢

Rt0

0

FeDt

m

ð1Þ

in which Fi is the influent flow rate of the specific gas (cm3 min¢1),
t0 is the adsorption time (min), Vdead is the dead volume of the
system (cm3), Fe is the effluent flow rate of the specific gas
(cm3 min¢1), and m is the mass of the sorbent (g). The separation
factor (a) of the breakthrough experiment is determined as:

a ¼ q1y2

y1q2
ð2Þ

in which yi is the molar fraction of gas i in the gas mixture. The
column breakthrough measurement for C2H2/C2H4 (1:99, v/v) mix-
tures was similar to the measurements for the C2H2/CO2 mixture,
except that the helium flow was changed to 1.8 cm3 min¢1.

Details of DFT-D calculations and GCMC simulations

First-principles calculations based on density-functional theory
were performed by using the PWSCF package.[41] A semiempirical
addition of dispersive forces to conventional DFT[45] was included
in the calculation to account for van der Waals interactions. We
used Vanderbilt-type ultrasoft pseudopotentials and the general-
ized gradient approximation (GGA) with the Perdew–Burke–Ernzer-
hof (PBE) exchange correlation. A cutoff energy of 544 eV and a 2 Õ
2 Õ 2 k sampling were sufficient for the total energy to converge
within 0.5 meV per atom. We first optimized the bare FJU-22 struc-
ture. The optimized structure is fairly close to the experimental
structure determined from XRD. C2H2 or CO2 molecules were then
introduced to the optimized HOF structure (guided by the GCMC
result), followed by a full structural relaxation. To obtain the gas
binding energies, a free gas molecule placed in a supercell with
the same cell dimensions was also relaxed as a reference. The
static binding energy was then calculated by using: EB = [E(MOF) +
nE(gas)¢E(MOF + ngas)]/n. Grand Canonical Monte Carlo (GCMC)
simulations[46] were performed for C2H2/CO2 adsorption on FJU-22,
with the gas molecules and the MOF frameworks both treated as
rigid bodies. A 2 Õ 2 Õ 2 supercell was used as the simulation box to
ensure the simulation accuracy. A total of 2 Õ 107 steps were used
for equilibration and an additional 2 Õ 107 steps were used to calcu-
late the ensemble average of gas adsorption sites and thermody-
namic properties. We used the standard universal force field
(UFF)[47] to describe the gas–framework interaction and the gas–
gas interaction. Atomic partial charges derived from first-principles
calculations were included in the simulation to account for electro-
static interactions. The cut-off radius used for the Lennard–Jones
interactions is 12.8 æ. The long-range electrostatic interactions
were treated by using the Ewald summation technique with tin-foil
boundary condition. Simulations were performed at various tem-
peratures and pressures. The probability distributions of adsorbed
C2H2 and CO2 were generated from the simulation after the equilib-
rium stage.
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