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ABSTRACT 
Recent experimental results on creep-fracture damage with 

minimum time to failure (minTTF) varying as the 9th power of 

stress, and a theoretical consequence that the coefficient of 

variation (CV) of minTTF is necessarily 9 times that of the CV 

of the stress, created a new engineering requirement that the 

finite element analysis of pressure vessel and piping systems in 

power generation and chemical plants be more accurate with an 

allowable error of no more than 2 %  when dealing with a leak-

before-break scenario.  This new requirement becomes more 

critical, for example, when one finds a small leakage in the 

vicinity of a hot steam piping weldment next to an elbow.  To 

illustrate the critical nature of this creep and creep-fatigue 

interaction problem in engineering design and operation 

decision-making, we present the analysis of a typical steam 

piping maintenance problem, where 10 experimental data on the 

creep rupture time vs. stress (83 to 131 MPa) for an API Grade 

91 steel at 571.1 C (1060 F) are fitted with a straight line using 

the linear least squares (LLSQ) method.  The LLSQ fit yields 

not  only a two-parameter model,  but also  an estimate of the 

95 %  confidence upper and lower limits  of the  rupture time as   

 

(*) Contribution of the U.S. National Institute of Standards and 

Technology.  Not subject to copyright. 

basis for a statistical design of creep and creep-fatigue.  In 

addition, we will show  that  when an error in stress estimate is 

2 % or more, the 95 % confidence lower limit for the rupture 

time will be reduced from the minimum by as much as 40 %. 

 

 

1.   INTRODUCTION 
In reporting engineering observations such as materials 

property test data involving two variables, the most common 

practice is to fit the data with a straight line. An example of this 

is given in Fig. 1, where 25 observations of variable X1 (pounds 

of steam used per month) vs. variable X8 (average atmospheric 

temperature in degree F) are plotted with a regression line 

representing a linear, first-order model [1]. 

The problem with this engineering practice is that no 

additional quantitative information about the scatter or 

uncertainty of the data is also reported, even though additional 

analysis methodology exists to yield, for example, 95 % 

confidence limits as shown in Fig. 2 [1].  This deficiency in data 

reporting and data compilation in engineering design and 

materials property data handbooks made it impossible for 

engineers to estimate the useful life of a component or system 

with evidence-based quantification of uncertainty and to 

conduct a subsequent risk analysis for decision-making. 
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This incomplete data analysis problem is compounded by a 

not-so-well-known but highly inconvenient fact that the 

independent variable X8 in the regression model is usually 

accompanied by some error or uncertainty.  An example of this 

appeared in a recent paper by Cohn, Cronin, Faham, Bosko, and 

Liebl [2], where creep rupture time (variable X1) vs. stress 

(variable X8) data obtained not from a laboratory but from a 

handbook curve [3] without uncertainty information were used 

to make maintenance decisions under the assumption that the 

stress (X8) estimated from finite element method (FEM)-based 

analysis is accurate and without error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1   A linear, first order model of a relationship between X1 

(pounds of steam used per month) and X8 (average atmospheric 

temperature in F.) of 25 observations documented by Draper 

and Smith [1] to illustrate the regression methodology. 

        

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2   The same set of data and its regression line as plotted in 

Fig. 1 now appear with two hyperbolic curves [1].     

    

FEM-based analysis has been applied to estimating stress 

by engineers since the 1970s [4]. The method is well known to 

yield approximate solutions that need to be verified and 

validated before use [5].   As shown in a recent series of papers 

by Fong, et al. [6 - 10], the accuracy of the estimated stress 

depends on at least five sources of uncertainty: (1) FEM codes, 

(2) FEM element type, (3) FEM mesh density, (4) FEM mesh 

quality such as the mean aspect ratio of elements, and (5) the 

uncertainties associated with the governing equations, the initial 

and boundary conditions, the physical and material property 

parameters, and geometry.  More specifically, it was shown in 

Marcal, et al. [7], Fong, et al. [8, 9] and Rainsberger, et al [10] 

that different choices of FEM element type, mesh density, mesh 

quality, and FEM code can yield different estimates of 

maximum stress in an elastic deformation problem of a pipe-

elbow with a surface crack in one of its two girth welds by as 

much as a factor of two. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3   Stress vs. rupture life curves for S-590, an iron-based 

heat-resisting alloy, at five temperatures (811 K to 1089 K) as 

reported by Goodhoff [11] and reproduced in a book by 

Dowling [12].  This figure is referred to in Section 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4   Uniaxial creep rupture data for 316 stainless steel at 600 

C in a log-log plot as reported by Hyde, et al. [13], and 

reproduced in a book by Hyde, Sun, and Hyde [14].  This figure 

is referred to in Section 2. 
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In this paper, we aim to develop a methodology to conduct, 

through the use of a numerical example, a more complete 

statistical data analysis of the creep rupture time vs. stress data, 

assuming a simple power-law model and a 2 % error in stress.   

In Section 2, we first present an incomplete analysis of the 

creep rupture time vs. stress data for two materials, i.e., an iron-

based heat-resistant alloy named S-590 at five temperatures [11, 

12], and the 316 stainless steel at 600 C [13, 14]. We then 

present a more complete analysis of the API Grade 91 steel at 

three temperatures, 550 C [15], 571.1 C [2], and 600 C [15], to 

show the difference between the two analysis methods.  

In Section 3, we present the results of a recent investigation 

[6 – 10] of the accuracy of a FEM-based estimates of stresses in 

piping or pipe-elbow with surface crack in one of its girth 

welds.  Our results led us to a conclusion that the assumption of 

an accurate stress estimate without error in predicting creep 

rupture time is unwise.  We plan to show that even a 2% error in 

stress may lead to a large over-estimation of rupture life. 

In Section 4, we present the methodology and the results of 

a new analysis of the creep rupture time vs. stress data, where 

we are able to predict the 95 % confidence lower limit of the 

creep rupture curve with the effect of a 2 % stress error. 

Significance and limitations of this new approach to 

estimating uncertainty in life prediction due to uncertainty in 

materials property test data and the FEM-based stress   

estimates, are presented in Section 5.     A discussion, some 

concluding remarks, and a list of references are given in 

Sections 6, 7, and 8, respectively.   

 

 

 

    

 

     

 

 

 

 

 

 

 

 

 

 
 

Fig. 5   Creep Rupture Time vs. Stress Data in a log-log plot for 

API Gr. 91 Steel at 3 temperatures:  The 571.1 C (1060 F) data 

(blue) are from an API minimum design curve [3] as listed in 

Table 1; the 600 C (1112 F) data (red) are from NRIM [15]; and 

the 550 C (1022 F) data (black) are also from NRIM [15].    

Note that the blue data (571.1 C) have very little scatter because 

they are derived from an API min. design curve (see Table 1). 

2.   EXPERIMENTAL DATA AND ANALYSES 
As mentioned in Section 1 (Introduction), experimental 

data in two variables can be analyzed using a linear, first-order 

model in two ways: (a) without uncertainty information (Fig. 1) 

and (b) with uncertainty information (Fig. 2).  Examples of the 

uncertainty-free method (a) are given in Figs. 3 and 4, both of 

which appear in the engineering literature [11 – 14] as 

recommended design curves.  Using this uncertainty-free 

method (a), Cohn, et al. [2] obtained a regression line of ten 

data points, as shown in Table 1, from an API STD 530-based 

recommended table, F31, of creep rupture time vs. stress data 

for API Gr. 91 steel [3].  In this section, we will analyze the 

same data with uncertainty and compare the results with two 

other sets of data given by NRIM [15] for the same material. 

 

Table 1 (after Cohn, et al. [2]) 

API Gr. 91 Steel Creep Rupture Time vs. Stress at 571.1 C 

(minTTF = minimum Time To Failure.) 

Stress (ksi) Stress (MPa) minTTF (1000 hours) 

12 82.74 1266.43 

12.5 86.19 914.20 

13 89.63 663.75 

13.5 93.08 484.60 

14 96.53 355.72 

15 103.4 194.70 

16 110.3 108.70 

17 117.2 61.84 

18 124.1 35.81 

19 131.0 21.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6   Linear Least Squares Fit with 95 % Confidence Limits 

for three sets of Creep Rupture Time vs. Stress Data at 550 C, 

571.1 C, and 600 C.  The material is API Grade 91 steel.  The 

550 C and 600 C data are from NRIM [15], and the ten data 

points for 571.1 C (1060 F) are from an API minimum design 

curve [3] as listed in Table 1 [2]. 
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A plot of the data in Table 1 is given in Fig. 5 (blue dots) 

and a regression analysis of those data complete with 95 % 

confidence limits is given in Fig. 6 (blue dots with red scatter 

band).  It is not surprising that the scatter band is very small, 

because the data are not from experiments at a testing 

laboratory, but from engineering literature without uncertainty 

information [2, 3].  That is similar to the data and regression 

lines given in Figs. 3 and 4 (see refs. [11, 12, 13, 14].. 

Nevertheless, the methodology to compute the 95 % 

confidence limits for a linear, first-order model [1] exists and is 

applicable whether the data are from handbooks (see, e.g., 

Table 1) or experimental values (see, e.g., NRIM [15]).   

To show the difference between the results of two analysis 

methods, one without and a second one with uncertainty 

quantification, we choose to work with the rupture time data of 

a single material, i.e., the API Grade 91 steel.  In Fig. 5, we 

present the 571.1 C data of Table 1 (blue dots), and two sets of 

experimental data from NRIM [15] (represented as red circles 

for 600 C and black circles for 550 C).  We then present in Fig. 

6 the 95 % confidence limits for all three sets of data, showing 

the huge scatter band for the experimental data (600 C and 550 

C) and the relatively small band for the handbook data (571.1 

C). 

A complete exposition of the methodology for computing 

the 95 % confidence limits is given in a 1966 book by Draper 

and Smith [1], and has been in the statistical literature way 

before 1960s.  Unfortunately, this elegantly described  analysis 

method with uncertainty quantification is still not well-known to 

most practicing engineers today, as witnessed by the current 

prevailing practice of reporting materials property data in 

handbooks and textbooks without any information on the scatter 

of the data.  For completeness, we provide below the 13 key 

equations, all quoted directly from Draper and Smith [1], that 

allow us to compute the uncertainties of three quantities, 
.    

b1  ,  b0   , and the vector,           , in a linear, first-order model: 
 

 

 

(1) 
 

 

Here,  X  and  Y  are two vectors, ( X1, X2, . . . Xi, . . . Xn ), and 

(Y1, Y2, . . . Yi, . . . Yn ), and    the two fitting 

parameters.  The vector,       , represents the error introduced 

when we fit a set of  n  data by a linear, first-order model of Eq. 

(1).  Let us introduce two quantities of interest, namely,   
 

X       , the average of the X’s, and            , the average of the Y’s.  
 

 

 

(2)    

 

 
Here, we introduce a vector quantity,         , that is the predicted 

value of the vector  Y  using the linear, first-order model and 

dropping the error vector,       .  We also introduce  b1  and  b0 .   

 

 

(3) 

. 

. 

 

(4) 

 

Eqs. (3) and (4) solve directly for  b1  and   b0  .  Eqs. (5), (6) 

and (7), each containing a new quantity,  s , are required to 

compute the confidence limits of all key quantities of interest,  
. 

i.e., b1 , b0 , and any predicted     Y0   of     Y     for a given  X0 .  

.. 
(5) 

 

 

 

(6) 

 

 

 

(7) 

 

 

To compute the new quantity,  s  , we need to understand and 

solve all of the Eqs. (8) through (13) as listed below: 

 

 

(8) 

 

 

                   SS2     =         SS         +         SS1                         (9) 

 

 

                   SS2      =                                                              (10) 

 

 

            SS1     =                                                                      (11) 

 

From Eq. (9), 

 

                    SS       =       SS2       -         SS1                          (12) 

 

 

(13) 

 

 

To solve the above as we did for the hyperbolic curves of the 95 

% confidence limits presented in Fig. 6, we wrote a computer 

code in DATAPLOT [16], which is freely available upon 

request to the first co-author. 
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3.   UNCERTAINTY IN FEM STRESS ANALYSIS 
The large values of the regression line exponents of the 

three sets of data in Fig. 6 indicate that a small change in creep 

stress is bound to lead to a large change in rupture life.  Since 

most engineers use the finite element method (FEM) to estimate 

stress, it is important to ask whether the FEM-based stress 

estimates are accurate. 

As mentioned in Section 1 (Introduction), FEM has been 

known as an approximation method [4] for a long time.  The 

need to verify and validate FEM-based estimates has also been 

carefully documented [5].  Largely because of cost and a 

commitment of time, it is common practice today that FEM-

based estimates of stress are delivered to owners and plant 

operators without uncertainty quantification nor with an 

appropriate protocol of verification. 

Based on a recent series of paper [6 – 10], we show in this 

section that the assumption of zero error in stress estimate is 

wrong and unrealistic, and can easily lead to serious 

consequences in life modeling such as creep rupture time 

estimation.  In Fig. 7 we show a typical problem in powerplants 

where a surface crack is found in a girth weld of  a  pipe-elbow  

 

 

 

 

 

 

 

 

 

 

 

Fig. 7   A typical surface crack in a girth weld of a pipe elbow 

in the main steam piping system of a power-generation plant 

[2].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8   An FEM solution (MPACT-Hex-27 at 149,706 degrees 

of freedom) for the elastic deformation of a pipe-elbow with a 

longitudinal surface crack in one of its two girth welds [8]. 

 

of a main steam piping system.  Using three types of FEM 

elements and two different FEM codes [17, 18], we solved the 

elastic deformation problem of a 900-mm-o.d. (outside 

diameter), 20-mm-thick, 90-degree-pipe elbow with a 50-mm-

long, 10-mm-deep surface crack in one of its two girth welds 

(Fig. 8).  The predicted max. crack tip stress was found to vary 

from a low of 231.69 MPa to a high of 457.96 MPa (see 

Appendix A and Ref. [10, 19, 20].  A typical result of the FEM 

stress analysis with uncertainty quantification is given in Fig. 9 

(ABAQUS-Hex-8, 11 mesh densities), and a comparison of the 

multiple-code-element-type exercise is given in Fig. 10.  A 

ranking of the seven scenarios of FEM runs is given in 

Appendix A and Ref. [20]. 

 

 

 

 

 

 

 

 

 
 

Fig. 9  A Nonlinear Least Squares Logistic Fit of 11 ABAQUS 

Hexa-08 Solution of an Elbow-Weld-Crack problem with 95 % 

Confidence Limits of Predicted Max. Stress at 10E+9 d.o.f. 

 

 

 

 

 

 
 
 
 

 

 

Fig. 10   A comparison of three FEM solutions of a pipe-elbow-

with-crack problem using 3 different element types (Hexa-20, 

Hexa-27, and Hexa-08) and different FEM codes [8]. 
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An examination of the table in Appendix A leads to a 

rationale to propose at least four new requirements that an 

engineer to assess the accuracy of an FEM-based stress 

estimate.   The first requirement (Req.), R-1, is to demand that, 

for a fixed FEM mesh design, a minimum of five mesh 

densities, or d.o.f. (degrees of freedom), be used not only to 

check the convergence of a candidate solution, but also to 

estimate its uncertainty through a nonlinear least squares 

logistic fit algorithm.  As shown by Fong, et al. [8], the reason 

for requiring a minimum of five mesh densities is that it takes at 

least five data points to execute a nonlinear least squares fit 

based on a 4-parameter logistic function. 

The 2nd, 3rd, and 4th requirements are to demand that the 

solution be verified in three ways:  Req. R-2 is to make a 

change in the element type.  Req. R-3 is to make a change in the 

FEM code.  Req. R-4 is to add one or more mesh densities to 

confirm the convergence of the 5-density solution given by R-1. 

In the numerical example given in Appendix A, Req. R-2 

yields a result that the max. crack tip stress can vary from 

457.96 (5 runs, Hex-20), to 246.05 (5 runs, Hex-08), with the 

larger value differing from the smaller one by a factor of two. 

Req. R-3 requires one to change the FEM code.  In the 

numerical example given in Appendix A, we switched from 

ABAQUS [17] to MPACT [18].  The results were startling, as 

shown in the following Table 2: 

 

Table 2 

A Comparison of FEM Solutions Using Different Codes 

Legion:  (*) d.o.f. denotes degree of freedom. 

(#) Ranking is based on the smaller the better.  

 

 Predicted 

Max.  

Crack Tip 

Stress 

(MPa) 

Predicted 

Standard 

Deviation 

at 109 

d.o.f. (*) 

Coeff. 

of Var. 

(C.V.) 

at 109 

d.o.f. 

Ranking 

Of Solu. 

By the 

C.V. 

metric (#) 

ABAQUS 

Hex-20 

5 runs 

 

457.96 

 

19.70 

 

4.30 % 

 

2 

MPACT 

Hex-27 

5 runs 

 

345.47 

 

0.12 

 

0.03 % 

 

1 

 

Not only did the two stress estimates differ by a factor of 1.3, 

the two measures of uncertainty (the coefficient of variation, or, 

the C.V.) differed by a factor of over a hundred.  In our 

experience with other problems [8, 10, 20], we found Req. R-3  

to be most effective among all four new requirements. 

Req. R-4 is also effective even though it is very costly, 

because it demands more solutions at a finer mesh or larger 

degrees of freedom than the previous five.  Nevertheless, in the 

absence of conducting a physical experiment to validate a 

numerical solution such as the FEM, Req. R-4 assures us that 

the nonlinear least squares logistic fit algorithm did provide 

consistently an extrapolated solution that converges as the mesh 

density (number of elements per unit volume) or the degree of 

freedom approaches infinity. 

Finally, a word of caution on ranking a large collection of 

candidate FEM solutions as a protocol for verification.    As 

discussed by Rainsberger, et al. [10] in their recent paper on a 

super-parametric method of assessing the accuracy of a FEM-

based solution, a key attribute to accuracy is the mesh quality.  

It was shown in that paper [10] that a change of mesh quality 

such as the mean aspect ratio of the elements, the stress 

estimates could be different by as much as a factor of five (see 

Appendix B for a table of comparison of 6 FEM solutions of a 

pipe-crack problem where the mean aspect ratio of two different 

sets of mesh design differs from each other by a factor of 16). 

We conclude this section by observing that all FEM-based 

stress estimates are approximate by design, and, possess 

uncertainties by nature, that need to be quantified as an integral 

part of the computational effort.  The extra cost of computing 

the uncertainties and verifying the stress estimates is justified on 

account of the serious consequences down the line when a 

decision needs to be made to repair or not to repair a piping 

system in service. 

 

4.   CONFIDENCE LIMITS ON RUPTURE TIME  
The availability of a methodology to compute the 95 % 

confidence limits of a linear, first-order model of a creep 

rupture time vs. stress relationship, and the fact that all FEM-

based stress estimates contain uncertainties not often explicitly 

reported, provided us a rationale to develop a new approach to 

estimating the 95 % confidence limits of a typical creep rupture 

time vs. stress regression line when the stress error is assumed 

to be small but not less than 2 %. 

For convenience, we choose to describe the new approach 

via a numerical example, where the creep rupture time vs. stress 

data are given in Table 1 for an API 579 Grade 91 steel at 571.1 

C (1060 F).  A linear least squares fit of those ten data gives an 

estimate of the y-intercept,  A  and the exponent,  C , as shown 

below in Table 3: 

 

Table 3 

Typical Output File of a Least Squares Fit 
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In Fig. 6, the straight line in blue with a very narrow band of 

confidence limits in red is a log-log plot of the data in Table 1.  

The same data when plotted in natural scales appear in Fig. 11 

as blue circles with regression line in blue and the confidence 

limits again in red.  We choose to work with two cases to study 

the effect of a 2 % stress error: Case 1.  Stress = 101.4 MPa.  

Case 2.  Stress = 69.9 MPa.  An enlarged view of the Case 1 

data is given in Fig. 12.  For Case 1, the min. time to failure 

(minTTF) is 220.9 hours, and the 95 % lower limit is at 198.2, a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11   Creep Rupture Time vs. Stress Data with a Power-law 

Fit based on a linear log-log model for API Grade 91 steel at 

571.1 C (1060 F), and 95 % Confidence Limits for two stress 

Cases: (1) Stress = 101.4 MPa.  (2) Stress = 69.9 MPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12   An enlarged view of the creep rupture time vs. stress 

curve at 571.1 C for Case 1 (Stress = 101.4 MPa) investigation 

of the effect of a 2 % error in stress estimate on rupture time. 

drop of 22.7 hours in creep life. 

Let us consider a 2% error in stress estimate for Case 1.  In 

Fig. 12, we note that a 2 % stress error causes a drop of 35.3 

hours in minTTF, and a further drop in the 95 % confidence 

limit.  In Fig. 13, we show a plot of the same data with a red 

band of confidence limits for the creep and a blue band for the 

combined effect of creep and 2 % stress error when stress = 

101.4 MPa.  In Fig. 14, we show a similar plot for Case 2 when 

stress = 69.6 MPa.  In both cases, the total extra loss of life due 

to a 2 % stress error and the 95 % confidence limit is 40 %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13   A 95 % Confidence Lower Limit Approach to a Case 1 

(Stress = 101.4 MPa) investigation of the effect of a 2 % error 

in stress estimate on Creep Rupture Time for API Grade 91 

steel at 571.1 C.  The combined uncertainty due to creep and 

2% stress error causes a 39.7 % drop in Creep Rupture Time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14   A 95 % Confidence Lower Limit Approach to a Case 2 

(Stress = 69.9 MPa) investigation of the effect of a 2 % error in 

stress estimate on Creep Rupture Time for API Grade 91 steel at 

571.1 C.  The combined uncertainty due to creep and 2% stress 

error causes a 40.2 % drop in Creep Rupture Time.  
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5.   SIGNIFICANCE AND LIMITATIONS OF THE NEW 

APPROACH TO CREEP DESIGN 
The statistical 95 % confidence limits approach to 

analyzing creep rupture time vs. stress data with an assumption 

of a 2 % error in FEM-based stress estimate is significant in at 

least two ways:  

(1) The new approach allows a product designer or a 

maintenance engineer to better understand the true value of 

those laboratory-generated test data that always have a 

quantifiable uncertainty. That uncertainty, if and when reported 

and evaluated, allows a decision-maker to compute an 

evidence-based estimate of creep rupture time, also with 

uncertainty, of a full-size component or structure.  

(2) The new approach provides a decision maker a 

rationale and four requirements to communicate with an FEM 

analyst, whose stress estimates are used in a creep rupture time 

model based on those laboratory-generated test data.  In a 

nutshell, the four requirements outlined in Sect. 3 allow one to 

ask the analyst to provide stress estimates not as a deterministic 

quantity (single-valued), but a statistical one (with uncertainty).   

The approach outlined in this paper is not without 

limitations.  First and foremost, the assumption of a linear, first-

order model for a set of creep rupture time vs. stress data, or a 

straight-line fit of a log-log plot of the data, is plausible within 

the range of the test variables, but not necessarily valid outside 

the range of stress being tested.   

Secondly, the add-on complication of a small stress error is 

computationally rigorous but physically over-conservative, 

because it invokes the 95 % confidence limit tool twice. 

Nevertheless, on balance, the new approach gives a 

decision maker a path to a more rational use of creep test data. 

 

 

 

 

 

 
 

 

 

 

Fig. 15   Linear Least Squares Fit with 95 % Confidence Limits 

for a set of heat-specific Creep Rupture Time vs. Stress Data at 

600 C. The material is heat MgA of the API Grade 91 steel, and 

the data were reported by NRIM [15].  Note that the exponent 

of the fit is 10.1, which is considerably larger than that of the 

same steel at 571.1 C given by API-STD-530 curve. 

It is interesting to inquire that, had the data of Table 1 (API 

579 Grade 91 steel at 571.1 C) not originate from a handbook 

[2, 3], but from a laboratory such as those reported by NRIM 

[15], will a 2 % stress error lead to a similar drop, such as 40 %, 

in creep rupture time?  We can answer this by reviewing Fig. 6, 

where both the 571.1 C (Table 1) and the 600 C (NRIM) data 

have comparable exponents (-8.9 vs. -9.0), but the scatter band 

of the laboratory 600 C data is much wider. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16   Linear Least Squares Fit with 95 % Confidence Limits 

for a set of heat-specific Creep Rupture Time vs. Stress Data at 

600 C. The material is heat MgB of the API Grade 91 steel, and 

the data were reported by NRIM [15].  Note that the exponent 

of the fit is 9.8, which is considerably larger than that of the 

same steel at 571.1 C given by API-STD-530 curve. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17   Linear Least Squares Fit with 95 % Confidence Limits 

for a set of heat-specific Creep Rupture Time vs. Stress Data at 

600 C. The material is heat MgC of the API Grade 91 steel, and 

the data were reported by NRIM [15].  Note that the exponent 

of the fit is 10.5, which is considerably larger than that of the 

same steel at 571.1 C given by API-STD-530 curve.
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Recognizing the fact that the 600 C NRIM laboratory data 

came from three heats, MgA, MgB, and MgC, we present in 

Figs. 15-17 plots of a regression line with scatter bands for each 

of those three heats.  We observe that the absolute values of the 

exponents for the three heats vary from a low of  9.8 (heat 

MgB) to a high of 10.5 (heat MgC), the scatter bands of all 

three heats are much wider than that of the 571.1 C data as 

shown in Fig. 6.  Since the broader the scatter band, the higher 

is the uncertainty, so we can logically deduce that a 2 % stress 

error for a laboratory-generated test data on creep rupture time 

vs. stress will lead to a more than 40 % total drop in the 95 % 

confidence limit of rupture time. 

 

 

6. DISCUSSION 
It is important to note that the handbook-generated data of 

Table 1 (after Cohn, et al. [2, 3]), used in this paper as a vehicle 

to present a new approach to analyzing creep rupture time vs. 

stress (CRT-S) data, was strictly intended as an example to 

highlight a key feature of the CRT-S data, namely, its high value 

of exponent (close to -9) indicating a high sensitivity to stress. 

As a matter of fact, the data of Table 1 for the API Grade 

91 steel at 571.1 C were from a minimum curve [2, 3], and not 

an average one.  In either case, however, the uncertainty 

information was not available, leading to an unrealistic result of 

a very narrow scatter band as shown in Fig. 6. 

It is worth noting that our choice of making the data of 

Table 1 as an example to illustrate the methodology of our new 

analysis approach was appropriate, because it clearly showed 

the pitfall of quoting handbook data without uncertainty 

characterization to estimate creep rupture time with uncertainty 

for decision making. 

A key result of this paper is to confirm the observation 

stated by Cohn, et al. [2] that the value of the exponent 

associated with their data (Table 1 for 571.1 C) is as high as 

those found for each of the three heats of the same steel at 600 

C (Figs. 15 – 17) based on the NRIM data [15]. 

This result also confirms the observation made by Cohn, et 

al [2] that the relative ranking of girth weld applied stresses is 

extremely important in determining the few lead-the-fleet group 

of girth welds subject to creep rupture failure.  As a result of 

this observation, Cohn, et al. [2] noted that from a practical 

point of view, examining the top 3 to 6 high stress ranked 

locations (approximately the girth welds subject to the top 15 % 

multiaxial stress), is a better strategy than selecting locations by 

alternative methods such as (1) picking shop welds versus field 

welds, (2) picking high traffic areas, (3) picking all fitting 

weldments, or (4) examination of one-third of the total 

population of girth welds every 5 years during a scheduled 

major outage (and then in the 15th year starting from the first 

set). 

It is also useful to note that the example data set of Table 1 

(API Grade 91 steel  at  571.1 C)  are  for  a  base  metal.  Since 

girth welds typically fail in the heat-affected-zone (HAZ) of a 

weld metal, which is usually weaker than the base metal, the use 

of a CRT-S curve for a base metal to estimate the rupture time 

of a weld metal region is not appropriate.  The resulting 

estimate of rupture time for a weld region using the properties 

of a base metal is not conservative, i.e., the estimate will be too 

optimistic. 

Regarding the example problem of the elastic deformation 

of a pipe-elbow-crack configuration fixed at the left base and 

loaded at the right end of the pipe (Fig. 8), it is important to 

note that while the example serves the purpose of illustrating 

the existence of uncertainty in an FEM stress analysis exercise, 

it by no means tells the whole story of the nature of piping 

stress uncertainties in a typical power-generating plant. 

For example, as described by Cohn, et al. [2] in Fig. 10 of 

their paper, there exists uncertainty in the estimate of the 

redistribution time when the elastic piping stresses redistribute 

to inelastic stresses through wall and axial to the pipe.  

Secondly, there exists uncertainty in time-dependent 

variations in the external loads, such as malfunctioning spring 

supports.  Such uncertainty can be accounted for by evaluating 

the current piping configuration (hot and cold piping system 

walkdowns) with topped-out and bottomed-out supports.  

Experience told us that after 100,000 operating hours there are 

usually unexpected piping displacements because of 

malfunctioning supports.  The malfunctioning supports may 

increase the loads and stresses by more than 20 %. 

 

7.   CONCLUDING REMARKS 
A statistical methodology to analyze creep rupture time vs. 

stress (CRT-S) test data with an assumption of a 2 % error 

(equivalent to a 1 % standard deviation and a 95 % lower 

confidence limit) in finite element method-based stress 

estimates has been presented via a numerical example based on 

handbook-generated values of the CRT-S data.  

In two case studies involving different creep stress values, 

namely, Case 1 (stress = 101.4 MPa), and Case 2 (stress = 69.9 

MPa), it was found that the combined effect of creep and a 2 % 

stress error causes a 40 % drop in the 95 % lower limit of the 

rupture life. 

If the CRT-S data are not from a handbook, but are 

laboratory-generated, we found that the scatter band is  likely to 

be wider and the drop in the 95 % lower limit of the rupture life 

to be higher than 40 %. 

The huge impact of a small error in stress estimate (such as 

2 %)  on the 95 % lower limit of the rupture life (such as 40 %) 

produces four new engineering requirements that the estimate of 

stress by a computer-assisted method such as FEM be properly 

verified and validated with an error estimate of no more than    

2 %. 
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APPENDIX   A 

A COMPARISON OF MAX. STRESS ESTIMATES FROM 7 FEM SOLUTIONS OF A PIPE-ELBOW-WITH-CRACK 

PROBLEM WITH UNCERTAINTY ESTIMATION BASED ON A NONLINEAR LEAST SQUARES LOGISTIC FIT [8, 20]  
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APPENDIX   B 

A COMPARISON OF MAXIMUM STRESS ESTIMATES FROM 6 FEM SOLUTIONS OF A PIPE-CRACK PROBLEM 

WITH UNCERTAINTY QUANTIFICATION BASED ON A NONLINEAR LEAST SQUARES LOGISTIC FIT [8, 19, 20]  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 
Certain commercial equipment, instruments, materials, or 

computer software is identified in this paper in order to specify 

the experimental or computational procedure adequately. Such  

 

 

identification is not intended to imply recommendation or 

endorsement by the U.S. National Institute of Standards and 

Technology, nor is it intended to imply that the materials, 

equipment, or software identified are necessarily the best 

available for the purpose. 

 

 


