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Abstract 
An analytical method is developed to quantify the potential energy and other energy characteristics of the nonlinear 
response of framed structures subjected to earthquake ground motions. Since the potential energy relates to the stiffness of 
the structure, it consists of three components in a nonlinear system: (1) stored strain energy associated with the linear elastic 
portion of the structural response, which can be recovered after the earthquake; (2) higher-order energy associated with 
geometric nonlinear behavior of the structural response, which is derived from the nonlinear stiffness matrix and can also be 
recovered if the axial load is removed; and (3) plastic energy representing the energy dissipated by inelastic deformation of 
the structure, which cannot be recovered after the earthquake. The proposed analytical method uses a change in stiffness for 
handling the geometric nonlinearity and a change in displacement for handling material nonlinearity before solving the 
equations of motion, thereby separating the effects of geometric nonlinearity and material nonlinearity when computing 
stiffness forces. This leads directly to integral representations of each energy form. A four-story moment-resisting framed 
structure is used to demonstrate the feasibility of the proposed analytical method in evaluating the energy response and the 
transfer among different energy forms throughout the nonlinear response history analysis.  
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1. Introduction 
Structures responding to earthquake shaking can be viewed as an energy transfer process. Earthquake ground 
motions transfer part of their energy to individual structures as input energy to produce structural vibrations. 
This input energy induces motion in the structure and its contents, which can generally be characterized as 
potential energy, kinetic energy, and damping energy. All these energy forms have positive values. While 
potential energy is related to the structural stiffness and kinetic energy is related to the inertial components, 
damping energy is associated with energy loss within the structure during its motion. Thus these energy forms 
have traditionally been investigated as part of the structural responses due to strong ground shaking.  

Research on energy dissipation began in the 1980’s as an alternative approach for seismic design, when it 
was recognized that significant cumulative damage can occur in structures without large global displacement 
responses [1-3] in long-duration earthquake ground motions. However, these studies focused on evaluating the 
hysteretic energy by calculating the enclosed area in a force-deformation curve of single degree of freedom 
systems. A numerical procedure was proposed for quantifying different energy forms for low to medium rise 
structures in the 1990’s for linear multi-degree of freedom systems [4], and later an analytical method was 
developed to consider energy due to inelastic deformation [5]. These studies did not consider the reduction of 
lateral stiffness by axial load, which can bring considerable error in the calculation of potential energy when this 
effect becomes prominent.  

In this research, a new analytical method of using nonlinear stiffness matrices for both geometric 
nonlinearity and material nonlinearity is derived to investigate the energy of framed structures responding 
nonlinearly to earthquake ground motions. In particular, the potential energy that is directly related to the 
nonlinear stiffness of the structure is investigated. This potential energy consists of three components in a fully 
nonlinear system: (1) the stored linear elastic strain energy; (2) the energy associated with the geometric 
nonlinear effects – hereby called “higher-order energy”; and (3) plastic energy dissipated by material 
nonlinearity of the structure. A four-story moment-resisting steel frame is used to demonstrate the feasibility of 
the proposed analytical method in evaluating the energy response and the transfer among different energy forms 
throughout the nonlinear response history analysis. 

2. Stiffness Matrices for Geometric Nonlinearity 
Nonlinear stiffness matrices for performing energy calculations require an accurate representation of the 
deflected shape of the member. By subjecting the member to an axial force, the use of stability functions is most 
appropriate because it is derived based on directly solving for the equilibrium equation that is expressed as a 
fourth-order differential equation. The theory of using stability functions to analyze moment-resisting framed 
structures was first developed for elastic members in the 1960’s [6-8], but it found limited application because of 
its complexity in the closed-form solution compared to other methods, such as using the P-∆ stiffness approach 
[9] or the geometric stiffness approach [10]. Even with the advances in computing technology, only one research 
publication was found in the recent literature on the analysis of framed structures using stability functions [11]. 
However, when higher accuracy is required, the first-order or second-order approximation of the geometric 
nonlinearity may not be able to capture the nonlinear behavior accurately. Therefore, stability functions are used 
in this study because these functions can capture the exact shapes of the displacement profile of the member. A 
detailed derivation of the stiffness matrices can be found in another publication [12], and it is briefly summarized 
here with the consideration of yielding and formation of plastic hinge. 

2.1 Element Stiffness Matrix 
Four degrees of freedom (DOFs) are typically used to describe the lateral displacement (v) and rotation ( v′ ) at 
the two ends of a member in a moment-resisting frame. In addition, two plastic hinge locations (PHLs) for 
bending at the two ends of the member are used to capture the material nonlinear flexural behavior of the plastic 
hinges (θ ′′ ). This altogether gives 6 movements that are needed to describe the deformation of the member. To 

2 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

compute the element stiffness matrix ik , each of these 6 movements is displaced independently by one unit as 
shown in Fig. 1 while subjected to an axial compressive load P. Here, rV1 , rM 2 , rV3 , rM 4 , rM5 , and rM 6  
represent the required shear forces and moments at the two ends of the member and the corresponding plastic 
hinge moments to cause the lateral displacements and rotations in the prescribed pattern, and 6,...,1=r  
represents the six cases of unit displacement patterns of the member’s deflection. 

v’(0) = 1

P

V12
M22

P

V32

M42

x

y
EI

v’(L) = 1

P

V14
M24

P

V34

M44

x

y

EI

v(0) = 1

P

V11

M21 P

V31

M41

x

y

EI

v(L) = 1P

V13
M23

P

V33

M43

x

y
EI

Case 2

Case 4

Case 1

Case 3

θ”=1

P P x

y
EI

P P x

y

EICase 5

Case 6
M56

M55

M65 M66

5

θ”=16

M45

M25 M26

M46

M53

M63

V15 V35

M51

M61

V16 V36

M54

M52

M64

M62

 
Fig. 1 – Six cases of displacement and plastic rotation patterns and the corresponding fixed-end forces 

Using the classical Bernoulli-Euler beam theory with homogeneous and isotropic material properties 
where the moment is proportional to the curvature and plane sections are assumed to remain plane, the governing 
equilibrium equation describing the deflected shape of the member can be written as 

 0)( =′′+′′′′ vPvEI  (1) 

where E is the elastic modulus, I is the moment of inertia, v is the lateral deflection, and each prime represents 
taking derivatives of the corresponding variable with respect to the x-direction of the member. By assuming EI is 
constant along the member, the fourth-order ordinary differential equation in Eq. (1) can be solved. Then 
imposing the boundary conditions as shown in Fig. 1 for each of the four cases, the 66×  element stiffness 
matrix ik  can be obtained. 

Case 1:  
For Case 1 as shown in Fig. 1 (i.e., 1=r ), imposing the boundary conditions 1)0( =v , 0)0( =′v , 0)( =Lv , 

0)( =′ Lv , 05 =θ′′ , and 06 =θ′′ , where L is the length of the member, the shears (V) and moments (M) at the two 
ends based on solving the differential equation in Eq. (1) are calculated as: 

 3
11 )0()0( LEIsvPvEIV ′=′+′′′=    ,    2

21 )0( LEIsvEIM =′′−=  (2a) 

 3
31 )()( LEIsLvPLvEIV ′−=′−′′′−=    ,    2

41 )( LEIsLvEIM =′′=  (2b) 

 2
2151 LEIsMM ==    ,    2

4161 LEIsMM ==  (2c) 

where 

 ( )
λλ−λ−

λ−λ
=

sincos22
cos12

s     ,      
λλ−λ−

λλ
=′

sincos22
sin3

s  (3) 
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and EIPL×=λ .  

Case 2:  
For Case 2 as shown in Fig. 1 (i.e., 2=r ), imposing the boundary conditions 0)0( =v , 1)0( =′v , 0)( =Lv , 

0)( =′ Lv , 05 =θ′′ , and 06 =θ′′ , the shears and moments at the two ends based on solving the differential equation 
in Eq. (1) are calculated as: 

 2
12 )0()0( LEIsvPvEIV =′+′′′=    ,    LEIsvEIM ˆ)0(22 =′′−=  (4a) 

 2
32 )()( LEIsLvPLvEIV −=′−′′′−=    ,    LEIcsLvEIM ˆˆ)(42 =′′=  (4b) 

 LEIsMM ˆ2252 ==    ,    LEIcsMM ˆˆ4262 ==  (4c) 

where 

 ( )
λλ−λ−

λλ−λλ
=

sincos22
cossinŝ    ,     

λλ−λ
λ−λ

=
cossin

sinĉ  (5) 

Case 3:  
For Case 3 as shown in Fig. 1 (i.e., 3=r ), imposing the boundary conditions 0)0( =v , 0)0( =′v , 1)( =Lv , 

0)( =′ Lv , 05 =θ′′ , and 06 =θ′′ , the shears and moments at the two ends based on solving the differential equation 
in Eq. (1) are calculated as: 

 3
13 )0()0( LEIsvPvEIV ′−=′+′′′=    ,    2

23 )0( LEIsvEIM −=′′−=  (6a) 

 3
33 )()( LEIsLvPLvEIV ′=′−′′′−=    ,    2

43 )( LEIsLvEIM −=′′=  (6b) 

 2
2353 LEIsMM −==    ,    2

4363 LEIsMM −==  (6c) 

Case 4:  
For Case 4 as shown in Fig. 1 (i.e., 4=r ), imposing the boundary conditions 0)0( =v , 0)0( =′v , 0)( =Lv , 

1)( =′ Lv , 05 =θ′′ , and 06 =θ′′ , the shears and moments at the two ends based on solving the differential equation 
in Eq. (1) are calculated as: 

 2
14 )0()0( LEIsvPvEIV =′+′′′=    ,    LEIcsvEIM ˆˆ)0(24 =′′−=  (7a) 

 2
34 )()( LEIsLvPLvEIV −=′−′′′−=    ,    LEIsLvEIM ˆ)(44 =′′=  (7b) 

 LEIcsMM ˆˆ2454 ==    ,    LEIsMM ˆ4464 ==  (7c) 

Case 5:  
For Case 5 as shown in Fig. 1 (i.e., 5=r ), imposing the boundary conditions 0)0( =v , 0)0( =′v , 0)( =Lv , 

0)( =′ Lv , 15 =θ′′ , and 06 =θ′′ , the shears and moments at the two ends based on solving the differential equation 
in Eq. (1) are calculated as: 

 2
15 )0()0( LEIsvPvEIV =′+′′′=    ,    LEIsvEIM ˆ)0(25 =′′−=  (8a) 

 2
35 )()( LEIsLvPLvEIV −=′−′′′−=    ,    LEIcsLvEIM ˆˆ)(45 =′′=  (8b) 

 LEIsMM ˆ2555 ==    ,    LEIcsMM ˆˆ4565 ==  (8c) 
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Case 6:  
Finally, for Case 6 as shown in Fig. 1 (i.e., 6=r ), imposing the boundary conditions 0)0( =v , 0)0( =′v , 

0)( =Lv , 0)( =′ Lv , 05 =θ′′ , and 16 =θ′′ , the shears and moments at the two ends based on solving the 
differential equation in Eq. (1) are calculated as: 

 2
16 )0()0( LEIsvPvEIV =′+′′′=    ,    LEIcsvEIM ˆˆ)0(26 =′′−=  (9a) 

 2
36 )()( LEIsLvPLvEIV −=′−′′′−=    ,    LEIsLvEIM ˆ)(46 =′′=  (9b) 

 LEIcsMM ˆˆ2656 ==    ,    LEIsMM ˆ4666 ==  (9c) 

In summary, based on Eqs. (2), (4), (6), (7), (8), and (9) for the above six cases, the element stiffness matrix of 
the ith member ik  for bending after incorporating two plastic hinges and axial compressive force using stability 
functions becomes: 
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2.2 Global Stiffness Matrices 
The element stiffness matrix presented in Eq. (10) needs to be assembled into the global stiffness matrix. This 
assembly procedure can be simplified by partitioning the element stiffness matrix in Eq. (10) as follows. 
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From the sub-matrices partitioned according in Eq. (12), the assembly into the global stiffness matrices )(tK , 
)(tK′ , and )(tK ′′  follows a straightforward procedure. Here, the global stiffness matrices are functions of time, 

since the axial compressive load P is a function of time in a dynamic analysis. A number of textbooks have 
discussed this procedure in great detail [13]. Consider a framed structure having a total of n DOFs and m PHLs, 
the global stiffness matrices can be obtained by this assembly procedure and are often written in the form: 
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3. Inelastic Displacement for Material Nonlinearity  
The detailed derivation on the use of inelastic displacement for analyzing structures with material nonlinearity 
has been published [14] and it is briefly summarized here. Consider a moment-resisting framed structure having 
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a total of n DOFs and m PHLs. Let the 1×n  total displacement )(tx  at each DOF be represented as the 
summation of the 1×n  elastic displacement )(tx′  and the 1×n  inelastic displacement )(tx ′′ :  

 )()()( ttt xxx ′′+′=  (14) 

Similarly, let the 1×m  total moment )(tm  at the PHLs of a moment-resisting frame be separated into the 1×m  
elastic moment )(tm′  and the 1×m  inelastic moment )(tm ′′ : 

 )()()( ttt mmm ′′+′=  (15) 

The displacements in Eq. (14) and the moments in Eq. (15) are related by the equations: 

 )()()( ttt T xKm ′′=′     ,      [ ] )()()()()()( 1 tttttt T ΘKKKKm ′′′′−′′−=′′ −  (16) 

where )(tΘ ′′  is the 1×m  plastic rotation at each PHL, and )(tK , )(tK′ , and )(tK ′′  are calculated in Eq. (13). 
The relationship between the plastic rotation )(tΘ ′′  and inelastic displacement )(tx ′′  is:  

 )()()()( 1 tttt ΘKKx ′′′=′′ −  (17) 

Substituting both equations in Eq. (16) into Eq. (15) and making use of Eqs. (14) and (17), then rearranging the 
terms gives the governing equation for calculating the plastic hinge responses for any given total displacement 
pattern: 

 )()()( ttt T xKΘKm ′=′′′′+  (18) 

4. Dynamic Equilibrium Equation of Motion 
For a moment-resisting framed structure modeled as an n DOF system and subjected to earthquake ground 
motions, the dynamic equilibrium equation of motion can be written as  

 )()()()()()( tttttt aFgMxKxCxM −−=′++   (19) 

where M is the nn×  mass matrix, C is the nn×  damping matrix, )(tx  is the 1×n  velocity vector, )(tx  is the 
1×n  acceleration vector, )(tK  is the time-varying nn×  stiffness matrix derived in Eq. (13) while subjected to 

time-varying column axial compressive load )(tP , )(tg  is the 1×n  earthquake ground acceleration vector 
corresponding to the effect of ground motion at each DOF, and )(taF  is the 1×n  vector of additional forces 
imposed on the structure due to geometric nonlinearity accounting for all the gravity columns in the structure 
(mainly the P-∆ effect). This geometric nonlinearity can often be modeled using a leaning column (or sometimes 
called a P-∆ column) in a two-dimensional analysis but may require more detailed modeling of all gravity 
columns in a three-dimensional analysis to capture the response due to torsional irregularity of the structure. In a 
two-dimensional analysis, the relationship between this lateral force )(taF  and the lateral displacement can be 
written as follows: 

 )()( tt aa xKF =  (20) 

where aK  is an nn×  stiffness matrix that is a function of the gravity loads on the leaning column and the 
corresponding story height, but it is not a function of time. For two-dimensional frames with horizontal DOFs 
only, this aK  matrix often takes the form: 
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where iQ  is the total axial force due to gravity loads acting on the leaning column of the ith floor, and ih  is the 
story height of the ith floor. Now substituting Eq. (20) into Eq. (19) and rearranging terms gives 

 )()()()()()( tttttt a gMxKxKxCxM  −=+′++  (22) 

Since )()()( ttt gxy  +=  where )(ty  is the 1×n  absolute acceleration vector, substituting this equation into Eq. 
(22) gives the governing equation of motion for energy balance: 

 0xKxKxCyM =+′++ )()()()()( ttttt a  (23) 

While the lateral force )()( tt aa xKF =  in Eq. (23) takes care of the nonlinear geometric effects from all 
the gravity columns in the structure, the stiffness matrix )(tK  in Eq. (23) considers both large P-∆ and small P-δ 
effects of geometric nonlinearity on the moment-resisting frame itself. Let this time-dependent global stiffness 
matrix )(tK  be represented in the form: 

 )()( tt GL KKK +=  (24) 

where LK  denotes the linearized elastic stiffness of the frame due to the gravity loads on the frame only, and 
)(tGK  denotes the change in the geometric stiffness due to the change in axial load on the frame during the 

dynamic loading. Since the LK  matrix is computed by using the gravity loads on the columns of the frame 
(which means )0()( 0 KKK == tL , i.e., the stiffness matrix computed at time step 0) only, it is not a function of 
time and therefore remains as a constant throughout the dynamic analysis.  

5. Energy Balance 
Seismic energy evaluation begins with Eq. (23). Integrating this equation over the path of displacement response 
gives 

 0)()()()()(
0000

=+′++ ∫∫∫∫
t

a
Tt Tt Tt T dtdttdtdt xKxxKxxCxxMy   (25) 

Note that )()()( tdtdtd gyx −= , where )(ty  is the 1×n  absolute displacement vector and )(tg  is the 1×n  
earthquake ground displacement vector. Now substituting this equation into the first integral of Eq. (25) gives 

 ∫∫∫∫∫ =+′++
t Tt

a
Tt Tt Tt T dtdtdttdtdt

00000
)()()()()()( gMyxKxxKxxCxyMy   (26) 

In addition, Eq. (14) can be expressed in incremental form as )()()( tdtdtd xxx ′′+′= . Substituting this equation 
into the third integral of Eq. (26) gives 

 ∫∫∫∫∫∫ =′′′++′′++
t Tt Tt

a
Tt Tt Tt T dtdttdtdttdtdt

000000
)()()()()()()()( gMyxKxxKxxKxxCxyMy   (27) 

Each integral in Eq. (27) is considered separately in the following sub-sections. 

5.1 Kinetic Energy (KE) 
The first integral on the left hand side of Eq. (27) represents the absolute kinetic energy (KE) and can be 
evaluated using absolute velocity of the structure as: 

 k
T
k

T
k

T
k

t T
k ttdttKE k yMyyMyyMyyMy 

2
1)0()0(

2
1)()(

2
1)()(

0
=−== ∫  (28) 

where )(ty  is the 1×n  absolute velocity vector, ky  represents the discretized form of )( kty , and kt  represents 
the kth time step at which the energy value is calculated. The structure is assumed to be at rest when the 
earthquake begins, and therefore 0y =)0( . Due to the squaring of the absolute velocity vector in Eq. (28) and a 
positive definite M matrix, the kinetic energy is always positive. 
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5.2 Damping Energy (DE) 
The second integral on the left hand side of Eq. (27) represents the damping energy (DE), which is the energy 
dissipated via viscous damping mechanism within the structure. The integrand is always positive, and therefore 
damping energy always accumulates over time. In terms of numerical simulation, the integral can be numerically 
approximated by evaluating the area underneath the curve using the trapezoidal rule: 

 ( ) ( )∑∫
=

−− −+==
k

k
t

k
kk

T
k

T
k

t T
k dttDE

1
110 2

1)()( xxCxxxCx   (29) 

where kx  and kx  represent the discretized forms of )( ktx  and )( ktx , respectively. 

5.3 Strain Energy (SE) 
The third integral on the left hand side of Eq. (27) represents strain energy (SE) of the moment-resisting frame. 
Since the stiffness matrix )(tK is time-varying, obtaining a closed form solution to the integral is not possible. 
However, an assumption can be made by setting the )(tGK  matrix in Eq. (24) to zero, indicating that the overall 
gravity loads on the frame as a whole remains constant even though the axial forces in individual columns may 
vary. Based on this assumption, Eq. (24) becomes Lt KK =)( , and the strain energy of the moment-resisting 
frame is calculated as 

 kL
T

kL
T

kL
T

k
t

L
Tt T

k ttdtdtttSE kk xKxxKxxKxxKxxKx ′′=′′−′′=′′=′′= ∫∫ 2
1)0()0(

2
1)()(

2
1)()()()(

00
 (30) 

where kx′  represents the discretized form of )( ktx′ . The structure is again assumed to be at rest when the 
earthquake begins, and therefore 0x =′ )0( . Due to the squaring of the elastic displacement vector in Eq. (30) and 
a positive definite LK  matrix, the strain energy is always positive. 

5.4 Higher-order Energy (HE) 
The fourth integral on the left hand side of Eq. (27) represents higher-order energy (HE) due to gravity loads on 
the structure itself. It is of higher-order because the energy comes from the large P-∆ effect on the gravity 
columns and is calculated as follows: 

 ka
T
ka

T
ka

T
k

t
a

T
k ttdttHE k xKxxKxxKxxKx

2
1)0()0(

2
1)()(

2
1)()(

0
=−== ∫  (31) 

where the structure is again assumed to be at rest when the earthquake begins, and therefore 0x =)0( . Due to the 
squaring of the total displacement vector in Eq. (31) and a negative definite aK  matrix as shown in Eq. (21), the 
higher-order energy is always negative and varies with time. 

5.5 Plastic Energy (PE) 
The fifth integral on the left hand side of Eq. (27), which is associated with inelastic displacements, represents 
the plastic energy (PE) dissipated by the permanent deformations of the structure. Rewriting Eqs. (16) and (17) 
in the forms: 

 ΘKxK ′′′=′′ dtdt )()(     ,      TT ttt )()()( mKx ′=′′  (32) 

Then substituting Eq. (32) into the fifth integral of Eq. (27) gives 

 ∑∑∫∫∫∫
==

=θ′′′=′′′=′′′′=′′′=
m

i
ki

m

i

t
ii

t Tt Tt T
k tPEdtmdtdttdtttPE kkkk

11
0000

)()()()()()()()( ΘmΘKxxKx  (33) 

where iPE  represents the plastic energy dissipation at the ith plastic hinge, mi ,...,1= . Through this analytical 
derivation, it is shown in Eq. (33) that the overall plastic energy dissipation is exactly equal to the sum of plastic 
energy dissipation in all the plastic hinges.  
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The term iPE  in Eq. (33) can be numerically approximated by evaluating the area underneath the curve 
using the trapezoidal rule: 

 ( )( )∑∫
=

−− θ′′−θ′′′+′=θ′′′=
k

k
t

k
kikikiki

t
iii mmdtmPE

1
1,,,1,0 2

1)(  (34) 

where kim ,′  and ki,θ′′  represent the discretized forms of )( ki tm′  and )( ki tθ′′ , respectively. 

Note that iPE  is computed by integrating the product of elastic moment im′  and the change in plastic 
rotation idθ′′ . A positive change in plastic rotation is always caused by a positive moment, and a negative change 
in plastic rotation is always caused by a negative moment. Therefore, iPE  is always positive and accumulates 
over time. 

5.6 Input Energy (IE) 
Finally, the integral on the right side of Eq. (27) represents the absolute input energy (IE) due to the earthquake 
ground motion, and this integral can be numerically approximated by evaluating the area underneath the curve 
using the trapezoidal rule: 

 ( ) ( )1
1

10 2
1)()( −

=
− −+== ∑∫ kk

t

k

T
k

T
k

t T
k

k
k dttIE ggMyygMy   (35) 

where ky  and kg  represent the discretized forms of )( kty  and )( ktg , respectively.  

In summary, substituting Eqs. (28), (29), (30), (31), (33), and (35) into Eq. (27), the energy balance 
equation becomes 

 IEPEHESEDEKE =++++  (36) 

6. Numerical Simulation of a 4-story Moment-Resisting Frame 
To illustrate the use of Eq. (36) in calculating the energy dissipation of moment-resisting frames, consider the 
four-story frame shown in Fig. 2(a). This frame contains 36 DOFs (i.e., 36=n ). and 56 PHLs (i.e., 56=m ). 
Assume a mass of 72,670 kg is used on each floor, and a gravity load of 431 kN is applied on each exterior 
column member and 632 kN is applied on each interior column member as shown in Fig. 2(b). In addition, a 
leaning column is used in the model to account for all of the gravity loads from other parts of the structure as 
shown in Fig. 2(b). The gravity loads on the leaning column is assumed to be 2,018 kN per floor. A 2% damping 
is assumed in all four modes of vibration.  

W24x55
x1

x2

x3

x4

W24x55 W24x55

W24x55 W24x55 W24x55

W24x55 W24x55 W24x55

W24x55 W24x55 W24x55

W
14

x1
32

W
14

x1
93

W
14

x1
93

W
14

x1
32

W
14

x1
32

W
14

x1
93

W
14

x1
93

W
14

x1
32

9.14 m 9.14 m 9.14 m

4.
27

 m
4.

27
 m

4.
57

 m
5.

49
 m

PHL#1 #9 #17 #25

#33

#3

#35

#4

#37

#39 #41 #43#40 #42 #44

#45 #47 #49#46 #48 #50

#51
#53 #55

#27

#29

#31

#5

#6

#8

#56
431 kN 632 kN

431 kN 632 kN

431 kN 632 kN

431 kN 632 kN

431 kN

431 kN

431 kN

431 kN

632 kN

632 kN

632 kN

632 kN

(a) (b)

2,018 kN

2,018 kN

2,018 kN

2,018 kN

Leaning
Column

 
Fig. 2 – Four-story moment-resisting steel frame and corresponding gravity loads 
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Assume the yield stress of the member is 345 MPa and all 56 plastic hinges exhibit elastic-plastic 
behavior. By subjecting the steel frame to the 1995 Kobe earthquake ground acceleration shown in Fig. 3, the 
energy responses are summarized in Fig. 4, where the case “without axial force” represents the approach used in 
previous research [5] and the case “with axial force” represents the present approach with geometric nonlinearity 
due to axial force considered in the stiffness formulation. The results confirm that KE and SE are always 
positive, DE and PE are accumulative and never decreasing, and HE is always negative. The magnitude of HE is 
smaller than that of DE and PE, and therefore IE tends to follow an increasing trend. One interesting point to 
note is that HE has a larger magnitude than SE after 10 s, indicating that higher-order energy builds up quickly 
when permanent deformation occurs in the structure due to yielding. 

 
Fig. 3 – Recorded 1995 Kobe earthquake ground motion at Kajima station Component 000 
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Fig. 4 – Energy response of the 4-story framed structure with geometric nonlinearity due to Kobe earthquake 
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In terms of energy dissipation, it can be seen from Fig. 4 that both KE and SE diminish slowly as the 
earthquake subsides, and the energy components responsible for dissipating the IE due to the earthquake are DE 
and PE. As shown in Fig. 4, the input energy to the frame is approximately the same for the cases with and 
without axial force modeled for geometric nonlinearity. However, when geometric nonlinearity is considered, 
larger PE dissipation is needed with smaller DE dissipation, verifying that geometric nonlinearity causes more 
damage to the structure. 

In terms of plastic energy dissipation at individual plastic hinges, Fig. 5(a) shows the maximum plastic 
energy at each plastic hinge, i.e., iPE . Since plastic energy accumulates over time, the maximum plastic energy 
always occurs at the end of the earthquake duration. In addition, summing the plastic energy values at all the 
plastic hinges in Fig. 5(a) gives the total plastic energy dissipation PE in Fig. 4, confirming Eq. (33) is correct. 
Finally, Fig. 5(b) shows the relative proportion of each energy component of those shown in Fig.5(a) for the 
frame with geometric nonlinearity that makes up the input energy. It can be seen from this figure that PE is at 
least three times larger than DE, illustrating that damage to the plastic hinges is the major source of energy 
dissipation for the four-story frame due to the Kobe earthquake ground motion.  
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Fig. 5 – Energy response of structure with geometric nonlinearity: (a) Plastic energy dissipation at  

individual plastic hinges and (b) portions of individual energies making up the input energy 

By including the axial force in the formulation, different forms of potential energy can now be captured 
and balanced. More importantly, based on the above analytical derivation and numerical example, a 
computational tool based on small displacement approach is now available to capture the dissipated plastic 
energy in the inelastic components of the structure that considers both geometric and material nonlinearities. In 
addition, the analytical derivation proves that the sum of dissipation plastic energy at each inelastic component 
equals the overall plastic energy dissipation, which is an energy form of the energy balance equation. Because of 
the accumulative nature of plastic energy, it can be used in a wide range of applications. These potential 
applications include: 

• Assessment of structural damage via the comparison of plastic energy demand with the corresponding 
plastic energy capacity of members.  

• Evaluation of residual capacity of the structure after suffering damage during an earthquake event.  

• Development of assessment metrics for structural performance.  

7. Conclusion 
An analytical theory and the corresponding computational method for evaluating the seismic energy in structures 
are presented based on the use of stability functions in the formulation of the stiffness matrix. The proposed 
method successfully separates the coupling effect of material nonlinearity and geometric nonlinearity by using 
inelastic displacement. By expressing the input energy as the sum of kinetic energy, damping energy, strain 
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energy, higher-order energy, and plastic energy, as summarized by Eq. (36), the energy representation of the 
structural response due to earthquake ground motion is complete. For potential energy in particular, 

• Strain energy (SE) represents the linear elastic portion of the structural response that is recoverable; 

• Higher-order energy (HE) represents the addition or subtraction of energy from the overall structural 
response due to geometric nonlinear effects; and  

• Plastic energy (PE) represents the dissipation of energy and reduction of structural response due to material 
nonlinearity.  

Careful attention should be paid to the difference between HE and PE, even though both represent the nonlinear 
energy response of the structure. While PE represents damage in the structure resulting from inelastic 
deformation, HE represents the stored energy due the higher-order effect of gravity loads acting on the gravity 
columns, which contains both elastic displacement response and inelastic displacement response due to yielding 
of the structure. Therefore, the coupling effect between geometric nonlinearity and material nonlinearity, which 
is often found in the calculation of structural displacement responses, occurs in the energy calculation also.  

8. Disclaimer 
No formal investigation to evaluate potential sources of uncertainty or error, or whether multiple sources of error 
are correlated, was included in this study. The question of uncertainties in the analytical models, solution 
algorithms, material properties and as-built final dimensions and positions of members versus design 
configurations employed in analysis are beyond the scope of the work reported here. 
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