

Estimating t-way Fault Profile Evolution During Testing
D. Richard Kuhn1, Raghu N. Kacker1, Yu Lei2

1National Institute of
Standards and Technology

Gaithersburg, MD 20899, USA
{kuhn,raghu.kacker}@nist.gov

Abstract: Empirical studies have shown that most software
interaction faults involve one or two variables interacting, with
progressively fewer triggered by three or more, and no failure
has been reported involving more than six variables interacting.
This paper introduces a hypothesis for the origin of this
distribution, with implications for removal of interaction faults
and reliability growth.
Keywords – combinatorial testing; software fault; testing

I. INTRODUCTION
Empirical studies have shown that software interaction

faults involve 1 to 6 variables, with no failures involving
more than six reported. Interaction faults are denoted as t-way
faults when t factors or variables induce the fault. For
example, if a fault occurs when x > 10 and y < 55, this is a 2-
way fault. Table 1 and Fig. 1 show the cumulative percentage
of failures at different interaction t values, for a variety of
applications, with the average indicated in Table 1 (headings
keyed to references). For consistency, single factor faults are
denoted 1-way faults. Thus for the various applications, the
proportion of failures caused by 1-way or single factors
ranged from 9% to 67%, and the proportion caused by either
1-way or 2-way faults ranged from 47% to 97%.

TABLE I. CUMULATIVE PERCENT OF FAILURES AT t = 1..6
t [1] [2]a [2]b [3] [4] [5] [6] average
1 66 28 41 67 18 9 49 39.71
2 97 76 70 93 62 47 86 75.86
3 99 95 89 98 87 75 97 91.43
4 100 97 96 100 97 97 99 98.00
5 99 96 100 100 100 99.00
6 100 100 100

The fault distributions were derived from failure reports
for fielded software products, including medical devices [1],
browser [2]a and server [2]b, TCP/IP [4], server [5], and SQL
[6]. An additional distribution is from initial testing of a large
distributed database application [3]. Empirically derived fault
distributions such as these have provided the rationale for
advances in the field of combinatorial testing over the past
decade. While the distributions have been documented and
analyzed thoroughly, relatively little is known about why the
distributions have this consistent form or how they evolve as
systems are tested and used. While it seems natural for more
complex faults to be less common than simpler faults, we
want to go beyond such a simple qualitative hypothesis and
develop a model for estimating how the proportion of t-way

2Computer Science & Engineering

University of Texas at Arlington

Arlington, TX, USA

ylei@uta.edu

faults varies with t, as testing or use progresses. We propose
an explanation based on the two assumptions below.
•	 t-way faults occur in proportion to t-way conditions in

code
•	 t-way faults are removed in proportion to t-way

combinations in inputs

Fig. 1. Distribution of failures at t = 1..6

II. ANALYSIS
For an estimate of the proportion of t-way conditions in

code, we use the distribution of conditions in a collection of
7,685 branching statements from four avionics applications
[7]. Note from Table II that this distribution is relatively close
to the distribution of t-way faults discovered in initial testing
in a database system described in reference [3].

TABLE II. t-WAY CONDITIONS, BRANCH STATEMENTS VS. INITIAL TEST
t: 1 2 3 4 5 6 7 8

Branch cond % 74.1 19.6 4.5 1.2 .3 .1 .1 .1
Initial test [3] 67 26 5 2 0 0 0 0

As software is tested or used, interaction faults will be
discovered when a t-way combination that triggers a fault
occurs in a set of inputs. Each set of inputs includes C(n,t)
combinations at each level of t, for n variables, where C(n,t)
= n!/t!(n-t)!. For variables with v values each, the total
number of combination settings is vt x C(n,t), so each test or
input set can cover 1/vt of the total number of settings. The
number of values, v, must of course be at least 2, but may be
larger. As t increases, the proportion of combinations covered
in each test is reduced, i.e., the proportion of (t+1)-way

mailto:ylei@uta.edu
mailto:kuhn,raghu.kacker}@nist.gov

combinations covered is 1/v of the proportion of t-way
combinations covered.

We make the simplifying assumption that 1-way faults
are removed at rate r for some number of test sets, and the
proportion remaining after k sets will be (1–r)k . Since the
discovery of a t-way fault depends on the presence of t-way
combinations in input, and the proportion of (t+1)-way faults
is 1/v of t-way faults, the fault discovery rate will be reduced
by this proportion, or r/v for 2-way, r/v2 for 3-way, etc. We
can consider 2 the minimum value of v, and boolean or binary
variables are also extremely common in practice. Then for k
test sets we would have (1 – r)k 1-way faults remaining, (1 –
r/2)k 2-way faults, (1 – r/4)k 3-way faults, and so on.

Now consider the evolution of the fault distribution as
tests are run. Table III shows an example starting from the
assumption that t-way faults occur approximately in
proportion to the occurrence of t-way conditions in branching
statements. For a fault detection rate of r = .05 per test set, k
= 48 sets will produce a nearly matching value for the
proportion of 1-way faults in the average of Table I. But the
distribution of faults for t = 2..6 is also quite close to the
average, as would be predicted if these faults are removed in
proportion to r/2, r/4, r/8 etc. For example, starting with 74.1
1-way faults, after 48 test blocks, we would have 74.1(1 -
.05)48 = 6.3 1-way faults; 19.6(1 - .05/2)48 = 5.8 2-way faults,
4.5(1 - .05/4)48 3-way faults, etc. Normalizing this to 100%,
we have the distribution shown in Table III, line (2), which is
quite close to the average (3).

TABLE III. FAULTS REMAINING AT t = 1..6 AFTER 48 SETS OF TESTS, r = .05
t: 1 2 3 4 5 6+

Orig distrib % 74.1 19.6 4.5 1.2 0.3 0.3
After 48 sets 39.9 36.7 15.6 5.6 1.6 0.6
Avg, Tbl 1 39.7 37.6 15.5 6.6 1.0 1.0

FIG. 3. FAULT DISTRIBUTION FOR t = 1..6 AS TESTING PROGRESSES.

Notice that in Table III, after 48 test sets the proportion
of faults for lower levels of t declines, while the proportion
for higher t increases. Because an individual test contains a
higher proportion of 1-way combinations than 2-way, the 1-
way faults decline faster than others, and thus represent a
smaller proportion of total remaining faults after testing. In

general, t-way faults will decline faster than u-way faults for
any u>t. This is consistent with intuition, as 2-way faults are
in some sense “simpler” than 3-way faults, and thus likely to
be found more quickly. Thus experience suggests that as
testing progresses, the proportion of simpler faults should be
reduced faster than more complex faults, shifting the
distribution curves down at lower levels of t. This shift can
be seen clearly in Fig. 3, which shows the proportion of faults
at each level of t left after sets of tests for r = .05.

Fault reduction continues as bugs are detected in fielded
products, and this process would result in different
distributions of faults at each level of t, depending on how
extensively a product is used. Data reported in two studies
allow us to consider this model for a specific product. Both
[2] and [5] report bug data for the Apache server, for two
periods: 2001 – 2002 [2], and 2002 – 2006 [5], although some
variation is likely introduced as versions were changed.
Comparing columns [2]b and [5] in Table I, it can be seen
that the proportion of less complex (lower t-way) faults is
reduced over the time period, as expected. Starting from the
distribution in [2], with r = .05 and k = 54 test sets, the
distribution evolves as shown in Table IV.

TABLE IV. FAULTS REMAINING AT t = 1..6 AFTER 54 SETS OF TESTS, r = .05
t 1 2 3 4 5 6+

Rpt [2] 41 29 19 7 0 4
Rpt [5] 9 38 28 22 3 0
54 test sets 9.1 26.2 34.1 17.8 0 13.0

III. CONCLUSIONS AND IMPLICATIONS FOR TESTING
Preliminary results suggest that the model described in

Sect. II is relatively successful in reproducing the fault
distributions observed in empirical data. Additional
empirical data will be needed to evaluate validity thoroughly.

The most significant implication for testing is that t-way
interaction faults for t = 4, 5, 6 are exceedingly difficult to
discover without tests specifically designed as covering arrays
to include all t-way combinations at these levels.
Disclaimer: Products may be identified in this document, but identification does
not imply recommendation or endorsement by NIST, nor that the products
identified are necessarily the best available for the purpose

IV. REFERENCES
[1]	 D.R. Wallace, D.R. Kuhn, “Failure Modes in Medical Device Software:

an Analysis of 15 Years of Recall Data”, Intl J. Reliability, Quality and
Safety Engineering, vol. 8, no. 4, 2001.

[2]	 Kuhn, D.R. and Reilly, M.J., An investigation of the applicability of
design of experiments to software testing. 27th Annual NASA Software
Engineering Workshop, 2002.. (pp. 91-95). IEEE.

[3]	 Kuhn, D.R., Wallace, D.R. and Gallo Jr, A.M., 2004. Software fault
interactions and implications for software testing. IEEE Trans Soft
Eng,30(6), pp.418-421.

[4]	 Bell, K.Z. Optimizing Effectiveness and Efficiency of Software
Testing, PhD Diss, North Carolina State University, 2006.

[5]	 Cotroneo, D., Pietrantuono, R., Russo, S., & Trivedi, K. (2016). How do
bugs surface? A comprehensive study on the characteristics of software
bugs manifestation. J.Systems and Software, 113, 27-43.

[6]	 Z. Ratliff, R.Kuhn, R. Kacker, Y.Lei, K. Trivedi, The Relationship
Between Software Bug Type and Number of Factors Involved in
Failures, submitted to Intl Wkshp Combinatorial Testing, 2016.

[7]	 Chilenski, J. J. An investigation of three forms of the modified condition
decision coverage (MCDC) criterion. FAA. 2001.

