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Abstract

We theoretically explore a Rashba spin—orbit coupling scheme which operates entirely in the absolute
ground state manifold of an alkali atom, thereby minimizing all inelastic processes. An energy gap
between ground eigenstates of the proposed coupling can be continuously opened or closed by
modifying laser polarizations. Our technique uses far-detuned ‘Raman’ laser coupling to create the
Rashba potential, which has the benefit of low spontaneous emission rates. At these detunings, the
Raman matrix elements that link 1z magnetic sublevel quantum numbers separated by two are also
suppressed. These matrix elements are necessary to produce the Rashba Hamiltonian within a single
total angular momentum fmanifold. However, the far-detuned Raman couplings can link the three
XYZ states familiar to quantum chemistry, which possess the necessary connectivity to realize the
Rashba potential. We show that these XYZ states are essentially the hyperfine spin eigenstates of 8’Rb
dressed by a strong radio-frequency magnetic field.

Introduction

Geometric gauge potentials are encountered in many areas of physics [ 1-9]. In atomic gases, the geometric
vector and scalar potentials were first considered in the late 90s to fully describe atoms ‘dressed’ by laser beams
[10-12]. Atoms that move in a spatially varying, internal state dependent optical field experience geometric
vector and scalar potentials. Our understanding of these potentials has been refined, and now allow for the
engineered addition of spatially homogeneous geometric gauge potentials [ 13—15]. In many cases, the resulting
atomic Hamiltonian is equivalent to iconic models of spin—orbit coupling (SOC): Rashba, Dresselhaus and
combinations thereof.

Often, systems with SOC will have multiply degenerate single particle eigenstates with topological character:
this suggests that strongly correlated phases will exist in the presence of interactions for both bosonic and
fermionic systems. Interesting phenomena such as topological insulating states and the spin-Hall effect include
SOC as anecessary component [16, 17]. Rashba SOC (present for 2D free electrons in the presence of a uniform
perpendicular electric field, such as in asymmetric semiconductor heterostructures) [ 18, 19], is an iconic 2D
SOC potential and has maximal ground state symmetry. Indeed, interesting many-body phases [20-22]
predicted for atomic systems with Rashba SOC include unconventional and fragmented Bose—Einstein
condensation [23], composite fermion phases of bosons [24] and anisotropic or topological superfluids in
fermionic systems [25].

Itis in the context of such potentially fragile many-body states that we propose a scheme that is implemented
entirely within the ground hyperfine manifold of an alkali with spin greater than or equal to spin-1. Recently, the
Rashba potential was realized with *°K fermions using lasers coupling the f = 7/2 and f = 9/2 manifolds [26].
In alkali bosonic systems with density 7 the two-body collisional relaxation lifetime from the f 4+ 1tothef
ground state hyperfine manifold is >n x 107!* cm? s7![27]: a timescale that is potentially too small to observe
meaningful many-body physics. Such relaxation may be a lesser, but still pertinent, concern in fermionic
systems. We propose an alternative coupling scheme implemented entirely within the ground hyperfine
manifold of alkali atoms.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Rashba dispersion in electron systems. (a) Cross-section of the 2D Rashba dispersion. (b) Contour plot of dispersion
demonstrating the cylindrical symmetry of the potential. (c) Vector plot of Bsoc = 7k/m x E/c?,the ground state electron spin is
anti-aligned with Bsoc. An electron that loops about the momentum origin adiabatically traces out the equator on the Bloch sphere.
After one full loop a Berry’s phase of 7 is acquired.

Rashba SOC for electrons

The simplest model of Rashba SOC describes a 2D free electron system in terms of electron momentum /k and
gyromagnetic ratio gin the presence of an out-of-plane electric field E = |E|e,. We consider the electrons
relativistically: in the electron’s moving frame an in-plane magnetic field Bsopc = /7k/m x E/c?appearsin
proportion to momentum, as shown in figure 1. The additional contribution to the spin-1/2 electron’s Zeeman
Hamiltonian from Bgo is

Hsoc = 2;“(k X e,) - /i5/2, 5

where ov = gpug|E|/2c?, /i /2 is the electron spin operator, and & = (&, 8;, 8;) is the vector of Pauli matrices.
As shown in figures 1(a) and (b), a degenerate ring of momenta described by k? + ky2 = a? comprises the
ground state of this Hamiltonian. At the origin (k = 0) the eigenenergies of the Rashba Hamiltonian intersect:
this point is often called a Dirac point.

Ignoring overall energy shifts, the Hamiltonian including Hso and the kinetic energy can be expressed as
H = (7k — .21)2/ 2m, in terms of an effective vector potential A=a (6, — 0ye)). The Cartesian components
of the vector potential manifestly fail to commute: the vector potential is non-abelian.

An atom that adiabatically traverses a loop about the momentum origin shown in figures 1(b) and (c)
acquires a Berry’s phase of 7. Likewise, an interferometer in which one arm orbits the momentum origin would
display destructive interference. It is anticipated that the presence of this phase winding in the ground state
potential will result in unusual many-body ground states for both fermionic and bosonic systems [23-25].

Rashba SOC in cold atoms

One of several methods for producing SOC in ultracold neutral atoms uses lasers to impart a discrete
momentum kick whenever they induce a spin flip. This SOC s strictly 1D, e.g. SOC in the analogous electron
system would have the form ocp, 0., motivating the addition of a third atomic ground state and two added
Raman couplings, each with a distinct orientation of momentum kick, to produce the desired 2D Rashba SOC.
The necessary coupling configuration is either a laser scheme that links all three ground states to a common state
[28] or, when the excited state(s) are adiabatically eliminated, a closed group of N-states where each constituent
state is coupled to exactly two others (this may be visualized as N-states coupled in aloop) [29]. The two
configurations can overlap in the case of N = 3, which is the configuration adopted in this paper.

The problem encountered with the simplest possible implementation of this scheme is that direct Raman
coupling of spins within the ground hyperfine manifold of alkali atoms cannot couple differences in spin greater
than 1 unit of angular momentum [30]. Coupling as shown in figure 2(a) is possible, while coupling as shown in
figure 2(b) does notlink |[+1) and | — 1). Detuning the lasers near to a transition with the excited electronic
hyperfine states as proposed in [31] lifts the angular momentum restriction sufficiently to realize a coupling
scheme similar to figure 2(b) but the spontaneous emission rate increases and atomic ensemble lifetimes become
much shorter than typical equilibration times. Many theoretical results, and so far the only experimental result,
use one or more states from both hyperfine fmanifolds to complete the minimum set of three states [26, 28].
Although feasible, collisions that change fare expected to lead to atom-loss and heating, potentially de-cohering
fragile many-body phases.
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Figure 2. Schematic view of spin—orbit coupling in the spin-1 ground state of 8’Rb. (a) In most current experiments, the same lasers
simultaneously Raman couple pairs of adjacent spin states. Lasers are labeled with their amplitudes |E;| and |E,|. (b) To produce
Rashba SOC all pairs of spin states need to be independently coupled. Under experimental conditions considered in this paper,
coupling within an alkali ground electronic hyperfine spin manifold §2_; ;; + h.c. is negligible.
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Figure 3. Our approach, applied in the ground f = 1 (generalizable to f > 1) hyperfine manifold of an alkali atom is to (a) rf couple
Q¢ three |mg) spin projections split by a linear Zeeman shift /6, and a quadratic Zeeman shift /¢ in the presence of a dc magnetic
field. The resulting rf eigenstates | j) and | j') are linked in turn by resonant Raman coupling with strength /5 €y for j i€ {1,2,3}
as shown in panel (b). This approach is practical when wys > € & [Qy| > [€; 7. The 3D laser geometry shown in panel (c) produces
the necessary Raman couplings as well as the necessary momentum kicks, panels (d) and (e), to realize the Rashba potential. Each laser
is labeled by its electric field amplitude | E;| and wavevector kg. When the coupling strengths are set equal

Q = Q| = 2Ep, V j = j',where Eg = /i%kg/2m (Ex = h x 3.678 kHz in ®Rb), the dispersion of the Rashba potential is
obtained for a slice taken along the x-axis as shown in panel (f).

Our approach, illustrated in figure 3, uses a primary then a secondary coupling. First, a rf coupling is applied,
much stronger than the intended Raman coupling, to produce a set of eigenstates. These rf eigenstates are
themselves Raman coupled by lasers to produce a set of eigenstates that include the Rashba subspace. We

perform a Floquet analysis showing the viability of this approach when a rf coupling strength in excess of
100 kHz is achieved.

Overview

In the following section we build the Rashba potential by Raman coupling arbitrary states. We then find the form
of the Raman coupling in the rf eigenbasis. With these building blocks, the eigenenergies may be calculated using
Floquet theory. From the Floquet Hamiltonian we pick a set of three states that are resonantly coupled to one
another, together with their resonant couplings, and construct an effective 3 x 3 Hamiltonian. Here, we learn
that itis not necessary to phase lock the rf to the Raman couplings while, by contrast, the laser polarizations are

constrained to a particular geometry. In the appendix we detail the parameters of an experiment that could
produce the Rashba potential using this technique.

3
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Building the Rashba potential by Raman coupling arbitrary states

We consider a subspace of three long-lived states | ) for j € {1, 2, 3} within a potentially much larger pool of
available states. We illuminate these states with three coherent lasers that are indexed by 3, 3’ € {1, 2, 3}.
Each of these lasers has distinct wavevector kg, each with magnitude kg, and frequency

f3 = (WL — wp) /2. ©)

The possible two-photon Raman frequencies differences are given by wy 3 = —(ws — wy) for 8 = 3 !,
Likewise, we define difference wavevectors k3 g = k3 — ky and difference phases between lasers
Vs, = V3 — V- Figure 3(d) illustrates the relationship between laser momentum recoil 7k 3, with magnitude
Jeky, and Raman recoil /zkg 5. The Hamiltonian describing Raman coupling in this general form is

21.2
H(k) = Z{[Zr’; + 51]51,;"

i

+ 20 7 g explitks g - x — waprt — Y1 = & )} 1) (7', ©)
B=3'
where E;is the eigenenergy of state | j) in the absence laser-coupling.

We shall make the simplifying assumption that each pair of lasers uniquely Raman couples a pair of states,
greatly simplifying the form of the coupling amplitude in equation (3): £; 7, which is potentially complex. This
configuration can be realized by requiring that the lasers resonantly Raman couple pairs of states

fwj = Ej — Ej, )
fw; = Ej, (5)
where we have linked each Raman coupling to a state with this resonance condition (recall that the laser
frequencies are given by equation (2). We also apply the rotating wave approximation (RWA) to eliminate terms
thatare ocexp (iw; 1)1 7) (5.
With these constraints on equation (3) it is always possible to apply a unitary transformation that eliminates
the complex exponentials from the Hamiltonian

Ux, t) = exp(ilkj - x — wjt — %DI) (jl, ©6)
j

and also applies a state-dependent momentum displacement to the momentum operator in equation (3). In the
rotating frame, U (x, t)(H (k) — i%8)) o' (x, t)is

A 7*(q — k)’ s
H(q) = Z{—Jéj,ﬂ + 2 (1= &) ¢li) (71, )
j;j/ 2m

where we have made a simple substitution of variables, k — ¢, indicating that the momentum termisa
quasimomentum.

Rashba subspace
We apply a discrete Fourier transform to equation (7)
13
ny = — > exp(—i2min/3)|j). (8)
I =7 ]szl p(—i2mjn/3)|j)

This is a useful diagonalization tool when all the off-diagonal matrix elements are nearly equal in amplitude and
larger than the energy scale of any of the three two photon recoils /’sz% . /2m. We specify our discussion to equal
amplitudes (2 = [€; y| for each matrix element. We also define a phase ¢, » = i In(£2;7/I$2;,7]). Applying the
discrete Fourier transform in equation (8) to the Hamiltonian in equation (7) we find the diagonal elements in
this transformed Hamiltonian (which are nearly the eigenenergies) are

E, = 2/iQcos(2mn/3 + @), )]
¢ = (¢35 + Pp1 + ¢1,3)/3 = —(¢y; + &1, + ¢3,1)/3' (10)

The phase sum ¢ adds the phase contributions from nearest neighbor matrix elements that sequentially chains
all three states together. ¢ is an example of a phase that is not simply the result of our choice of basis: it cannot be
eliminated by the transformation in equation (6). If ¢ = 0 the states |n = 1)and |n = 2) are degenerate in

energy.
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We define an effective vector k; y = K; — Ky where K; = k; — Z?:l k]-/?a. When
K; = keg[cos(2mj/3)e, + sin(27j/3)e,] are the vertices of an equilateral triangle, the Hamiltonian in the
discrete Fourier basis is

R 3 ﬁzq
H= Z[ -
n=1

2

2

2
+ En]ln> (n] + %[(iqx + a,)(11) 31 + 13) (2 + 12) (1D+h.c.]. (11)

We neglect the most energetic state when ¢ = 0 and recover the two-state Rashba Hamiltonian

PPkett . -
—L (6.9, — 5,4, + &0, (12)
2m m

where 1 is the identity for a two state system. The last term in equation (12) describes a gap openingat g = 0
between the ground eigenstates for small values of ¢.

Phase considerations
As made evident by its presence in equation (3) and absence in equation (7) the phase of each laser does not
contribute to the steady state Hamiltonian. This symmetry is absent when there are more than three Raman
frequency differences for a three state subsystem or in ring coupling geometries with N > 3 [29]. This
consideration is very compelling from an experimental perspective since small variations in the pathlength of
each laser could otherwise produce dramatic changes in the potential.

The Raman matrix elements €); 7 acquire a sign from the lasers’ detuning 1 /A = 1/A;, — 1/A; ; from
the Ps , and P /, lowest electronic fine structure. A phase of 7 is contributed to ¢ when 1/A is negative and 0
otherwise. Recently, an experiment realized the Rashba dispersion using positive 1/A [26]. In most schemes,
laser detuning is the primary consideration but with our approach both the detuning of the Raman relative to the
rfand laser polarization will additionally contribute to ¢.

Physical implementation

Raman coupling in the spin basis
We introduce the local electric field

E (t) — ZE [ei(kﬁ.xfw‘gtf’yﬁ) + efi(k3~X7wﬁt77;3)] (13)
3 2
&)
of linearly polarized lasers impinging upon an atomic system. The vector light shift of the local electric field
acting upon the ground state hyperfine spin manifold in an alkali atom can be cast in the form of a time and
position dependent effective magnetic field [30, 32]. This gives a coupling

A Srlp

Heg = B - F, (14)
iu
Beff - (E*(x) t) X E(x) t))) (15)
8sHp

in the ground hyperfine manifold of an alkali atom, where gs is the gyromagnetic ratio of the electron spin, g is
the Landé g-factor for the hyperfine states, /1y, is the Bohr magneton, and the two-photon vector light shift
matrix element is

Sl
4 3A3 /2 3A1 /2
The far off-resonant Wigner—Eckart reduced matrix element is given by {||d||} = (I = 0||d||l = 1) wherel = 0,
1 is the orbital angular momentum quantum number for the ground and excited electronic states, respectively.

We compute the pairwise product of components of the local electric field in the effective Hamiltonian
equation (14) and retain terms that have

(16)

Dp 50 = kpp - x — wap't — g (17)

in the argument of the complex exponentials.
When laser polarizations are linear we may rearrange terms and obtain the effective coupling between the
ground electronic hyperfine spin projections
_gpu|(E3 X Eg’) - F|

Ay = > sin[®g 5], (18)
ﬁiﬂ/ Zﬁgs
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where
P, B, B) (19)

is the vector of spin-1 operators.

We tune some Raman frequency differences to near resonance |wz g — 87| < 67 with thelinear Zeeman
splitting /26, = g 15| Bqc| produced by a dc magnetic field |Bg.|e,. We épply aRWA to these and keep couplings
proportional to ﬁw

AL A Py g
Hy = Qb y B ™70 (ws ) + hee., (20)
where 6 is the Heaviside functionand F, = E, + iﬁy. The matrix elements Qﬁ P in the RWA are
igrulEs X E g .
L == - " & ..
Qﬂ,ﬂ/ = 4ﬁgs 5;3,&’ (ex + ley)) (21)
where
Eﬂ X EQ’
= e (22)
S0 |Es x Egl

are complex unitary numbers that take on different values when the vector orientations of Es X E 4 differ but
the same pair of hyperfine spin projections are coupled. The Hamiltonian in equation (18) also contains
couplings proportional to F,

A|| A
Hg g = Q!};,;a’g sin(Pg,5'), (23)
—grulEs X E gy
Ql = T (24)
8,6 27g, Mg,
Mo, = &pp0 * € (25)

where Q”Q y changes sign when £ 5 isaligned or anti-aligned with Byce,. In the spin basis I:I 1;' 5 is simply a time

dependent detuning; we shall explore a different set of basis states where H, Q 5 produces an off-diagonal
coupling.

Construction of fully coupled basis states
For the remainder of this manuscript we narrow our discussion to the f = 1 ground hyperfine manifold of 8’Rb
and adopt the simplified labels |mg), where mp € {—1, 0, +1} label hyperfine (spin) projections and E,,,_ label
spin eigenenergies. We divide the overall Zeeman shift into a scalar part which we neglect, a linear part given by
/67 = (E_y — E11)/2 and a quadratic part given by e = (2Ey — E_; — E,)/2.

Weintroduce the |X, Y, Z) = |X), |Y)and |Z) eigenstates, which consist of linear combinations of |mg)
states in the f = 1 hyperfine manifold

l+1) — |—1) J+1) 4+ - 1)
X) = - L=t d |Z) = |0). 26
1X) 5 IY) =i o and |Z) = |0) (26)
The |X, Y, Z) state obey
Ejlmﬁj .
P I} = ilm) (27)

forindices j, I, min {X, Y, Z}. The Raman couplings from the previous subsection have a spin dependence
od:;, Fy, or 1:; and may therefore couple any pair of | X, Y, Z) states. This observation was made recently by
[33] in the context of producing optical flux lattices.

A set of atomic eigenstates which approach the XYZ states can be produced by an oscillating magnetic field
B, cos(wiet + ) thatis orthogonal to By e,. The rf coupling is described by

N Bt N
Hi = gFTBCOS(ert + %) (& - F), (28)
where
Brf
i = . (29)
C Byl

The rfis chosen to be resonant with the average of the two hyperfine spin transitions in the ground manifold,
fiws = /7. Inthe rotating frame of the rf and applying the RWA, the complex exponential exp (iw,ft) can be
eliminated from equation (28). Together with the atomic hyperfine energy levels the Hamiltonian with rf

6
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coupling is

ﬁB = (67 — wrf)f«‘z — %(i — FZZ) + Qrfl:;e*i(w,ftwrr) + hec, (30)

where Qf = gy B¢ &,¢ - (e, + ie,)/2/ hasan equivalent magnitude €2 and phase i In(§,¢).

The rf eigenenergies E; of the Hamiltonian in the presence of the rf magnetic field are plotted verses By, in
figure 5(b). For large (¢, the rf eigenvalues change weakly as a function of By.. We therefore set §; = w;r and
drop terms proportional to 7 — wy¢ for the remainder of this document. When we write down the rf eigenstates

Ix, y, 2)

) =) = ),
) = —20|Y) + (€ + Q)|Z) /10100 )
I2) = —i20|Y) + (€ = Q|Z) /10— 2.

J2Q p_ ld
* 0,

We see that these adiabatically approach the | X, Y, Z) statesas € /2 — —oo. Here we
defined Q0 = /€2 + 4|Q*.

We resonantly link these eigenstates with the Raman coupling of the form described in the previous
subsection and operate in the limit where the Raman is much smaller than the rf coupling, || < |€2,¢]. We
define a rf eigenstate coupling matrix

D' =71 GIEI (] (31)

7
1]

which gives the representation of F in the rf eigenbasis. The D™ and D” matrices may be transformed into one
another by changing the rf phase in equation (30): we choose the phases 4, = 0, iIn(§,;) = 0 while defining
the matrix elements, and we incorporate the rf phases into the definition of the total coupling in the next section.
These rf phases ultimately cancel in our coupling scheme.

The matrix elements ( j |ﬁl| i) of D, linking rf-eigenstate pairs are

(x|D’|z) = i71 — (/%) (32)

Az 27 (Que /2
(D7) = i) (33)
V1 + (/%)
(2dD"y) = V27 (e/%). (34)
We can transform between the rf-eigenbasis and the my basis using the rf-eigenstate coupling matrices,
eg E — D",
Numerically calculating the eigenstates of the Raman and rf coupling
The rfand Raman couplings produce a time-periodic effective Hamiltonian. Using Floquet theory we
decompose the states of our Hamiltonian
[¥ (1) > = chll/f ®) >n = ch exp(—ie,t/7)|o(t) >n > (35)

where €, = hn/T corresponds to the energy spacing between Floquet states when a time periodicity of T exists
in the Hamiltonian. The coefficients c, are found by diagonalizing the Floquet Hamiltonian Hi,

The Raman-rf CW Hamiltonian has multiple time periodicities and we use the RWA to eliminate rf and
Raman coupling terms that very weakly couple the Floquet states. We consider the parameter regime where
Q¢ > and as a result we exactly diagonalize the ground hyperfine manifold with rf coupling and expand in
terms of the Raman coupling. The resulting Floquet Hamiltonian is

7
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Figure 4. Calculated cross-section along /g, for Floquet bands. Laser wavevectors, with magnitude of kg, are mutually perpendicular,
giving +/2 kg as a standard two-photon recoil and 2Ey as a characteristic recoil energy. The parameters used in this plot are

/i = 65ER, ie = —54Eg, ¢ = 0, Q.| = Qx| = Q.| = Qand 7#Q = 2Eg. These quantities are defined in the preceding
sections. The least (solid) and next least (dashed) energetic states are closely spaced while the most energetic (dashed dotted) state is
separated by 3/ when ¢ = 0. The point at which the ground Floquet states meet is slightly displaced from the g = 0 at these
couplings due to the presence of nearby Floquet states.

HF]. = Z{ [I:IO + (nmx,z + mmy,x) i]én,nlém,m/

n,m
AL i _
J'_ [QiZD 5n71‘n/6m’m/e l('Vx,z 'er)
el
X A .
+ —zy D8,y S e

+ Q}%,ZﬁLénfl,n/émfl,m/eii(w/y’zi’yrf)] + h-C-}’ (36)

where 1 is the identity in the rf-eigenbasis and the operators H,, D= (D* + iD” )/ 2and D' = D” are the
3 X 3 matrices of rf eigenstates computed in the previous subsection. These are

ﬁZ — K 2
[7(‘1 2 +Ey] 0 0
2m
A 2 _ 2
Hy = 0 [“’—K) + E) 0 , (37)
2m
2 _ 2
0 0 (—ﬁ (q — X)) +Ez)
2m

4(Qt /) WL+ e/ V2(e/Q)
D == iJ1 + (/%) 0 iJ1— (/9 | (38)
V2 (e/9%) — iyl — (/) — 4(Qs/ Q)
2(Qrf/Q>l<)
V14 (/%)

Pl =z 20 /S) 0 L 1 — (/00 | 39
TT €% ﬁ*’ (e/82%) (39)

0 %1/1 — (e/Q) 0

0

Figure 4 depicts a quasi-energy unit cell. When ¢ = 0 the two lowest quasi-energies meet at some
quasimomentum /q. For the parameters used in figure 4, noticeable drift in /g due to close spacing of Floquet
unit cells occurs when either 2 /Q,¢ < 30 or 2Ex /¢ < 30. Adjusting the balance of Raman matrix elements,
e.g. adjusting laser intensities, can compensate for this drift and return the quasimomentum at which the quasi-
energies meet to /g = 0. This is a configuration where the degeneracy of the ground state dispersion is
maximized.
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(a) Hyperfine spin eigenstates, rf coupled (b) Hyperfine-rf eigenstates, Raman coupled
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Figure 5. (a) The ground hyperfine spin projections in ’Rb are plotted as a function of magnetic field. A rf magnetic field with
amplitude 1 Gauss (G) applied within the e, — e, planelinks |y) states split by a dc magnetic field [By.| = 36 G. (b) In the frame
rotating with the oscillating magnetic field, the rf eigenstates, |x), |y), and |z)are plotted as a function of magnetic field. These
eigenstates are linked with resonant 2, ., €,,, and ), ; Raman coupling. The conjugate couplings €2, €2, ., and €, . are
present but not shown.

Construction ofa3 X 3 Hamiltonian with fully coupled basis states
In this section we apply the RWA to truncate the Floquet Hamiltonian at a single closed set of resonant couplings
and obtain an effective 3 x 3 Hamiltonian. The validity of the RWA used to produce this Hamiltonian is
determined by performing the numerics outlined in the previous subsection. From this Hamiltonian, we
analytically determine the conditions necessary to modify the gap between the ground Raman eigenstates.

We take the form of the Raman coupling in equations (21) and (24) and transform them into the rotating
frame of the rf, with angular frequency w,¢. Then we substitute the rf eigenstate coupling matrices from
equation (31) to determine the form of the Raman coupling in the rf eigenbasis:

. D* +iD" .
Heff = Z ([Qé,ﬂ’fl eXp(l[‘I'ﬂ,ﬂ/ —+ Wyt t])a(uﬁ,ﬂ’) + hc]

B=p'
+ QD% sin(Ds,5)). (40)
We require that the Raman frequency differences resonantly couple rf eigenstates E;
fuwjj £ fwe (6,2 — 6j,2) = Ej — E, (41)
leuj = E]‘ + f?ldrf(Sj,z. (42)

The upper (lower) sign choice corresponds to blue (red) detuning. This RWA is justified in the limit that
[€2;7] < wjjywhere w; 7 ~ [Ql.

Using the laser polarizations recommended in the previous section, essentially setting &;  parallel to the dc
magnetic field By for coupling between | y) and |x) and perpendicular otherwise, maximizes the ratio of
coupling to laser intensity. The resonant terms comprise an effective Hamiltonian

A 7%k? . N
Heg = Z{[ o + Ej]éj’jl + [ﬁQj,j’ exp(l@f}.,)(l — 6j,j/) + hC]}|]> <]/|, (43)
)
:l:QZL;)’ X
Quy = —2D5, (44)
;iQ'}',)x :
Q%x = 2 Dy,x’ (45)
+iQ,
Qx,z = T’D){Z’ (46)

where @;.fj, =&y F /w5, — 6y )and ;= Q;", i The upper (lower) sign choice corresponds to blue
(red) detuning. Following a unitary transformation, the Hamiltonian in equation (7) is recovered.

From the matrix elements derived above, we may determine the phase sum ¢ = by + Oy T b that
contributes in equation (9) to the overall energy of the combined Raman and rf eigenstates:

9
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Q:
¢,’./ = iln( 2] ), (47)
" 191
T T . . £, (ex —iey)
¢,, =F— + —[1 —sign(w)] +iln| ———"—|, (48)
P22 €., - (ex — ie))]
s T . T .
Gy = F + 211 = sign(w)] + ZI1 — sign(1,.)], (49)
- (e, + 1ie
¢, = += + Z[1 — sign(u)] + iln Loz tlectie) ) (50)
’ 2 2 IEx,z : (ex + ley)l
- i ™ . . €z,y : (ex - ie)’)
=7 I+ I0 —sign@)] +iln| 22—
2 2 |£z,y : (eX - ley)l
. x,z (ex + ie ) .
+1iln E—y + z[1 — sign(n, )] (51)
|£x,z . (ex + ley)l 2

We usually choose to make the two-photon matrix element u negative: this contributes an overall factor of 7 to
¢. Blue (red) detuning the Raman from the rf decreases (increases) ¢ to 7/2 (37/2). The two log terms in
equation (51) sum to a phase that is equivalent in radians to the azimuthal angle between the projections of £,
and £, , on the plane perpendicular By.. Thelast term changes by a factor of 7 when one log’s argument changes
sign. Together, the last three terms on the rhs of equation (51) contribute a phase to ¢ bounded between 0 and .
The ground eigenstate of the effective Hamiltonian in equation (43) is the Rashba potential when ¢ = 0, 2. To
produce this phase, the Raman must be red detuned from the rf (the lower sign choice) and the last three terms of
equation (51) must sum to /2. We describe a simple laser geometry in the appendix that satisfies this
requirement.

Conclusion

This proposal implements Rashba SOC using the ground atomic states of 8Rb. As a result atoms cannot
experience collisional deexcitation from the f = 2 hyperfine manifold and the associated heating and
decoherence that may disrupt many-body states. Furthermore, we have exchanged technical challenges and
expense associated with producing phase locked lasers separated by many GHz in frequency with the challenge
of producing Qs ~ 200 kHz of amplitude stabilized rf coupling.
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Appendix. Proposed preparation of experiment

Preparing the rf eigenstates
We propose the application of By along e, with an amplitude necessary to producea b x 30 MHz linear
Zeeman splitting between the ground hyperfine states of 8’Rb. In the presence of this magnetic field the
quadratic Zeeman shiftis ~h x 250 kHz. The ground hyperfine states are dressed by a wy¢/27m = 30 MHz rf
field with amplitude 7 Q. = h x 200 kHz that is set equal to the two-photon resonance. In 8’Rb the necessary
amplitude of the rf magnetic field is ~0.6 G. The polarization of B,¢ should be linear and orthogonal to By.
The Raman matrix elements given by equations (32)—(34) grow as € /|Q2,¢| — —o00; the matrix element in
equation (34) is zero when ¢ = 0. Simultaneously, as ¢ /|€2,¢| — —oo the gap between |x) and | y) closes

A, = S e+ T AP, (A1)

where A}f)x is always the smallest gap in the system and |Aryf)x| — 0ase/|Qf| — —o0o.When |A§,f,xl < || the
states |x) and | y) cannot be separately Raman coupled. Similarly, D; , is always the smallest matrix element in
thesystemand [Dj,| — 0as €/ — 0. We compute that the product |D}, A‘yf)x| is maximized
when —0.6 < ¢/|Q¢] < —1.1.

The ground eigenstate of the combined Raman and rf coupling becomes ring-like when the Raman coupling
exceeds a characteristic energy scale 2Ep where Ey = /:%kg/2m and /ikg is the single-photon recoil. 2Ey is the

10
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(a) Blue detuning |, |, [0, .| > o (b) Red detuning |o, |, |0, .| < oy
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Figure Al. Level diagram for Raman coupling rf eigenstates. (a) Here, |wy o], |wy, -] > wir and hence the Raman is blue detuned relative
to the rf. (b) The Raman is red detuned relative to the rf.

kinetic energy gained when the Raman coupling mediates a spin flip and can vary between 0 and 4/k3 /2m
depending upon the laser geometry; 2Ey, is based on a laser geometry where all the lasers are perpendicular to
one another. To produce the Rashba potential using our laser scheme and laser geometry the Raman coupling
strength isbounded 2Ey < #2§) < /& A;,f)x.

In alkali atoms, dc magnetic field fluctuations often limit the long-term stability of an experiment that
optically couples two or more magnetically split internal states. This is partly the case because the splitting
between internal states is nominally linear with magnetic field. At resonance, the rf eigenstates respond
quadratically to magnetic field fluctuations: AE; & (g jt5 AB)?/2/72|¢|. When the rf coupling is strong
721|2¢| = h x 200 kHz compared to the Zeeman splitting amplitude fluctuations of a lab without active field
control 1 x 1 kHz, the resulting impact of the magnetic fluctuations is reduced AE]- ~ h x 5 Hz.Hence, rf
eigenstates produced by sufficiently strong rf coupling become engineered clock states.

Raman laser frequencies, intensity and geometry

We illuminate a cloud of 8’Rb atoms using three linearly polarized lasers, all with wavelength very near

A = 790.024 nm. At this wavelength, the two-photon vector light shift matrix element u is negative, while the
scalar light shifts are zero. The frequencies of these beams are

(W — wj)/2m = wi F (i b F Ej/72), (A2)

where w; = 2mc/\. Asshown in figure A1, the upper branch of equation (A.2) corresponds to Raman frequency
differences wy,;, wy,; > wyr while the lower branch switches the inequality. Compared to the rf frequency the
Raman coupling is blue and red detuned, respectively. We write the Raman coupling in terms of the intensity of

each laser
Ly
=317 (A.3)

DA Rj,j’l() 0>
Q= Sl (A4)
g cep

where () is an arbitrarily chosen coupling strength that we use as abenchmark and R; ; is a dimensionless
coefficient

Rz,y = 44 ) 1 (A.5)
|£z,y : (ex - ley)”Dz,yl
2/
Ryp= —2 (A.6)
€, - el
R, = 4 (A.7)

. Al
|£x,z : (eX + ley) ||DX,Z|
that compensates for laser geometry, applications of the RWA, and matrix elements. We may then solve for the

intensities in our system as a ratio of I

I_x _ Rx,sz,x (A 8)
Iy R,, '
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e[l?
Figure A2. The wavevectors of all lasers are mutually perpendicular. The polarizations (represented as the electric field at an instant in
time) are also mutually perpendicular. The 7 polarized laser requires much more power and should be shifted in frequency by wy¢
relative to the other two lasers.

L Bl (A.9)
IO Rz,x
L _ RRye (A.10)
IO Rx,y

When € /|| = —0.8 theseratiosare I,/I = 1.1, I,/I, = 5.4and L,/I, = 21.5.

As shown in figure A2(a) the wavevectors k, k,, and k; are aligned along —e,, —e;, and —e. The electric
fields E, E,, and E, of these lasers are polarized along e, e,, and e,. The corresponding Raman coupling vector
orientationsare §, , = —ey, §,, = —ey,and {, = —e,. Withred detuningand negative u, these parameters

give ¢ = 0.
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