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Abstract
We theoretically explore a Rashba spin–orbit coupling schemewhich operates entirely in the absolute
ground statemanifold of an alkali atom, therebyminimizing all inelastic processes. An energy gap
between ground eigenstates of the proposed coupling can be continuously opened or closed by
modifying laser polarizations. Our technique uses far-detuned ‘Raman’ laser coupling to create the
Rashba potential, which has the benefit of low spontaneous emission rates. At these detunings, the
Ramanmatrix elements that linkmFmagnetic sublevel quantumnumbers separated by two are also
suppressed. Thesematrix elements are necessary to produce the RashbaHamiltonianwithin a single
total angularmomentum fmanifold. However, the far-detuned Raman couplings can link the three
XYZ states familiar to quantumchemistry, which possess the necessary connectivity to realize the
Rashba potential.We show that theseXYZ states are essentially the hyperfine spin eigenstates of Rb87

dressed by a strong radio-frequencymagneticfield.

Introduction

Geometric gauge potentials are encountered inmany areas of physics [1–9]. In atomic gases, the geometric
vector and scalar potentials were first considered in the late 90s to fully describe atoms ‘dressed’ by laser beams
[10–12]. Atoms thatmove in a spatially varying, internal state dependent optical field experience geometric
vector and scalar potentials. Our understanding of these potentials has been refined, and now allow for the
engineered addition of spatially homogeneous geometric gauge potentials [13–15]. Inmany cases, the resulting
atomicHamiltonian is equivalent to iconicmodels of spin–orbit coupling (SOC): Rashba, Dresselhaus and
combinations thereof.

Often, systemswith SOCwill havemultiply degenerate single particle eigenstates with topological character:
this suggests that strongly correlated phases will exist in the presence of interactions for both bosonic and
fermionic systems. Interesting phenomena such as topological insulating states and the spin-Hall effect include
SOC as a necessary component [16, 17]. Rashba SOC (present for 2D free electrons in the presence of a uniform
perpendicular electricfield, such as in asymmetric semiconductor heterostructures) [18, 19], is an iconic 2D
SOCpotential and hasmaximal ground state symmetry. Indeed, interestingmany-body phases [20–22]
predicted for atomic systemswith Rashba SOC include unconventional and fragmented Bose–Einstein
condensation [23], composite fermion phases of bosons [24] and anisotropic or topological superfluids in
fermionic systems [25].

It is in the context of such potentially fragilemany-body states that we propose a scheme that is implemented
entirely within the ground hyperfinemanifold of an alkali with spin greater than or equal to spin-1. Recently, the
Rashba potential was realizedwith 40K fermions using lasers coupling the f 7 2= and f 9 2= manifolds [26].
In alkali bosonic systemswith density n the two-body collisional relaxation lifetime from the f 1+ to the f
ground state hyperfinemanifold is n 10 cm s14 3 1> ´ - - [27]: a timescale that is potentially too small to observe
meaningfulmany-body physics. Such relaxationmay be a lesser, but still pertinent, concern in fermionic
systems.We propose an alternative coupling scheme implemented entirely within the ground hyperfine
manifold of alkali atoms.
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Rashba SOC for electrons
The simplestmodel of Rashba SOCdescribes a 2D free electron system in terms of electronmomentum k and
gyromagnetic ratio g in the presence of an out-of-plane electric field E E ez= ∣ ∣ .We consider the electrons
relativistically: in the electron’smoving frame an in-planemagnetic field B k Em cSOC

2= ´ appears in
proportion tomomentum, as shown infigure 1. The additional contribution to the spin-1/2 electron’s Zeeman
Hamiltonian from BSOC is

kH
m

e
2

2, 1zSOC sa
= ´ˆ ( ) · ˆ ( )

where Eg c2B
2a m= ∣ ∣ , 2ŝ is the electron spin operator, and , ,x y zs s s s=ˆ ( ˆ ˆ ˆ ) is the vector of Paulimatrices.

As shown infigures 1(a) and (b), a degenerate ring ofmomenta described by k kx y
2 2 2a+ = comprises the

ground state of thisHamiltonian. At the origin (k 0= ) the eigenenergies of the RashbaHamiltonian intersect:
this point is often called aDirac point.

Ignoring overall energy shifts, theHamiltonian including HSOC
ˆ and the kinetic energy can be expressed as

kH m22 = -ˆ ( ˆ ) , in terms of an effective vector potential e ey x x y a s s= -ˆ ( ˆ ˆ ). TheCartesian components
of the vector potentialmanifestly fail to commute: the vector potential is non-abelian.

An atom that adiabatically traverses a loop about themomentumorigin shown infigures 1(b) and (c)
acquires a Berry’s phase ofπ. Likewise, an interferometer inwhich one armorbits themomentumoriginwould
display destructive interference. It is anticipated that the presence of this phasewinding in the ground state
potential will result in unusualmany-body ground states for both fermionic and bosonic systems [23–25].

Rashba SOC in cold atoms
One of severalmethods for producing SOC in ultracold neutral atoms uses lasers to impart a discrete
momentumkickwhenever they induce a spin flip. This SOC is strictly 1D, e.g. SOC in the analogous electron
systemwould have the form px xsµ , motivating the addition of a third atomic ground state and two added
Raman couplings, eachwith a distinct orientation ofmomentumkick, to produce the desired 2DRashba SOC.
The necessary coupling configuration is either a laser scheme that links all three ground states to a common state
[28] or, when the excited state(s) are adiabatically eliminated, a closed group ofN-states where each constituent
state is coupled to exactly two others (thismay be visualized asN-states coupled in a loop) [29]. The two
configurations can overlap in the case ofN=3, which is the configuration adopted in this paper.

The problem encounteredwith the simplest possible implementation of this scheme is that direct Raman
coupling of spins within the ground hyperfinemanifold of alkali atoms cannot couple differences in spin greater
than 1 unit of angularmomentum [30]. Coupling as shown infigure 2(a) is possible, while coupling as shown in
figure 2(b) does not link 1+ ñ∣ and 1- ñ∣ . Detuning the lasers near to a transitionwith the excited electronic
hyperfine states as proposed in [31] lifts the angularmomentum restriction sufficiently to realize a coupling
scheme similar tofigure 2(b) but the spontaneous emission rate increases and atomic ensemble lifetimes become
much shorter than typical equilibration times.Many theoretical results, and so far the only experimental result,
use one ormore states fromboth hyperfine fmanifolds to complete theminimum set of three states [26, 28].
Although feasible, collisions that change f are expected to lead to atom-loss and heating, potentially de-cohering
fragilemany-body phases.

Figure 1.Rashba dispersion in electron systems. (a)Cross-section of the 2DRashba dispersion. (b)Contour plot of dispersion
demonstrating the cylindrical symmetry of the potential. (c)Vector plot of B k Em cSOC

2= ´ , the ground state electron spin is
anti-alignedwith BSOC. An electron that loops about themomentumorigin adiabatically traces out the equator on the Bloch sphere.
After one full loop a Berry’s phase ofπ is acquired.
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Our approach, illustrated infigure 3, uses a primary then a secondary coupling. First, a rf coupling is applied,
much stronger than the intended Raman coupling, to produce a set of eigenstates. These rf eigenstates are
themselves Raman coupled by lasers to produce a set of eigenstates that include the Rashba subspace.We
perform a Floquet analysis showing the viability of this approachwhen a rf coupling strength in excess of
100 kHz is achieved.

Overview
In the following sectionwe build the Rashba potential by Raman coupling arbitrary states.We thenfind the form
of the Raman coupling in the rf eigenbasis.With these building blocks, the eigenenergiesmay be calculated using
Floquet theory. From the FloquetHamiltonianwe pick a set of three states that are resonantly coupled to one
another, togetherwith their resonant couplings, and construct an effective 3×3Hamiltonian.Here, we learn
that it is not necessary to phase lock the rf to theRaman couplings while, by contrast, the laser polarizations are
constrained to a particular geometry. In the appendixwe detail the parameters of an experiment that could
produce the Rashba potential using this technique.

Figure 2. Schematic view of spin–orbit coupling in the spin-1 ground state of Rb87 . (a) Inmost current experiments, the same lasers
simultaneously Raman couple pairs of adjacent spin states. Lasers are labeledwith their amplitudes E1∣ ∣ and E2∣ ∣. (b)Toproduce
Rashba SOCall pairs of spin states need to be independently coupled. Under experimental conditions considered in this paper,
couplingwithin an alkali ground electronic hyperfine spinmanifold h.c.1, 1W +- + is negligible.

Figure 3.Our approach, applied in the ground f=1 (generalizable to f 1 ) hyperfinemanifold of an alkali atom is to (a) rf couple
rfW three mFñ∣ spin projections split by a linear Zeeman shift Zd and a quadratic Zeeman shift  in the presence of a dcmagnetic

field. The resulting rf eigenstates jñ∣ and j¢ñ∣ are linked in turn by resonant Raman couplingwith strength j j, W ¢ for j j, 1, 2, 3¢ Î { }
as shown in panel (b). This approach is practical when j jrf rf ,w » W W ¢ ∣ ∣ ∣ ∣. The 3D laser geometry shown in panel (c) produces
the necessary Raman couplings aswell as the necessarymomentumkicks, panels (d) and (e), to realize the Rashba potential. Each laser
is labeled by its electric field amplitude Ej∣ ∣ andwavevector kR .When the coupling strengths are set equal

E j j2 ,j j, RW = W = " ¹ ¢¢∣ ∣ , where E k m2R
2

R
2= (E h 3.678 kHzR = ´ in Rb87 ), the dispersion of the Rashba potential is

obtained for a slice taken along the x-axis as shown in panel (f).
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Building theRashba potential byRaman coupling arbitrary states

Weconsider a subspace of three long-lived states jñ∣ for j 1, 2, 3Î { }within a potentiallymuch larger pool of
available states.We illuminate these states with three coherent lasers that are indexed by , 1, 2, 3b b¢ Î { }.
Each of these lasers has distinct wavevector kb, eachwithmagnitude kR, and frequency

f 2 . 2Lw w p= -b b( ) ( )

The possible two-photonRaman frequencies differences are given by ,w w w= - -b b b b¢ ¢( ) for b b¹ ¢.
Likewise, we define difference wavevectors k k k, = -b b b b¢ ¢ and difference phases between lasers

,g g g= -b b b b¢ ¢. Figure 3(d) illustrates the relationship between lasermomentum recoil k b, withmagnitude

kR , andRaman recoil k , b b¢. TheHamiltonian describing Raman coupling in this general form is

k
k

k x

H
m

E

t j j

2

exp i 1 , 3

j j
j j j

j j j j

,

2 2

,

, , , , , , ,
⎪

⎪

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭





å

å

d

w g d

= +

+ W - - - ñá ¢
b b

b b b b b b b b

¢
¢

¹ ¢
¢ ¢ ¢ ¢ ¢ ¢

ˆ ( )

( [ · ])( ) ∣ ∣ ( )

where Ej is the eigenenergy of state jñ∣ in the absence laser-coupling.
We shallmake the simplifying assumption that each pair of lasers uniquely Raman couples a pair of states,

greatly simplifying the formof the coupling amplitude in equation (3): j j,W ¢, which is potentially complex. This
configuration can be realized by requiring that the lasers resonantly Raman couple pairs of states

E E , 4j j j j,w = -¢ ¢ ( )

E , 5j jw = ( )

wherewe have linked eachRaman coupling to a state with this resonance condition (recall that the laser
frequencies are given by equation (2).We also apply the rotatingwave approximation (RWA) to eliminate terms
that are t j jexp i j j,wµ ñá ¢¢( )∣ ∣.

With these constraints on equation (3) it is always possible to apply a unitary transformation that eliminates
the complex exponentials from theHamiltonian

x k xU t t j j, exp i , 6
j

j j jå w g= - - ñáˆ ( ) ( [ · ])∣ ∣ ( )

and also applies a state-dependentmomentumdisplacement to themomentumoperator in equation (3). In the
rotating frame, x k xU t H U t, i ,t- ¶ˆ ( )( ˆ ( ) ) ˆ ( )†

is

q
q k

H
m

j j
2

1 , 7
j j

j
j j j j j j

,

2 2

, , ,

⎧⎨⎩
⎫⎬⎭


å d d=

-
+ W - ñá ¢

¢
¢ ¢ ¢ˆ ( )

( )
( ) ∣ ∣ ( )

wherewe havemade a simple substitution of variables, k q , indicating that themomentum term is a
quasimomentum.

Rashba subspace
Weapply a discrete Fourier transform to equation (7)

n jn j
1

3
exp i2 3 . 8

j 1

3

å pñ = - ñ
=

∣ ( )∣ ( )

This is a useful diagonalization tool when all the off-diagonalmatrix elements are nearly equal in amplitude and
larger than the energy scale of any of the three two photon recoils k m2

j j
2

,
2 ¢ .We specify our discussion to equal

amplitudes j j,W = W ¢∣ ∣ for eachmatrix element.We also define a phase i lnj j j j j j, , ,f = W W¢ ¢ ¢( ∣ ∣). Applying the
discrete Fourier transform in equation (8) to theHamiltonian in equation (7)we find the diagonal elements in
this transformedHamiltonian (which are nearly the eigenenergies) are

E n2 cos 2 3 , 9n  p f= W +( ¯ ) ( )
3 3. 103,2 2,1 1,3 2,3 1,2 3,1f f f f f f f= + + = - + +¯ ( ) ( ) ( )

The phase sum f̄ adds the phase contributions fromnearest neighbormatrix elements that sequentially chains
all three states together. f̄ is an example of a phase that is not simply the result of our choice of basis: it cannot be
eliminated by the transformation in equation (6). If 0f =¯ the states n 1= ñ∣ and n 2= ñ∣ are degenerate in
energy.
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Wedefine an effective vector k K Kj j j j, = -¢ ¢where K k k 3j j j j1
3= - å = .When

K k j je ecos 2 3 sin 2 3j x yeff p p= +[ ( ) ( ) ]are the vertices of an equilateral triangle, theHamiltonian in the
discrete Fourier basis is

q
H

m
E n n

k

m
q q

2
i 1 3 3 2 2 1 h.c. . 11

n
n x y

1

3 2 2 2
eff

⎡
⎣⎢

⎤
⎦⎥

 å= + ñá + + ñá + ñá + ñá +
=

ˆ ∣ ∣ [( )(∣ ∣ ∣ ∣ ∣ ∣) ] ( )

Weneglect themost energetic state when 0f =¯ and recover the two-state RashbaHamiltonian

q
H

m

k

m
q q

2
1 , 12x y y x zsub

2 2 2
eff 

s s s f= + - +ˆ ˆ ( ˆ ˆ ) ˆ ¯ ( )

where 1̂ is the identity for a two state system. The last term in equation (12) describes a gap opening at q 0=
between the ground eigenstates for small values of f̄.

Phase considerations
Asmade evident by its presence in equation (3) and absence in equation (7) the phase of each laser does not
contribute to the steady stateHamiltonian. This symmetry is absent when there aremore than three Raman
frequency differences for a three state subsystemor in ring coupling geometries with N 3> [29]. This
consideration is very compelling froman experimental perspective since small variations in the pathlength of
each laser could otherwise produce dramatic changes in the potential.

The Ramanmatrix elements j j,W ¢ acquire a sign from the lasers’ detuning 1 1 13 2 1 2D = D - D from

the P3 2 and P1 2 lowest electronic fine structure. A phase ofπ is contributed to f̄when 1 D is negative and 0
otherwise. Recently, an experiment realized theRashba dispersion using positive 1 D [26]. Inmost schemes,
laser detuning is the primary consideration but with our approach both the detuning of the Raman relative to the
rf and laser polarizationwill additionally contribute to f̄.

Physical implementation

Raman coupling in the spin basis
We introduce the local electric field

E
E

t
2

e e 13k x k xt ti iå= +
b

b w g w g- - - - -b b b b b b( ) [ ] ( )( · ) ( · )

of linearly polarized lasers impinging upon an atomic system. The vector light shift of the local electric field
acting upon the ground state hyperfine spinmanifold in an alkali atom can be cast in the formof a time and
position dependent effectivemagnetic field [30, 32]. This gives a coupling

B FH
g

, 14eff
F B

eff


m
=ˆ · ˆ ( )

B E x E x
u

g
t t

i
, , , 15eff

S B

*
m

= ´( ( ) ( )) ( )

in the ground hyperfinemanifold of an alkali atom,where gS is the gyromagnetic ratio of the electron spin, gF is
the Landé g-factor for the hyperfine states, Bm is the Bohrmagneton, and the two-photon vector light shift
matrix element is

d
u

4

1

3

1

3
. 16

2

3 2 1 2

⎛
⎝⎜

⎞
⎠⎟=

á ñ
D

-
D

∣ ∣∣ ∣∣ ∣ ( )

The far off-resonantWigner–Eckart reducedmatrix element is given by d dl l0 1á ñ = á = = ñ∣∣ ∣∣ ∣∣ ∣∣ where l=0,
1 is the orbital angularmomentumquantumnumber for the ground and excited electronic states, respectively.

We compute the pairwise product of components of the local electric field in the effectiveHamiltonian
equation (14) and retain terms that have

k x t 17, , , ,w gF = - -b b b b b b b b¢ ¢ ¢ ¢· ( )

in the argument of the complex exponentials.
When laser polarizations are linear wemay rearrange terms and obtain the effective coupling between the

ground electronic hyperfine spin projections

E E F
H

g u

g2
sin , 18eff

F

S

,


å=
- ´

F
b b

b b
b b

¹ ¢

¢
¢ˆ ∣( ) · ˆ∣

[ ] ( )
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where

F F F F, , 19x y z=ˆ ( ˆ ˆ ˆ ) ( )

is the vector of spin-1 operators.
We tune someRaman frequency differences to near resonance , Z Zw d d-b b¢ ∣ ∣ with the linear Zeeman

splitting BgZ F B dcd m= ∣ ∣produced by a dcmagnetic field B ezdc∣ ∣ .We apply a RWA to these and keep couplings

proportional to Fx y,
ˆ

H F e h.c., 20, ,
i

,
, q w= W +b b b b b b¢

^
¢

^
+

F
¢b b ¢ˆ ˆ ( ) ( )

where θ is theHeaviside function and F F Fix y= ++̂ ˆ ˆ . Thematrix elements
,

Wb b¢
^ in the RWAare

E Eg u

g
e e

i

4
i , 21x y,

F

S
,

xW =
´

+b b
b b

b b¢
^

¢
¢

∣ ∣
· ( ) ( )

where

E E

E E
22,x =

´

´b b
b b

b b
¢

¢

¢∣ ∣
( )

are complex unitary numbers that take on different valueswhen the vector orientations of E E´b b¢ differ but
the same pair of hyperfine spin projections are coupled. TheHamiltonian in equation (18) also contains
couplings proportional to Fẑ

H F sin , 23z, , ,= W Fb b b b b b¢ ¢ ¢ˆ ˆ ( ) ( )∣∣ ∣∣

E Eg u

g2
, 24

,
F

S
,

hW =
- ´

b b
b b

b b¢

¢
¢

∣ ∣
( )∣∣

e , 25z, ,xh =b b b b¢ ¢ · ( )

where
,

Wb b¢ changes signwhen ,xb b¢ is aligned or anti-alignedwith B ezdc . In the spin basis H ,b b¢
ˆ is simply a time

dependent detuning; we shall explore a different set of basis states where H ,b b¢
ˆ produces an off-diagonal

coupling.

Construction of fully coupled basis states
For the remainder of thismanuscript we narrow our discussion to the f=1 ground hyperfinemanifold of Rb87

and adopt the simplified labels mFñ∣ , where m 1, 0, 1F Î - +{ } label hyperfine (spin) projections and EmF
label

spin eigenenergies.We divide the overall Zeeman shift into a scalar part whichwe neglect, a linear part given by
E E 2Z 1 1d = -- +( ) and a quadratic part given by E E E2 20 1 1 = - -- +( ) .

We introduce the X Y Z X Y, , ,ñ = ñ ñ∣ ∣ ∣ and Zñ∣ eigenstates, which consist of linear combinations of mFñ∣
states in the f=1 hyperfinemanifold

X Y Z
1 1

2
, i

1 1

2
, and 0 . 26ñ =

+ ñ - - ñ
ñ =

+ ñ + - ñ
ñ = ñ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

The X Y Z, , ñ∣ state obey

F
l mi 27

jlm j


ñ = ñ

ˆ
∣ ∣ ( )

for indices j l m, , in X Y Z, ,{ }. TheRaman couplings from the previous subsection have a spin dependence
F F F, , orx y zµ ˆ ˆ ˆ andmay therefore couple any pair of X Y Z, , ñ∣ states. This observationwasmade recently by

[33] in the context of producing opticalflux lattices.
A set of atomic eigenstates which approach theXYZ states can be produced by an oscillatingmagnetic field

B tcosrf rf rfw g+( ) that is orthogonal to B ezdc . The rf coupling is described by

FH
g B

tcos , 28rf
F B rf

rf rf rf
x

m
w g= +ˆ ( )( · ˆ) ( )

where

B

B
. 29rf

rf

rf

x =
∣ ∣

( )

The rf is chosen to be resonant with the average of the two hyperfine spin transitions in the groundmanifold,

rf Z w d= . In the rotating frame of the rf and applying the RWA, the complex exponential texp i rfw( ) can be
eliminated from equation (28). Together with the atomic hyperfine energy levels theHamiltonianwith rf
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coupling is

H F F F1 e h.c., 30B z z
t

Z rf
2

rf
i rf rf




d w= - - - + W +w g

+
- +ˆ ( ) ˆ ( ˆ ˆ ) ˆ ( )( )

where g B e ei 2x yrf F B rf rf xmW = +· ( ) has an equivalentmagnitude rfW and phase i ln rfx( ).
The rf eigenenergies Ej of theHamiltonian in the presence of the rfmagnetic field are plotted verses Bdc in

figure 5(b). For large rfW , the rf eigenvalues changeweakly as a function of Bdc.We therefore set Z rfd w= and
drop terms proportional to Z rfd w- for the remainder of this document.Whenwewrite down the rf eigenstates
x y z, , ñ∣

x X X

y
Y Z

Y

z
Y Z

Z

,

i2

2 1

,

i2

2 1

.

rf

rf

rf

rf

rf

*

*
*

*

*
*















ñ = ñ ñ

ñ=
- W ñ + + W ñ

W +
W

ñ

ñ=
- W ñ + - W ñ

W -
W

ñ

W -¥

W -¥

W -¥

∣ ∣ ⟶ ∣

∣ ∣ ( )∣
∣ ∣

⟶ ∣

∣ ∣ ( )∣
∣ ∣

⟶ ∣

∣ ∣

∣ ∣

∣ ∣

We see that these adiabatically approach the X Y Z, , ñ∣ states as  W  -¥. Herewe

defined 42
rf

2
* W = + W∣ ∣ .

We resonantly link these eigenstates with the Raman coupling of the formdescribed in the previous
subsection and operate in the limit where the Raman ismuch smaller than the rf coupling, rfW W∣ ∣ ∣ ∣.We
define a rf eigenstate couplingmatrix

D j j F j j 31l

j j
l

,
å= ñá ¢ñá ¢

¢

ˆ ∣ ∣ ˆ ∣ ∣ ( )

which gives the representation of F̂ in the rf eigenbasis. The D
xˆ and D

yˆ matricesmay be transformed into one
another by changing the rf phase in equation (30): we choose the phases 0, i ln 0rf rfxg = =( ) while defining
thematrix elements, andwe incorporate the rf phases into the definition of the total coupling in the next section.
These rf phases ultimately cancel in our coupling scheme.

Thematrix elements j D j
lá ¢ñ∣ ˆ ∣ of D

lˆ , linking rf-eigenstate pairs are

x D z i 1 , 32y

* á ñ = - W∣ ˆ ∣ ( ) ( )

y D x
2

1
, 33z rf *

*




á ñ =

W W

+ W
∣ ˆ ∣ ( )

( )
( )

z D y 2 . 34x

* á ñ = W∣ ˆ ∣ ( ) ( )

Wecan transformbetween the rf-eigenbasis and themF basis using the rf-eigenstate couplingmatrices,
e.g. F Dx

xˆ ˆ .

Numerically calculating the eigenstates of the Raman and rf coupling
The rf andRaman couplings produce a time-periodic effectiveHamiltonian. Using Floquet theorywe
decompose the states of ourHamiltonian

t c t c t texp i , 35
n

n n
n

n n n å åy y fñ = ñ = - ñ∣ ( ) ∣ ( ) ( )∣ ( ) ( )

where hn Tn = corresponds to the energy spacing between Floquet states when a time periodicity ofT exists
in theHamiltonian. The coefficients cn are found by diagonalizing the FloquetHamiltonian HFl.

ˆ
TheRaman-rf CWHamiltonian hasmultiple time periodicities andwe use the RWA to eliminate rf and

Raman coupling terms that veryweakly couple the Floquet states.We consider the parameter regimewhere

rfW W and as a result we exactly diagonalize the ground hyperfinemanifoldwith rf coupling and expand in
terms of the Raman coupling. The resulting FloquetHamiltonian is
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where 1̂ is the identity in the rf-eigenbasis and the operators H0
ˆ , D D Di 2

x y= +^ˆ ( ˆ ˆ ) and D D
z=ˆ ˆ are the

3×3matrices of rf eigenstates computed in the previous subsection. These are
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Figure 4 depicts a quasi-energy unit cell.When 0f =¯ the two lowest quasi-energiesmeet at some
quasimomentum q . For the parameters used infigure 4, noticeable drift in q due to close spacing of Floquet
unit cells occurs when either 30rfW W < or E2 30R rfW < . Adjusting the balance of Ramanmatrix elements,
e.g. adjusting laser intensities, can compensate for this drift and return the quasimomentum atwhich the quasi-
energiesmeet to q 0 = . This is a configurationwhere the degeneracy of the ground state dispersion is
maximized.

Figure 4.Calculated cross-section along qx for Floquet bands. Laser wavevectors, withmagnitude of kR , aremutually perpendicular,
giving k2 R as a standard two-photon recoil and E2 R as a characteristic recoil energy. The parameters used in this plot are

E65rf R W = , E54 R = - , 0f =¯ , x z y x y z, , ,W = W = W = W∣ ∣ ∣ ∣ ∣ ∣ and E2 R W = . These quantities are defined in the preceding
sections. The least (solid) and next least (dashed) energetic states are closely spacedwhile themost energetic (dashed dotted) state is
separated by 3 Wwhen 0f =¯ . The point at which the ground Floquet statesmeet is slightly displaced from the q 0= at these
couplings due to the presence of nearby Floquet states.
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Construction of a 3×3Hamiltonianwith fully coupled basis states
In this sectionwe apply the RWA to truncate the FloquetHamiltonian at a single closed set of resonant couplings
and obtain an effective 3×3Hamiltonian. The validity of the RWAused to produce thisHamiltonian is
determined by performing the numerics outlined in the previous subsection. From thisHamiltonian, we
analytically determine the conditions necessary tomodify the gap between the groundRaman eigenstates.

We take the formof the Raman coupling in equations (21) and (24) and transform them into the rotating
frame of the rf, with angular frequency rfw . Thenwe substitute the rf eigenstate couplingmatrices from
equation (31) to determine the formof the Raman coupling in the rf eigenbasis:

H
D D

t

D

i

2
exp i h.c.

sin . 40

x y

z

eff , , rf ,

, ,

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥å w q w= W

+
F + +

+ W F

b b
b b b b b b

b b b b

¹ ¢
¢

^ ¢ ¢

¢ ¢

ˆ ˆ ˆ
( [ ]) ( )

ˆ ( )) ( )∣∣

We require that the Raman frequency differences resonantly couple rf eigenstates Ej

E E , 41j j j z j z j j, rf , , w w d d - = -¢ ¢ ¢( ) ( )

E . 42j j j zrf , w w d=  ( )

The upper (lower) sign choice corresponds to blue (red) detuning. This RWA is justified in the limit that

j j j j, ,wW ¢ ¢∣ ∣ where j j, rfw » W¢ ∣ ∣.
Using the laser polarizations recommended in the previous section, essentially setting j j,x ¢ parallel to the dc

magnetic field Bdc for coupling between yñ∣ and xñ∣ and perpendicular otherwise,maximizes the ratio of
coupling to laser intensity. The resonant terms comprise an effectiveHamiltonian

k
H

m
E j j

2
exp i 1 h.c. , 43

jj

j j j j j j j j jeff

2 2

, , ,
rf

,

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭


å d d= + + W F - + ñá ¢
¢

¢ ¢ ¢ ¢ˆ [ ( )( ) ] ∣ ∣ ( )

D
2

, 44z y
z y

z y
x

,
,

,W =
W^

( )

D
i

2
, 45y x

y x
y x
z

,
,

,W =
W

( )
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D
i

2
, 46x z

x z
x z
y

,
,

,W =
 W^

( )

where
j j j j j z j z,
rf

, rf , ,w d dF = F -¢ ¢ ¢ ( ) and j j j j, ,*W = W¢ ¢ . The upper (lower) sign choice corresponds to blue
(red) detuning. Following a unitary transformation, theHamiltonian in equation (7) is recovered.

From thematrix elements derived above, wemay determine the phase sum z y y x x z, , ,f f f f= + +¯ that
contributes in equation (9) to the overall energy of the combined Raman and rf eigenstates:

Figure 5. (a)The ground hyperfine spin projections in Rb87 are plotted as a function ofmagnetic field. A rfmagneticfieldwith
amplitude 1Gauss (G) appliedwithin the e ex y- plane links mFñ∣ states split by a dcmagneticfield B 36 Gdc =∣ ∣ . (b) In the frame
rotating with the oscillatingmagnetic field, the rf eigenstates, x y z, , andñ ñ ñ∣ ∣ ∣ are plotted as a function ofmagneticfield. These
eigenstates are linkedwith resonant , , andy x z y x z, , ,W W W Raman coupling. The conjugate couplings , , andx y y z z x, , ,W W W are
present but not shown.
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Weusually choose tomake the two-photonmatrix element u negative: this contributes an overall factor ofπ to
f̄. Blue (red)detuning theRaman from the rf decreases (increases) f̄ to 2p (3 2p ). The two log terms in
equation (51) sum to a phase that is equivalent in radians to the azimuthal angle between the projections of z y,x
and x z,x on the plane perpendicular Bdc. The last term changes by a factor ofπwhen one log’s argument changes
sign. Together, the last three terms on the rhs of equation (51) contribute a phase to f̄ bounded between 0 andπ.
The ground eigenstate of the effectiveHamiltonian in equation (43) is the Rashba potential when 0, 2f p=¯ . To
produce this phase, the Ramanmust be red detuned from the rf (the lower sign choice) and the last three terms of
equation (51)must sum to 2p .We describe a simple laser geometry in the appendix that satisfies this
requirement.

Conclusion

This proposal implements Rashba SOCusing the ground atomic states of Rb87 . As a result atoms cannot
experience collisional deexcitation from the f=2 hyperfinemanifold and the associated heating and
decoherence thatmay disruptmany-body states. Furthermore, we have exchanged technical challenges and
expense associatedwith producing phase locked lasers separated bymanyGHz in frequencywith the challenge
of producing 200 kHzrfW » of amplitude stabilized rf coupling.
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Appendix. Proposed preparation of experiment

Preparing the rf eigenstates
Wepropose the application of Bdc along ez with an amplitude necessary to produce a h 30 MHz´ linear
Zeeman splitting between the ground hyperfine states of Rb87 . In the presence of thismagnetic field the
quadratic Zeeman shift is h 250 kHz» ´ . The ground hyperfine states are dressed by a 2 30 MHzrfw p = rf
fieldwith amplitude h 200 kHzrf W = ´ that is set equal to the two-photon resonance. In Rb87 the necessary
amplitude of the rfmagnetic field is 0.6 G~ . The polarization of Brf should be linear and orthogonal to Bdc.

The Ramanmatrix elements given by equations (32)–(34) grow as ;rf W  -¥∣ ∣ thematrix element in
equation (34) is zerowhen 0 = . Simultaneously, as rf W  -¥∣ ∣ the gap between xñ∣ and yñ∣ closes

1

2
4 . A.1y x,

rf 2
rf

2 D = + + W( ∣ ∣ ) ( )

where y x,
rfD is always the smallest gap in the system and 0y x,

rfD ∣ ∣ as rf W  -¥∣ ∣ .When y x,
rfD < W∣ ∣ ∣ ∣ the

states xñ∣ and yñ∣ cannot be separately Raman coupled. Similarly, Dy z
x
, is always the smallestmatrix element in

the system and D 0y z
x
, ∣ ∣ as 0rf W  .We compute that the product Dy z

x
y x, ,
rfD∣ ∣ ismaximized

when 0.6 1.1rf- < W < -∣ ∣ .
The ground eigenstate of the combined Raman and rf coupling becomes ring-like when the Raman coupling

exceeds a characteristic energy scale E2 R where E k m2R
2

R
2= and kR is the single-photon recoil. E2 R is the
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kinetic energy gainedwhen the Raman couplingmediates a spin flip and can vary between 0 and k m4 2R
2

depending upon the laser geometry; E2 R is based on a laser geometrywhere all the lasers are perpendicular to
one another. To produce theRashba potential using our laser scheme and laser geometry the Raman coupling
strength is bounded E2 y xR ,

rf < W D .
In alkali atoms, dcmagnetic field fluctuations often limit the long-term stability of an experiment that

optically couples two ormoremagnetically split internal states. This is partly the case because the splitting
between internal states is nominally linear withmagnetic field. At resonance, the rf eigenstates respond
quadratically tomagnetic fieldfluctuations: E g B 2j F B

2
rfmD » D W( ) ∣ ∣.When the rf coupling is strong

h 200 kHzrf W = ´∣ ∣ compared to the Zeeman splitting amplitude fluctuations of a labwithout active field
control h 1 kHz´ , the resulting impact of themagnetic fluctuations is reduced E h 5 HzjD » ´ . Hence, rf
eigenstates produced by sufficiently strong rf coupling become engineered clock states.

Raman laser frequencies, intensity and geometry
We illuminate a cloud of Rb87 atoms using three linearly polarized lasers, all withwavelength very near

790.024 nml = . At this wavelength, the two-photon vector light shiftmatrix element u is negative, while the
scalar light shifts are zero. The frequencies of these beams are

E2 , A.2L j L j z jrf , w w p w w d- =  ( ) ( ) ( )

where c2Lw p l= . As shown infigure A1, the upper branch of equation (A.2) corresponds toRaman frequency
differences ,y z x z, , rfw w w> while the lower branch switches the inequality. Compared to the rf frequency the
Raman coupling is blue and red detuned, respectively.Wewrite the Raman coupling in terms of the intensity of
each laser

I I

R I
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, 0
0W = W¢

¢

¢
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g

g

uI
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1
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where 0W is an arbitrarily chosen coupling strength thatwe use as a benchmark and Rj j, ¢ is a dimensionless
coefficient
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A.7x z
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,

, ,



x
=

+
^∣ · ( )∣∣ ˆ ∣

( )

that compensates for laser geometry, applications of the RWA, andmatrix elements.Wemay then solve for the
intensities in our system as a ratio of I0

I

I

R R

R
, A.8x x y z x

y z0

, ,

,

= ( )

Figure A1. Level diagram for Raman coupling rf eigenstates. (a)Here, ,x z y z, , rfw w w>∣ ∣ ∣ ∣ and hence the Raman is blue detuned relative
to the rf. (b)TheRaman is red detuned relative to the rf.
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I

I

R R

R
, A.9

y y z x y

z x0

, ,

,

= ( )

I

I

R R

R
. A.10z z x y z

x y0

, ,

,

= ( )

When 0.8rf W = -∣ ∣ these ratios are I I 1.1x 0 = , I I 5.4y 0 = and I I 21.5z 0 = .
As shown infigure A2(a) thewavevectors kx, ky , and kz are aligned along ey- , ez- , and ex- . The electric

fields Ex , Ey, and Ez of these lasers are polarized along ex, ey, and ez . The corresponding Raman coupling vector
orientations are ez y x,x = - , ex z y,x = - , and ey x z,x = - .With red detuning and negative u, these parameters

give 0f =¯ .
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