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With their ability to rapidly elucidate composition-structure-property relationships,
high-throughput experimental studies have revolutionized how materials are discov-
ered, optimized, and commercialized. It is now possible to synthesize and charac-
terize high-throughput libraries that systematically address thousands of individual
cuts of fabrication parameter space. An unresolved issue remains transforming
structural characterization data into phase mappings. This difficulty is related to
the complex information present in diffraction and spectroscopic data and its vari-
ation with composition and processing. We review the field of automated phase
diagram attribution and discuss the impact that emerging computational approaches
will have in the generation of phase diagrams and beyond. C 2016 Author(s). All
article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4950995]

I. INTRODUCTION

Although their use can be traced back as far as Haber-Bosch catalyst development for ammonia
production, the use of combinatorial techniques and their deployment for high-throughput experi-
mentation (HTE) became widespread in the 1990’s after personal computers became affordable.1

Since its rediscovery, HTE has been adopted to search for new materials across a broad spec-
trum of fields including catalysis, functional materials, and materials for energy.2,3 Here, HTE has
made an impact in fundamental science, for instance validating theoretical predictions for minimal
hysteresis in shape memory alloys, and the discovery of a shuttling mechanism for the creation of
ordered olefin block copolymers.4–6 Outside of traditional academic research, HTE also has been
broadly accepted and implemented by companies such as BASF, DOW, Micron Technology, and
General Electric as a means to “Fail Fast” thus reducing time spent researching dead-end materials.
Examples of technologies utilizing materials developed via HTE include Dow InFuse™ polymers
and the flash memory developed for the iPhone 5.7 Since these techniques can be used to rapidly
validate and improve models or to confirm the existence of theoretically predicted materials, the
initial White House white paper and subsequent reports have highlighted the importance of HTE to
realizing the goals of the Materials Genome Initiative (MGI).8,9,37

The increased rate of data generation obtained through HTE techniques led to the early adop-
tion of data reduction and data mining techniques by the community to advance effective exper-
imental design.10–12 One particularly challenging topic has been that of the automated generation
of structural phase diagrams from structural characterization data, which is typically produced via
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scanning x-ray diffraction (XRD) or Raman spectroscopy experiments. Structural phase diagrams
are the basis of materials science, representing the relationship between material structure and fabri-
cation parameters—typically composition and temperature. Although the majority of binary phase
diagrams have been reported, most ternary and quaternary phase diagrams remain unexplored.
Being able to correlate observed properties to the phase and composition of a particular material en-
ables the insights that can guide theoretical studies and also yields important leads into exciting new
materials phenomena. Recent work has suggested that the expected relationship between structure
and properties can be exploited by using any property measurement and data mining to propose a
possible phase diagram.13 In this case, structure-mapping experiments can be designed to test the
proposed phase diagram rather than characterize the phase behavior de novo. Solving the phase
behavior of a set of material samples through interpretation of XRD or Raman measurements re-
mains the most prevalent method for establishing structure-property relationships in combinatorial
experiments, and in this review, we focus on techniques for facilitating and automating this phase
mapping problem.

Unfortunately, translating a single XRD or Raman pattern into knowledge can be a time
consuming process and since an automated experiment can generate 1000’s of these patterns as
a function of composition, time, and temperature, manual data processing and interpretation be-
comes infeasible. This problem is exacerbated by a number of factors, which are difficult to control
and that greatly complicate data analysis. First, HTE libraries are often synthesized by techniques
such as magnetron sputtering or thermal processing of elemental precursors, which can result in
variability in the microstructure (e.g., randomly oriented polycrystalline, fiber texturing, varying
grain sizes, or epitaxial growth) across a HTE sample. XRD phase analysis is typically performed
using powder diffraction patterns, but generating equivalent data for materials spanning this range
of morphologies and microstructures is challenging and often impractical. A further complication is
that a measured XRD signal may change across a materials library even for materials with the same
crystal structure (e.g., changes of texturing from random polycrystalline to fiber-textured). Second,
for solid state materials, different compositions may crystallize into the same structure with lattice
parameter(s) that are composition-dependent, which is manifested in XRD patterns as peaks that
shift as a function of composition, often called peak shift. Peak shifting in Raman spectra is more
complex and is related to the strength of bonds, mass of the atoms, etc. As will be discussed below,
many techniques applied by the community will misclassify a shifted peak as a new phase if the
shift is an appreciable fraction of the peak width. The third type of challenge arises when attempting
to index the XRD pattern of a candidate phase where reference patterns are not available. Patterns
acquired through combinatorial deposition and structural characterization techniques typically lack
the data quality required for standard crystal refinement techniques, and given the vast possibilities
of crystal structures with composition-dependent lattice parameters that could give rise to a given
XRD pattern, indexing known and especially newly discovered phases is quite challenging.

To delineate composition–structure–property relationships, early HTE works made use of
commercially available data analysis and imaging software. Such software was not designed with
sufficient functionality to automatically perform phase attribution, as a consequence, simple stacked
plots were used to correlate composition and structural phase transitions in binary phase diagram
studies.14 Higher-order systems (e.g., systems including temperature, ternary or more additives,
etc.) are difficult to visualize directly using such software and thus extracting composition–structure
relationships has been a substantial bottleneck for HTE studies. In this manuscript, we will discuss
efforts by the HTE community to surmount this obstacle by incorporating advanced data minimi-
zation, visualization, and machine learning algorithms to automatically create these correlations.
Here, we will succinctly review the state of the art in knowledge extraction for the HTE community.
We will first discuss data types used for structural determination, followed by data preprocess-
ing techniques typically used, how the data are represented, metrics used to differentiate different
spectra, data reduction techniques, and then the state-of-the-art in phase diagram determination
algorithms.
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II. HTE LIBRARY SYNTHESIS AND STRUCTURAL CHARACTERIZATION

A variety of HTE synthesis techniques have been demonstrated in the literature including those
employing physical vapor deposition (PVD) and solution synthesis techniques; there are several
excellent reviews on this subject.3,15,16 In PVD, compositional variation is achieved via either taking
advantage of the natural spatial variation of the flux from a source or by using a shuttering system.
Generally speaking, solution synthesis studies (e.g., ink-jet printing) control composition by dosing
different compositions of precursors by pipetting. The resultant HTE libraries are then character-
ized as-synthesized or after post-processing under different temperatures/environments. This can
be done either uniformly across the entire HTE library or as a separately varying parameter. The
geometry of an individual point in fabrication parameter space (FPS) on a HTE library is deter-
mined by the figure of merit screening technique to be employed [e.g., discrete squares for scanning
superconducting quantum interference device (SQUID) or scanning electrolytic characterization].
The result is that each HTE sample contains a well-defined mapping of composition-processing
space onto the Cartesian geometry of the (typically planar) substrate, which can then be used to
create composition–processing–structure linkages. In the following discussion, we use the term
“HTE-library” to refer to an experiment containing multiple points in FPS, and the term “sample” to
refer to an individual point in FPS.

In typical materials science studies, structural information includes composition, phase, micro-
structure (e.g., texturing, nanoparticle morphology), and macroscale structure (e.g., tensile testing
specimen geometry). Microstructural information is gathered via x-ray diffraction (XRD), Raman
spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
In the thin-film HTE literature, emphasis is placed on the characterization of composition and
crystal phase with few studies focusing on the degree of material texturing. Scanning XRD, scan-
ning SEM, and scanning Raman spectroscopy are the tools most commonly reported in the HTE
literature to correlate composition and structure.

Scanning XRD is performed in a reflection or transmission geometry, typically with a 2D area
detector that captures scattering over a wide range of angles as a 2D diffraction image. Typically,
the XRD measurement samples a large ensemble of crystal grains, and symmetry about the χ
angle (random orientation of these grains) is assumed and the 2D image is integrated along this
angle to produce a 1D diffraction pattern of intensity vs scattering angle (or scattering vector
magnitude). Figure 1 provides a schematic flow diagram illustrating how data are captured from
a wafer, processed for analysis, and subsequently analyzed using the techniques described below.
Raman spectroscopy similarly produces a 1D response of Raman scattered light intensity versus
light frequency. To the best of our knowledge, there are no currently existing examples of HTE
TEM experiments but with improved automation in TEM sample preparation, column alignment,

FIG. 1. Schematic overview of the process for converting diffraction/spectroscopic and compositional data into structural
phase diagrams.
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sample selection, and focusing this is an area with great potential for rapid progress. Both SEM
and TEM instruments can generate electron diffraction images, which are analogous to the 2D XRD
images and while these images are often analyzed prior to the χ–integration described above, the
XRD analysis algorithms described below could be applied to the analysis of electron diffraction
data.

III. PHASE DIAGRAM DETERMINATION

Once structure and fabrication parameter data are collected, the samples are sorted into groups
of similar structure, and in the case of samples with phase segregation, groups of shared phase
composition. Samples that are grouped together describe connected regions of the FPS that result in
similar phase or phase mixtures. For regions composed of previously known phases, the abundance
of each phase and the lattice parameters can be identified using a structure refinement method,
e.g., Rietveld refinement. For studies exploring new FPS, the resulting phases may be unknown
or may not be easily identifiable with previously known structures, requiring significant amounts
of analysis time from a crystallographer. However, HTE studies have resulted in large, rapidly
growing volumes of structure data, making manual analysis by experts infeasible. As a result, the
materials community has turned to the rapid data analysis techniques of machine learning to convert
the large volumes of structure data into phase diagrams. While machine learning promises to offer
high-throughput phase diagram determination, its success is dependent on a few factors—prior
knowledge, data preprocessing, data representation, similarity or dissimilarity measures, and model
choice. These will be discussed in detail below.

A. Data conditioning

1. Prior knowledge

Prior knowledge plays a key role in determining analysis performance, and this includes knowl-
edge of both the structure measurement method as well as the material space under investigation.
Knowledge of the structure measurement method is required in data preprocessing—allowing the
analyst to identify and remove instrument related noise, background, and features from the data,
all of which can result in poor analysis performance. Prior knowledge of the material space under
investigation may exist in the literature or material property databases. Utilizing this information
in addition to the study-based data can provide a fuller basis from which to make predictions. A
set of machine learning algorithms, supervised and semi-supervised learning methods, allow for
the incorporation of such prior knowledge. Additionally, knowledge of the structure measurement
technique (XRD, Raman, etc.) can be used to reduce the space of potential phase diagram solutions
to those that are physically realizable through the use of constraints.

2. Data preprocessing techniques

During structure measurements, information of material structure is convolved with instrument
effects, resulting in added instrument-based noise, background signals, and other artifacts in the
resulting data. These instrument-based artifacts can result in greatly reduced analysis performance
or even analysis failure. Measurement noise can be reduced with the use of data filtering tech-
niques such as convolving the data with a smoothing “mask”—e.g., running average smoothing.
Alternatively, a curve fitting method such as cubic spline interpolation can be used to reduce noise
effects. Background subtraction can easily be performed when the instrument background effect is
known, such as 1/x low-angle air scattering. A collection of such functions is available in structure
refinement packages. When the background is unknown, the background can be characterized using
a well-known dummy sample (e.g., a blank silicon wafer) in place of the sample to be measured.
The characterized background signal can then be subtracted from measurement data. An example of
this was performed in Ref. 17 to remove background from XRD data.
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3. Data representation

Various data representations of structure data have been used in the literature.18–21 The integrated
1D diffraction pattern has been used most extensively as part of a variety of high throughput
phase diagram determination techniques.20,22,23 This is most likely due to its widespread use in
manual phase identification and the development of expert intuition in interpreting 1D data. As
previously mentioned, software tools exist to facilitate phase identification for 1D data, allowing
for “sanity checks” when evaluating machine learning algorithm performance. 1D data have also
been shown to work well as the data format for spectral decomposition using matrix factorization
techniques. The identified constituent phase abundances can then also be used in determining a
phase diagram.20,22,23 Alternatively LeBras et al.18,25 converted 1D XRD patterns into discrete lists
of peak information containing information on peak position, amplitude, and width. Each diffraction
pattern was converted into a data list using a wavelet-based peak detection algorithm26 and the
discrete data lists were then used in a phase diagram determination method that utilizes integer
linear programming based reasoning. By converting the 1D data into data lists, the data are reduced
in dimension and complexity, removing extraneous instrument-based information from the data,
such as peak shape warping due to the X-ray source and instrument-based noise. However, the
reduced dimensionality and complexity of the data comes at the cost of an added pre-processing
step with significant computational cost. Another field of data dimension reduction is called
latent variable analysis27 and contains some high speed methods that can facilitate phase diagram
determination.

4. Measures for comparing XRD/Raman patterns

A similarity or dissimilarity measure is used to quantify the relationship between two pieces of
structure data and is used to identify whether two samples originate from the same phase region.
The dissimilarity is often represented as

Di j = d
�
yi, y j

�
,

where Di j is the dissimilarity between the structure data y for samples i and j. A dissimilarity
measure increases as the samples become less similar while a similarity measure increases with
increasing similarity. The common dissimilarity measure used in 2 or 3 dimensions is the Euclidean
metric used to determine the distance between two samples. However, the Euclidean metric does not
perform well in the much higher dimensional space of structure data, which is typically hundreds
to thousands of dimensions for 1D data and millions of dimensions for image data, each dimension
corresponding to an intensity as a function of frequency or spacing. These high dimensional data
exhibit effects such as feature shifts, where a feature shifts from one dimension to another, e.g.,
XRD peak shifting. The selected measure should be able to identify two samples with a feature
shift as similar. Also, the high dimensional nature of the data means that it succumbs to the “curse
of dimensionality”—the higher the dimension of the data, the larger the volume of space in which
the data reside and the sparser the data, making all data seem dissimilar. More complex mea-
sures exist for high dimensional data, but they often come with significantly greater computation
cost.

A few measures have been used in the literature to compare high dimensional structure data.
The geometry-based L1 norm was used in Ref. 28 and provides a high speed measure for defining
dissimilarity between 1D diffraction data. The geometry-based cosine metric and the statistics-
based Pearson’s correlation coefficient have also been used successfully.17,20 Both provide high
speed dissimilarity measures and improved performance in identifying similar structures that differ
in only peak height, a result of differing structure-order lengths in the samples. However, the L1
norm, cosine metric, and Pearson’s correlation coefficient perform poorly in the presence of peak
shifts. Alternatively, the dynamic time warping measure has been shown to perform well in the
presence of peak shifting, when the magnitude of peak shifting is known, but comes at a computa-
tional cost that is orders of magnitude larger.18,29 A thorough discussion of measures for structure
comparison is forthcoming.30
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B. Data visualization and manual analysis

Humans are adept at interpreting XRD patterns and sets of XRD patterns with the prac-
tical limitation being creating a data representation that is amenable to human pattern recognition
capabilities. For a 1-D composition space (a binary composition library or linear slice through
higher-order composition space), the XRD intensity can be mapped in false color as a function of
the scattering angle and composition. By inspecting so-called “heat maps,” humans can generally
identify collections of peaks belonging to a phase and phase mixtures, essentially solving the phase
diagram manually. Software for generating this type of data visualization has been reported, for
example, by Long et al.10,17 and LeBras et al.31 The latter software has also been implemented into
a web interface UDiscover. It25 and utilized for crowdsourcing data analysis by training non-experts
to recognize patterns in heat map images. Combined with the capability to generate a comprehen-
sive set of heat maps for XRD data sets in high-order composition spaces, the phase map problem
could in principle be solved by brute force human computation.

To provide expert users with more information-rich representations of large XRD data sets,
dimensionality reduction algorithms have been successfully employed. Dimensional reduction tech-
niques take advantage of the fact that high dimensional data can often be described by a lower
dimensional manifold in the high dimensional data space. A common technique is principle compo-
nent analysis (PCA) now used for a variety of applications in materials informatics.32,33 PCA
performs well when samples are a linear mixture of constituent phases. However, peak shifting can
result in a non-linear mapping. Multidimensional data scaling (MDS) methods can identify such
curved manifolds by allowing for non-linear dissimilarity measures. For example, MDS in combi-
nation with the Pearson’s correlation coefficient was used to visualize peak shifting in the Fe-Ga-Pd
material system in 3 dimensions.17 This method is also used to visualize in 2D the effect of measure
choice on phase diagram determination via clustering.30 Non-negative matrix factorization (NMF),
a method used to identify constituent phases, has also been used to identify a 2D linear manifold
described by non-negative basis vectors.33

While these visualization and dimensional reduction algorithms can help harness the power of
human computation and assist with the formulation of automated algorithms, purely computational
algorithms that produce objective solutions to the phase mapping problem are preferred to remove
subjectivity and increase overall throughput.

C. Rapid phase diagram determination models

While a tremendous variety of machine learning methods exist,27 only a handful have been
reported as successful in determining phase diagrams. Machine learning methods are often grouped
by their data inputs and their models. Broadly many machine learning methods fall into the cate-
gories of supervised, unsupervised, or semi-supervised learning techniques. For phase diagram
determination, supervised techniques require as input a set of samples with fabrication parameters
and structure data as well as phase region labels. The relationship between fabrication parameters,
structure, and phase region label is then learned by “training” on the input data and extrapolated to
identify the phase region labels for samples without labels. These methods are often used to identify
phase region labels, which have been seen in the input, though they can also aid in discovering
novel phases through the use of novelty and anomaly detection methods. Unsupervised methods
do not require phase region labels as input, they sort samples into clusters associated with phase
regions by identifying data structure in the combined frame parameter and structure data spaces. A
further description of these general methodologies can be found in Ref. 27. We will discuss four
methods with proven success in phase diagram determination: feature learning, clustering, matrix
factorization, and constraint reasoning. The feature learning described here is part of a supervised
learning method while various implementations of clustering, matrix factorization, and constraint
reasoning can be deployed with either an unsupervised or semi-supervised approach.
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1. Supervised learning

Bunn et al. used Adaboost feature learning, as part of a multi-step machine learning algo-
rithm in their analysis of phase formation and oxidation of Ni-Al thin films using 1D XRD pat-
terns, Raman, and Luminescence spectroscopy and composition data.21 The three sets of phase
characterization data were combined in this study as each provided unique abilities for phase
discrimination: XRD was used to characterize metallographic phase, Raman was used to distinguish
non-passivating oxides, and luminescence spectroscopy provided a method to identify the formation
of α-Al2O3. The samples were partitioned into two sets: one used to train the algorithm and the
other to test algorithm performance. The training samples were labelled for phase content by an
expert and the algorithm was trained on the labels and structure data to identify diffraction pattern
and spectroscopic features that were predictive of phase content. The algorithm was limited to
simple features such as diffraction intensity and the first derivative of the diffraction pattern. In
this study, unprocessed and processed data were considered independently. The algorithm was then
applied to the testing samples data with a minimum accuracy of 88.9% for unprocessed data and
98.4% for post-processed data. A sliding window approach helped to mitigate issues with peak
shift. Disadvantages of this approach include the need for a fairly large training set (∼50–100
spectra depending on complexity) and that all features of all future spectra be contained within
the training set. A diagram of the workflow used in this work can be found in Figure S1 of the
supplementary material.36

2. Unsupervised learning

The ultimate goal in the phase mapping problem is to generate phase diagrams from combina-
torial XRD data sets through automated execution of unsupervised learning algorithms. To describe
the different approaches to solving the phase mapping problem and to appreciate the ever-increasing
sophistication of the algorithms, we employ the visualization tool of Figure 2, where 3 categories of
algorithms are noted: Clustering, Matrix Factorization, and Reasoning. We first describe algorithms
that exclusively use one of these approaches and then describe the state-of-the-art hybrid algorithms.

a. Clustering. Clustering techniques sort samples into groups (“clusters”) such that samples
within the same group are more similar than samples in different groups. Under the expectation
that XRD or Raman patterns from samples with the same phase will be more similar than patterns
from different phases, clustering offers a straightforward mechanism for partitioning a large number
of patterns into a small number of clusters that may represent individual phases or phase fields.
Clustering can be generally represented by the mapping

Ck : {s1, s2, . . . , sN} → {1 . . . k},

FIG. 2. Foundational unsupervised learning algorithms have been developed using Clustering, Matrix Factorization, and
Reasoning techniques. State-of-the-art algorithms hybridize these complementary approaches.
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where for our case, each sample si is mapped to one of k clusters. A variety of clustering algorithms
exist, each with its benefits and disadvantages. Identifying the optimal clustering method for a
specific clustering problem can be considered an art.27

A variety of clustering techniques have been used to identify phase diagrams from structure
data. Hierarchical clustering, a method that clusters based purely on dissimilarity, was used with
the Pearson metric to cluster 1D XRD data into phase regions.17 Spectral clustering is a clustering
method that uses the dissimilarity matrix to identify manifolds of sample connectivity and then
assigns samples to clusters based on shared manifolds. Spectral clustering was used in Ref. 20 with
the cosine metric to perform an initial clustering of structure data (either XRD or Raman spectra
data) before performing a more complex hybrid technique (described below). Both implementations
of hierarchical and spectral clustering focused on clustering the samples by using only the structure
data and do not take into account dissimilarities in material composition, a factor of prior knowl-
edge of the material space. By ignoring sample composition, samples with similar structure but
significantly different composition can be clustered together—i.e., grouped together into the same
phase region, resulting in non-realistic disconnected phase regions.

The use of composition data to cluster samples was introduced in an on-the-fly analysis algo-
rithm,28 which uses the mean shift theory clustering method to tie cluster identification to both
structure data space and composition data space. While this approach provides a soft constraint for
cohesive phase regions in composition space, reasoning methods (described below) allow for hard
constraints.

b. Spectral decomposition/matrix factorization. Phase diagram determination is a combina-
tion of identifying fabrication parameter space phase regions as well as identifying the constituent
phases of these regions. Constituent phase identification is performed using spectral decomposition
methods such as matrix factorization. Matrix factorization was first introduced into phase identifi-
cation by Long et al. in Ref. 22 and has become a key part of phase diagram determination. Matrix
factorization assumes that the structure data yi (XRD, Raman spectra, etc.) for each sample i can be
described by a mixture of structure data associated with a set of phases X = x j, j ∈ {1 . . . M} with
phase abundances β and an error term ϵ . Also, as both XRD and Raman spectra data are required to
be non-negative (minimum of zero) and the abundances must also be non-negative, a non-negative
constraint is applied

yi =
M
j=1

β jx j + ϵ β, x ∈ R≥0,

where β and x are the scalar values that make up the vectors βj and xj.
For a set of samples from the same material space, e.g., a set of samples from a composition

spread, the matrix representation is given by

Y = βX + ϵ β, x ∈ R≥0.

Here, row i of Y and X corresponds to the sample data yi and phase data xi, respectively. Due to
the non-negative constraint, this method is called non-negative matrix factorization (NMF). Various
techniques exist for evaluating β and X with the shared goal of minimizing error ϵ . Matrix factor-
ization can be used when the phase data X are completely unknown (unsupervised learning) and
when partial information is known (semi-supervised learning). For example, phases known to exist
in the material system can be used to populate X with fixed valued rows while additional rows are
evaluated for the remaining unknown phases. The dimensionality reduction algorithms described
in the Data Visualization and Manual Analysis section produce basis spectra that are analogous to
the components X, but while basis spectra produced by algorithms such as PCA make no direct
connection to crystalline phases, the NMF components may produce a single basis spectrum for
each phase in the system. Pure-NMF techniques reported in the literature have largely been unable
to track peak-shift arising from alloying. New approaches to appropriately model peak shifting are
needed with recent progress in this area discussed in the Hybrid Algorithms section below.

c. Constraint reasoning. When expert analysts formulate phase diagrams from XRD patterns,
they ensure that several well-defined criteria are met. For example, every XRD peak must be
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associated with a phase and the composition region in which a phase is observed must be con-
nected. The shortcomings of purely clustering or purely matrix factorization techniques are that
a resulting phase diagram (the optimal solution from a given algorithm) may violate the logical
requirements that are rooted in the underlying materials physics. To formally adhere to the physical
constraints,23,31,34 expressed the phase mapping problem using a set of logical requirements within
a constraint reasoning24 and then a satisfiability modulo theory (SMT) reasoning framework. The
SMT algorithm was demonstrated using synthetic data and reproduced the ground truth phase
diagrams with excellent fidelity, but the implementation of this approach suffers from practical
limitations. The algorithm is computationally intensive for large data sets and perhaps more limiting
is the reliance on accurate peak detection in every XRD pattern, which creates sensitivity to experi-
mental noise. While experimental data sets have yet to be solved by this purely reasoning approach,
the formal logical statement of the problem and the demonstrated utility of constraint reasoning
provide a critical departure from the purely Clustering and Matrix Factorization algorithms.

d. Hybrid algorithms. Recently reported algorithms, which constitute the state of the art, have
made fundamental modifications to clustering and matrix factorization techniques by encoding
prior knowledge (typically physical constraints) such that a resulting phase diagram is the optimal
solution that satisfies specific requirements. To date, the encoded constraints are a subset of those
outlined in the pure-reasoning approach, motivating the depiction of these algorithms in Figure 2 as
a mixture of clustering, matrix factorization and reasoning.

e. Constraint programming (CP)-Clustering. An early approach for correcting the shortcom-
ings of clustering algorithms was developed by LeBras et al.18 in which a constraint programming
(CP) model was developed to represent the reasoning logic described above. Like the SMT reason-
ing framework, directly solving the CP model proved to be problematic, prompting the development
of a hybrid approach which iterated between clustering XRD patterns based on their similarity and
applying the CP formulation of the physical constraints. The clustering step was used to rationally
define data subsets, which were analyzed using the CP framework, and then these data subsets were
stitched together using as global CP model to arrive at global solution.

f. GRENDEL. GRENDEL is a hybrid approach that combines clustering and non-negative
matrix factorization, allowing information from each method to improve results for the other.20,35

This hybrid method also allows for additional constraints to be imposed. Specifically, a material
system in thermal equilibrium will have discrete phase regions, which bound the existence of indi-
vidual phases and vice versa, the existence of particular phases describe the boundaries of phase
regions. However, NMF assumes that each phase can appear anywhere throughout the fabrica-
tion parameter space. GRENDEL combines a graph-cut clustering method with NMF to ensure
that phase regions are cohesive in composition space and that phases are bound to phase regions
(clusters) and that samples are placed in the phase region (cluster) whose constituent phases best
describe the sample. The combination of methods is performed using an objective function, which
permits for additional constraints through regularization terms, such as ensuring that the volume
described by each cluster’s constituent phases is minimized, thus imposing a soft constraint that
the identified phases look as much like the structure data as possible. This method has been shown
to work with both XRD and Raman spectra data with speeds that allow for on-the-fly analysis.20

A diagram of the workflow used in GRENDEL can be found in Figure S2 of the supplementary
material.36

g. CombiFD. While GRENDEL uses objective function regularization to introduce soft phys-
ical constraints, the CombiFD23 method represents physical constraints as a set of linear inequality
equations, much like the Reasoning method of Ref. 18. This approach allows for tremendous flex-
ibility with a wide range of potential constraints. CombiFD also allows for the use of commercial
state-of-the-art optimization software. Ermon used the CombiFD framework to encode both phase
region cohesivity and to impose an upper limit on the number of phases present in each sample,
a requirement of Gibb’s phase rule for materials in equilibrium. Ermon et al. also demonstrated
that by appropriately setting parameters for the minimum peak width (typically known for a given
XRD experiment) and maximum peak shifting (typically between 1% and 10% depending on the
chemical system), monotonic peak shifting (all peaks shift in the same direction, as is the case for
typical metal alloying) can also be appropriately modeled to avoid false identification of “shifted”
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phases. For a system with hundreds of samples, evaluating the phase diagram can take minutes to a
few hours.

D. Conclusions

The use of HTE approaches to rapidly map composition–structure–property relationships pro-
vides a great opportunity to expedite the rate at which new materials are discovered and commer-
cialized. Solving the underlying phase behavior of a set of material samples enables the direct
establishment of structure–property relationships in combinatorial experiments, and the develop-
ment of algorithms that generate phase diagrams from combinatorial structural characterization data
remains a prolific challenge for both materials and computer scientists. Here we have provided a
summary of the state-of-the-art methods employed to overcome this hurdle by the HTE commu-
nity. The development of faster and more reliable methods that appropriately model peak shifting,
impose physical constraints (such as Gibbs Phase Rule), and reject instrumental data artifacts will
help to realize prolific gains in the rate and efficiency of materials discovery. These high throughput
capabilities are well-complemented by ongoing advances in the fields of high-throughput density
functional theory and on-the-fly design of experiments, providing the key components for a mate-
rials discovery engine to propel a wide range of technologies, particularly emerging technologies
with deep societal impact.

ACKNOWLEDGMENTS

J.H.S gratefully acknowledges support from Advanced Research Projects Agency-Energy (ARPA-
E), U.S. Department of Energy, under Award No. DE-AR0000492 and the SouthCarolina Smart-
State™ Center for Strategic Approaches to the Generation of Electricity (SAGE). J.M.G. acknowl-
edges support from the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub,
supported through the Office of Science of the U.S. Department of Energy Award No. DE-SC0004993,
and the Computational Sustainability Network, supported through National Science Foundation Ex-
peditions in Computing Grant No. 1521687. The authors thank Carla Gomes and Ronan LeBras for
insightful discussions.

1 P. Chen, “Electrospray ionization tandem mass spectrometry in high-throughput screening of homogeneous catalysts,”
Angew. Chem., Int. Ed. 42, 2832 (2003).

2 W. F. Maier, K. Stöwe, and S. Sieg, “Combinatorial and high-throughput materials science,” Angew. Chem., Int. Ed. Engl.
46, 6016 (2007).

3 M. L. Green, I. Takeuchi, and J. R. Hattrick-Simpers, “Applications of high throughput (combinatorial) methodologies to
electronic, magnetic, optical, and energy-related materials,” J. Appl. Phys. 113, 231101 (2013).

4 J. Cui, Y. S. Chu, O. O. Famodu, Y. Furuya, J. Hattrick-Simpers, R. D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z.
Y. Zhang, and I. Takeuchi, “Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis
width,” Nat. Mater. 5, 286 (2006).

5 D. Kan, L. Pálová, V. Anbusathaiah, C. J. Cheng, S. Fujino, V. Nagarajan, K. M. Rabe, and I. Takeuchi, “Universal behavior
and electric-field-induced structural transition in rare-earth-substituted BiFeO3,” Adv. Funct. Mater. 20, 1108 (2010).

6 D. J. Arriola, E. M. Carnahan, P. D. Hustad, R. L. Kuhlman, and T. T. Wenzel, “Catalytic production of olefin block copol-
ymers via chain shuttling polymerization,” Science 312(5774), 714 (2006).

7 M. L. Green, J. R. Hattrick-Simpers, C. Choi, I. Takeuchi, A. M. Joshi, S. C. Barron, T. Chiang, A. Davydov, S. Empedocles, J.
M. Gregoire, and A. Mehta, Fulfilling the Promise of the Materials Genome Initiative via High-Throughput Experimentation,
MRS, 2014, available at http://www.mrs.org/mgi-workshop-2014/.

8 T. Kalil and C. Wadia, Materials Genome Initiative for Global Competitiveness, 2011, available at http://www.whitehouse.
gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf.

9 Materials Genome Initiative National Science and Technology Council Committee on Technology Subcommittee on the
Materials Genome Initiative, 2014, available at https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_
strategic_plan_-_dec_2014.pdf.

10 I. Takeuchi, C. J. Long, O. O. Famodu, M. Murakami, J. Hattrick-Simpers, G. W. Rubloff, M. Stukowski, and K. Rajan,
“Data management and visualization of x-ray diffraction spectra from thin film ternary composition spreads,” Rev. Sci.
Instrum. 76, 62223 (2005).

11 Y. Watanabe, T. Umegaki, M. Hashimoto, K. Omata, and M. Yamada, “Optimization of Cu oxide catalysts for methanol
synthesis by combinatorial tools using 96 well microplates, artificial neural network and genetic algorithm,” Catal. Today
89, 455 (2004).

12 U. Rodemerck, M. Baerns, M. Holena, and D. Wolf, “Application of a genetic algorithm and a neural network for the
discovery and optimization of new solid catalytic materials,” Appl. Surf. Sci. 223, 168 (2004).

http://dx.doi.org/10.1002/anie.200200560
http://dx.doi.org/10.1002/anie.200603675
http://dx.doi.org/10.1063/1.4803530
http://dx.doi.org/10.1038/nmat1593
http://dx.doi.org/10.1002/adfm.200902017
http://dx.doi.org/10.1126/science.1125268
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.mrs.org/mgi-workshop-2014/
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf
http://dx.doi.org/10.1063/1.1927079
http://dx.doi.org/10.1063/1.1927079
http://dx.doi.org/10.1016/j.cattod.2004.02.001
http://dx.doi.org/10.1016/S0169-4332(03)00919-X


053211-11 Hattrick-Simpers, Gregoire, and Kusne APL Mater. 4, 053211 (2016)

13 S. K. Suram, J. A. Haber, J. Jin, and J. M. Gregoire, “Generating information-rich high-throughput experimental materials
genomes using functional clustering via multitree genetic programming and information theory,” ACS Comb. Sci. 17, 224
(2015).

14 S. Kumar, V. Gupte, and K. Sreenivas, “Structural and optical properties of magnetron sputtered MgXZn1−XO thin films,”
J. Phys.: Condens. Matter 18, 3343 (2006).

15 K. Rajan, “Combinatorial materials sciences: Experimental strategies for accelerated knowledge discovery,” Annu. Rev.
Mater. Res. 38, 299 (2008).

16 R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, “Combinatorial and high-throughput screening
of materials libraries: Review of state of the art,” ACS Comb. Sci. 13, 579 (2011).

17 C. J. Long, J. Hattrick-Simpers, M. Murakami, R. C. Srivastava, I. Takeuchi, V. L. Karen, and X. Li, “Rapid structural
mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis,” Rev. Sci. Instrum. 78,
072217 (2007).

18 R. LeBras, T. Damoulas, J. M. Gregoire, A. Sabharwal, C. P. Gomes, and R. B. van Dover, “Constraint reasoning and
kernel clustering for pattern decomposition with scaling,” in Principles and Practice of Constraint Programming - CP 2011
(Springer Berlin Heidelberg, 2011), pp. 508–522.

19 J. P. MacSleyne, J. P. Simmons, and M. De Graef, “On the use of 2-D moment invariants for the automated classification
of particle shapes,” Acta Mater. 56, 427 (2008).

20 A. G. Kusne, D. Keller, A. Anderson, A. Zaban, and I. Takeuchi, “High-throughput determination of structural phase diagram
and constituent phases using GRENDEL,” Nanotechnology 26, 444002 (2015).

21 J. K. Bunn, S. Han, Y. Tong, Y. Zhang, J. Hu, and J. R. Hattrick-Simpers, “Generalized machine learning technique for
automatic phase attribution in time variant high-throughput experimental studies,” J. Mater. Res. 30, 879 (2015).

22 C. J. Long, D. Bunker, X. Li, V. L. Karen, and I. Takeuchi, “Rapid identification of structural phases in combinatorial
thin-film libraries using x-ray diffraction and non-negative matrix factorization,” Rev. Sci. Instrum. 80, 103902 (2009).

23 S. Ermon, R. LeBras, S. K. Suram, J. M. Gregoire, C. P. Gomes, B. Selman, and R. B. van Dover, “Pattern decom-
position with complex combinatorial constraints: Application to materials discovery,” in Proceedings of the 29th AAAI
International Conference on Artificial Intelligence (AAAI, 2014).

24 J. Lee, “Principles and practice of constraint programming–CP 2011,” in Proceedings of the 17th International Conference
on CP 2011, Perugia, Italy, 12–16 September 2011 (Springer Science & Business Media, 2011).

25 R. LeBras, R. Bernstein, J. M. Gregoire, S. K. Suram, C. P. Gomes, B. Selman, and R. B. van Dover, “A computational
challenge problem in materials discovery: Synthetic problem generator and real-world datasets,” in Proceedings of the
28th AAAI International Conference on Artificial Intelligence (AAAI, 2014).

26 J. M. Gregoire, D. Dale, and R. B. van Dover, “A wavelet transform algorithm for peak detection and application to powder
x-ray diffraction data,” Rev. Sci. Instrum. 82, 015105 (2011).

27 T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction,
2nd ed. (Springer, New York, 2009).

28 A. G. Kusne, T. Gao, A. Mehta, L. Ke, M. C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M. J. Kramer, C. Long, and I.
Takeuchi, “On-the-fly machine-learning for high-throughput experiments: Search for rare-earth-free permanent magnets,”
Sci. Rep. 4, 6367 (2014).

29 L. A. Baumes, M. Moliner, N. Nicoloyannis, and A. Corma, “A reliable methodology for high throughput identification of
a mixture of crystallographic phases from powder x-ray diffraction data,” CrystEngComm 10, 1321 (2008).

30 Y. Iwasaki, A. G. Kusne, and I. Takeuchi, “Comparison of various metrics for cluster analysis of combinatorial x-ray diffrac-
tion data,” Nature Computational Materials (submitted).

31 R. LeBras, R. Bernstein, C. P. Gomes, B. Selman, and R. B. van Dover, “Crowdsourcing backdoor identification
for combinatorial optimization,” in Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
International Joint Conference on Artificial Intelligence (AAAI, 2012).

32 C. Suh, A. Rajagopalan, X. Li, and K. Rajan, “The application of principal component analysis to materials science data,”
Data Sci. J. 1, 19 (2002).

33 T. Mueller, A. G. Kusne, and R. Ramprasad, “Machine learning in materials science: Recent progress and emerging appli-
cations,” Rev. Comput. Chem. 29, 186 (2016).

34 S. Ermon, R. LeBras, C. P. Gomes, B. Selman, and R. B. van Dover, “Smt-aided combinatorial materials discovery,” in
Theory and Applications of Sustainability Testing–SAT 2012 (Springer, 2012), p. 172.

35 P. Massoudifar, A. Rangarajan, A. Zare, and P. Gader, “An integrated graph cuts segmentation and piece-wise convex un-
mixing approach for hyperspectral imaging,” 6th IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution
in Remote Sensing (WHISPERS) (IEEE, 2014).

36 See supplementary material at http://dx.doi.org/10.1063/1.4950995 for the AutoPhase workflow diagram in Figure S1
and the GRENDEL workflow diagram in Figure S2.

37 Certain commercial equipment, instruments, or materials are identified in this report in order to specify the experimental
procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best
available for the purpose.

http://dx.doi.org/10.1021/co5001579
http://dx.doi.org/10.1088/0953-8984/18/13/002
http://dx.doi.org/10.1146/annurev.matsci.38.060407.130217
http://dx.doi.org/10.1146/annurev.matsci.38.060407.130217
http://dx.doi.org/10.1021/co200007w
http://dx.doi.org/10.1063/1.2755487
http://dx.doi.org/10.1007/978-3-642-23786-7_39
http://dx.doi.org/10.1016/j.actamat.2007.09.039
http://dx.doi.org/10.1088/0957-4484/26/44/444002
http://dx.doi.org/10.1557/jmr.2015.80
http://dx.doi.org/10.1063/1.3216809
http://dx.doi.org/10.1063/1.3505103
http://dx.doi.org/10.1038/srep06367
http://dx.doi.org/10.1039/b812395k
http://dx.doi.org/10.2481/dsj.1.19
http://dx.doi.org/10.1002/9781119148739.ch4
http://dx.doi.org/10.1007/978-3-642-31612-8_14
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995
http://dx.doi.org/10.1063/1.4950995

