
1 
 

Refined treatment of single-edge diffraction effects in 
radiometry 

ERIC L. SHIRLEY1,* 
1 Sensor Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS 8441, Gaithersburg, MD 20899-8441  
*Corresponding author: eric.shirley@nist.gov 

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX 

 
This work treats diffraction corrections in radiometry for cases of point and extended sources in cylindrically 
symmetrical three-element systems.  It considers diffraction effects for spectral power and total power in cases of 
Planck sources.  It improves upon an earlier work by the author by giving a simpler rendering of leading terms in 
asymptotic expansions for diffraction effects and reliable estimates for the remainders.  This work also 
demonstrates a framework for accelerating the treatment of extended sources and simplifying the calculation of 
diffraction effects over a range of wavelengths.  This is especially important in the short-wavelength region, where 
dense sampling of wavelength values is in principle necessitated by the rapidly oscillatory behavior of diffraction 
effects as a function of wavelength.  We demonstrate the methodology’s efficacy in two radiometric applications.   
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1. INTRODUCTION AND BACKGROUND 
The wave nature of light causes diffraction effects that undermine a 
geometrical-optics understanding of classical radiometry, wherein the 
product of source radiance and geometrical throughput determines the 
power received by a detector.  Following Rayleigh [1], Lommel [2] 
presented a description of Fresnel diffraction and its effect on the 
irradiance pattern downstream from a circular optical element in the 
case of a point source.  Focke [3] and Wolf [4] integrated that pattern 
and arrived at expressions for the encircled energy in the central region, 
which is of greater interest when one wants to know diffraction effects 
on the total flux.  National Measurement Institutes in many countries 
have endeavored to address and demonstrate the relevance of 
diffraction to radiometry.  See, for example, studies by Sanders and 
Jones [5], Ooba [6], Blevin [7], Steel et al. [8] and Boivin [9].  Several of 
these researchers considered generalization to extended (Lambertian) 
sources, a formal treatment of which was presented by the author [10] 
and studied further by Edwards and McCall [11].   
 Evaluating and accounting for diffraction effects in radiometry can 
be referred to as including “diffraction corrections.”  Practical (unfolded) 
optical systems usually contain more elements than just a source, 
aperture (or lens, if it is a powered optic) and detector.  However, 
piecewise accounting for diffraction effects because of certain effective 
source-aperture-detector (SAD) subsets of one’s system can often 
estimate the salient corrections.  Treatments beyond this paradigm 
include that of partial coherence effects by Mielenz [12], which was 
adopted by Dionne and coworkers [13], as well as by the author, who 
considered diffraction of light by multiple optics in series [14-16].   

 
 This work revisits the SAD problem for cylindrically symmetrical 
systems in order to improve and systematize the treatment of the 
related diffraction effects.  To date, numerical treatment of diffraction 
effects is already well-established.  Therefore, in principle the cited 
references would obviate the need for this study.  There remains room 
for improvement, however, for cases of monochromatic radiation at 
small wavelength   and Planck radiation at high temperature T , 

based on analysis of the asymptotic behavior of diffraction effects in 
these cases.  This is because radiation fields’ diffraction patterns can be 
highly oscillatory, requiring dense sampling of diffraction patterns in 
cases of extended sources, and dense sampling of wavelength values 
when diffraction effects are considered as a function of  .   

 In Ref. [17], the author analyzed such asymptotic behavior and 
arrived at formulas for diffraction effects in the case of a point source in 
terms of a large parameter v  for monochromatic radiation and a small 

parameter A  for Planck radiation.  These and several other quantities 
are defined in Section 2.  It is the particular goal here to overcome 
certain shortcomings of Ref. [17].  These include the limited number of 
terms presented for expansions in 1/ v , the form of expansions in A  

requiring infinite summations for all terms beyond the first, and the 
remaining difficulties with the treatment of extended sources and/or of 
treating a large number of wavelengths in the spectral case.  Section 3 
rearranges leading-order asymptotic expressions in a more convenient 
form and completes the said summation for the leading four nonzero 
terms at the lowest powers of A .  Section 4 presents a means by which 
the “main” diffraction effects can be treated with 10-digit accuracy for a 
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wide scope of systems, outside of which numerical treatments can be 
easily executed.  Section 5 presents a means by which “remaining” 
diffraction effects can be treated likewise.  The “main” diffraction effects 
consider everything except interference of what would be the source’s 
original light wave, allowing for focusing by powered optics, and 
modifications to it because of diffraction.  The “remaining” diffraction 
effects account for that interference, on the relevant detector area.  The 
“remaining” effects only matter when a detector is overfilled, because 
the “main” diffraction effects in the underfilled case are deduced from 
the integrated flux outside of the detector area and hence entirely in the 
dark region.  Section 6 generalizes the aforementioned benefits to the 
treatment of extended sources, while Section 7 presents a means by 
which to streamline the treatment of a large number of short 
wavelengths in the case of monochromatic radiation.  Section 8 presents 
two radiometric applications, and Section 9 presents closing remarks.  
Additionally, the Appendix provides technical information relevant to 
the treatment of Planck radiation.   
 

 

Fig. 1.  Source-aperture-detector (SAD) systems considered in this work.  

The geometries are specified by three radii, sR , aR  and dR , two distances 

sd  and dd , and (not shown in these cases) the focal length f  of the 

aperture when it is a powered optic.   

 

2. DEFINITION OF THE PROBLEM 
 
Consider the situations illustrated in Fig. 1.  In one case, a source 
illuminates a detector through an aperture, which may be powered, and 
the detector is overfilled so that the aperture is non-limiting.  In the other 
case, the aperture is limiting, so that the detector is underfilled.  In either 
instance, the source is spatially extended (i.e., it is not an idealized “point 
source”).  Radii of the source, aperture and detector ( sR , aR  and dR ) 

and the intervening distances ( sd and dd ) are indicated, and we 

denote the focusing power of the aperture by f , having f    in the 

unpowered case.   
 There is a fairly standard notation for dimensionless parameters 
that can be used in expressions quantifying diffraction effects.  These are 

2(2 / )(1/ 1/ 1/ )a s du R d d f    , (2 / ) /s s a sv R R d  , and 

(2 / ) /d d a dv R R d  .  So we have 0u   in the pinhole-aperture 

limit and when the source and detector are imaged by the lens onto each 
other.  Two v  parameters are necessary in the case of an extended 

source.  By Helmholtz’s reciprocity principle sv  and dv  are 

interchangeable for purposes of calculating diffraction effects.  It is 
helpful to introduce 0 max( , )s dv v v  and 0min( , ) /s dv v v  , as well 

as the wavelength-independent length parameter defined according to 
the pattern, v  , 0 0v  , etc.  For a point source, with one v  

parameter (2 / ) /d a dv R R d  , one can introduce 

min(| |, ) / max(| |, )w u v u v .  The   and w parameters are equally 

relevant for monochromatic and Planck radiation.   
 For a monochromatic point source (the 0   limit), Wolf [4] 

provides a formula for the fraction of flux falling on the aperture that in 
turn reaches the detector.  This is given either by  

( , ) 1 ( , )BL u v L v w     (1) 

for a limiting aperture ( | |u v ) or by  

2( , ) [1 ( , )] ( , )B XL u v w L v w L v w     (2) 

for a non-limiting aperture ( | |u v ).  Labels ( , )BL v w  and ( , )XL v w  

are a shorthand defined in Ref. [17] for expressions due to Wolf.  With 
2 2 2 1/2( , ) {(1 )[(2 ) ]} / (1 )G x x x x        , spectral power at 

the detector and spectral radiance of an extended source are related by  

 1
01

( ) ( ) ( , ) ( , (1 ))CL dx G x L u v x     



   (3) 

with 3 4 2 2 2 2 2
04 / ( )a s d s dC R R R d d  , which Ref. [17] states incorrectly.  

This is most easily established for the limiting ( | | | |s du v v  ) and non-

limiting ( | | s du v v  ) cases, and Edwards and McCall [11] treat other 

cases.   
 For Planck radiation, treating diffraction effects on total power 
reaching the detector involves integration with respect to wavelength 
over the Planck distribution.  If we introduce the dimensionless, 
temperature-dependent parameter, 2 / ( )A c T , where 2c  is the 

second radiation constant, then considering a Planck radiation source in 
lieu of a monochromatic source requires the modification of the above 
analysis according to the replacement  

1
0 4 4

6 (4)
( , ) ( , ) ( ) ( , )B

c
L u v d L u v L F A w

A


 
 



  
    

 
 (4) 

in the limiting case and  
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 




 

  
   

  

 (5) 

in the non-limiting case.  The functions ( , )BF A w  and ( , )XF A w  are 

defined implicitly above and are discussed further in Ref. [17].  Here 
( )z  is the zeta function of Riemann,   is the source emissivity and 

1c  is the first radiation constant.  Neglect of diffraction effects amounts 

to setting ( , ) ( , ) 0B XL v w L v w   or ( , ) ( , ) 0B XF A w F A w  , from 

which geometrical-optics results for spectral and total power follow.   

3. ASYMPTOTIC EXPANSIONS 
Reference [17] gives asymptotic expansions for ( , )BF A w , ( , )XF A w , 

( , )BL v w  and ( , )XL v w .  The expansions eventually diverge, but the 

first several leading terms can be a good approximation in cases of small 
A  or large v .   

A. Leading Planck (thermal) terms 

At small A, ( , )BF A w  is  

 
2

2
0

( 1)
( , ) ( )

2 1

s s

B s
s

w
F A w I A

s






 


   (6) 

with the asymptotic behavior of each 2 ( )sI A  being  

 2 , ,
3

( ) ~ ( log ) .p
s s p s p e

p

I A C L A A




     (7) 

Summation over s as prescribed by  

, ,2 2 1

0 0

, ,2 2 1

0 0

( 1) ( 1)1

(2 1) (2 1)

( 1) ( 1)1

(2 1) (2 1)

s s
s p s ps s

p
s s

s s
s p s ps s

p
s s

C C
C w w

s w s

L L
L w w

s w s

 


 

 


 

    
     

         


     
               

 (8) 

allows for a more convenient form for ( , )BF A w :   

 
3

( , ) ~ ( log ) .p
B p p e

p

F A w C L A A




   (9) 

Including a factor of w in the sum is convenient for analysis below.   

 The four leading (and typically largest) non-zero terms involve 

3C , 1C , 1L  and 0C , so that leading relative diffraction effects scale 

as A .  As shown earlier [17], we have 2
3 4 (3) / [ (1 )]C w    , and 

we present results of summation for the next three terms and 
( , )XF A w  below.  Our approach is fairly involved, but this treatment 

simplifies the results of Ref. [17] by allowing for one set of rules to apply 

when evaluating all terms with odd 1p   , a possibility not noted 

earlier.  However, closed-form expressions for 0p   are not of as much 

interest, being somewhat unwieldy, and if such terms are not very small 
and therefore unimportant, they are probably terms in an asymptotic 
series that makes poor approximations when A  is correspondingly 
large, so that a more comprehensive (rather than term-by-term) 
method of evaluating the remainder is desirable.   

 From Eq. (52-56) of Ref. [17], a ,s pC  or ,s pL  coefficient for odd 

1p    in Eq. (8) is the product of several factors: (1.) respectively, an 

overall factor ,C pR  or ,L pR , which is independent of s :   

 , 2 6 2

8 ( 1)
,

(5 )2
C p p p

p
R

p



  


 


  (10) 

 , ,2 6 2

16 ( 1)
2 ,

(5 )2
L p C pp p

p
R R

p



  


   


 (11) 

(2.) a factor, ( 1) (2 1)s s  , which cancels an opposite factor in the sum 

in Eq. (8), (3.) an even polynomial function of (2 1)s  ,  

 
2 2 2

,

2 2 2 2 2

(2 1) [(2 1) ( 3) ]

{[(2 1) 2 ] [(2 1) ( 1) ]} ,

s pf s s p

s s p

    

    
 (12) 

with the quantity in curly brackets having only one factor for 1p   and 

being unity for 1p   , and, (4.) only in the case of ,s pC , a factor, ,s pc , 

found in square brackets in Eq. (52) and Eq. (56) of Ref. [17], which is a 
constant independent of s  minus four digamma functions of s  plus 

half-integers. 
 The digamma function is given by ( ) log ( ) /ez d z dz  .  Those 

in ,s pc  that depend on s  can be related to ( 3 / 2)s   by successive 

application of the recurrence relation, ( 1) ( ) 1/z z z    .  For 

integer m , one has  

( 3 / 2) (1/ 2) [ ( 3 / 2) (1/ 2)]

[ ( 3 / 2) ( 3 / 2)].

s m s

s m s

   

 

      

   
 (13) 

The second term is  

 
0

2
( 3 / 2) (1/ 2) .

2 1

s

t

s
t

 


   


  (14) 

The third term is zero for 0m  , but for 0m   the third term is  

1

2
( 3 / 2) ( 3 / 2) .

(2 1) 2

m

k

s m s
s k

 


     
 

  (15) 

For 0m  , it is convenient to set 1 m    , implying 1m    , to 

obtain  

0

2
( 3 / 2) ( 3 / 2) .

(2 1) 2k

s m s
s k



 


      
 

 (16) 

The arguments of the four digamma functions always have values so 

that ,s pc  has the form (with 1 2p   )  

 
,

0

( 3)/2

2 2 2 2
1

4 8

2 1 2 1

16 4( 3)
.

(2 1) 4 (2 1) ( 3)

s

s p
t

p

k

c r
s t

k p

s k s p








   
 




    

 (17) 

This implies  

, , , ,
0

1 1
4 2 ,

2 1 2 1

s

s p s,p s p s p s p
t

f c r f f g
s t




 
    

  
 (18) 

where ,s pg  is also an even polynomial function of 2 1s  , because the 

denominators appearing in ,s pc  that involve 2(2 1)s   are all factors of 

,s pf .  The leading term is  
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5 1
(3 ) (1 )

2 2

( 1 2 )
4 10log 2 2 .

( 1 2 )
e

r        

 


 

   
             

   

   
   

  

 (19) 

For 1p    , this uses 1lim 2 6log 2 11/ 3er      .   

 To evaluate  

 1 2 1
, ,

0

s
p L p s p

s

L w R f w


 



     (20) 

and 

 1 2 1
, , ,

0

,s
p C p s p s p

s

C w R f c w


 



    (21) 

one can use the relation  

 2 1 2 1(2 1) s sd
s w w w

dw

  
   

 
   (22) 

to replace powers of (2 1)s   in ,s pf  and ,s pg  with action of the 

operator indicated, in order to relocate the polynomials outside of the 
sum, making pC  and pL  1/ w  times combinations of results of even 

numbers of actions of the operator on  

2 1

2
0

1 1 1
,

2 1 11

s

s

w
S w

w ww







 
     

   
  (23) 

2 1

0

1 1
log

2 1 2 1

s

L e
s

w w
S

s w





 
   

  
  (24) 

and 

2 1 2 1
2

0 0 0 0

2

2 1 2 1

1 1 1
log ,

2 1 1

s ts
t

s t t t

e L

w w
w

t t

w
S S

w w

   


   



   
 

    
     

     

 (25) 

with  

 2

2
0

1 1 1 1
.

2 1 11

s

s

S w
w ww






 
     

   
 (26) 

Action of the operator on 1/ (1 )w  yields  

 
1

( )1

1 (1 )

n

n

n

W wd
w

dw w w 

 
 

  
   (27) 

with 0( ) 1W w   and, for 0n  ,  

 
1

0

( ) ,
n

k
n

k

n
W w w w

k





     (28) 

where angle brackets denote Eulerian numbers.  Thus, for 0n   the 

polynomial ( )nW w  is w  times a palindromic polynomial of w  of order 

1n  .  It follows that we have  

1 1

1 1

2 1

2 1

1 1 1
( )

2 1 1

( ) ( )1

2 (1 ) (1 )

(1 ) ( ) (1 ) ( )1

2 (1 )

( )
.

(1 )

n n

n n

n n

n n
n n

n

n

n

d d
w S w w

dw dw w w

W w W w

w w

w W w w W w

w

w

w





 

 







     
      

      

 
  

  

    
    




 (29) 

We have 0 ( ) 1w    and 0 ( )w w   .  For 0n  , ( )n w   is w  times 

a palindromic polynomial of 2w  of order n , and ( )n w   is 2w  times 

a palindromic polynomial of 2w  of order 1n  , so that ( )n w   for even 

n  is also 2 2(1 )w w  times a palindromic polynomial of 2w  of order 

2n  .  In fact, we have 2( ) 2 ( )n
n nw W w   .   

 Having ( / )Lw dS dw S , the effect of multiple actions of the 

operator on LS  also follows from above.  We also have  

 ,
d d d

w xy x w y y w x
dw dw dw

     
      

     
  (30) 

and applying a binomial-theorem generalization of this rule also lets one 
evaluate the result of multiple actions on LS S .  This product and LS  

always appear in the combination, 2L LS S S , for which we have  

2

2

2 1

2 2 2 2 1

2 1

2 2 1 2 1
1
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( ) 2
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2
( ) ( ) ( ) ( ) .

n

n L L
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w
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n
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m



   









   

  


 
  
 

 
 

   
    

   

 (31) 

Here, the 2m n  term (featuring a logarithmic function) and 0m 

term have been partitioned from the rest of the sum.  Although the first 

term sports a denominator with 21 w  raised to an even power, one 

can use  

 
2

2 1 2 1 2 1

2 2 2 2 1 2 2 1

( ) 2 ( ) (1 ) ( )

(1 ) (1 ) (1 )

n n n

n n n

w w w w

w w w

    
  

 


  

  
 (32) 

to have all denominators in the expression for 2nD  be 2 2 1(1 ) nw  .  If 

we introduce  

21 1
log ,

1
e

w w

w w


   
        

   (33) 

we have  

2 2 2 1

2 1
22

2 1 2 12
1

1

(1 )

2( )
(1 ) ( ) 2 ( ) ( ) .

1

n n

n
n

n m n m
m

D
w

nw w
w w w w

mw

 
  



 
  
  






  
      

   

      (34) 
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The first term in brackets is a palindromic polynomial of 2w  of order 

2 2n   times 3w  , and the remaining terms combine to form w  times 

a palindromic polynomial of 2w  of order 2n .   

 For odd 1p   , this ensures that contributions to pL  and pC  

arising from a term with 2(2 1) ns   in ,s pf  or ,s pg  will include a 

palindromic polynomial of 2w  of order 2n  divided by 2 2 1(1 ) nw  .  

There is also a contribution to the numerators in pC  that is 2w   times 

a palindromic polynomial of 2w  of order 2 2n  .  Furthermore, if there 

are terms in which there are denominators having different powers of 
21 w , multiplying the numerator and denominator of each term by 

the appropriate even power of 21 w  can establish one common 

denominator proportional to 2 2 7(1 ) pw  , with each numerator being 

either a palindromic polynomials of 2w  of order 2 6p  , or 2w   times 

a palindromic polynomial of order 2 4p   (or a polynomial of a lower 

order for which coefficients for powers 2p m   are still equal).  

Combining terms therefore yields up to one term of each type.   

 For 1p   , we have  

 
2 4 6 8

1 2 5

1 20 90 20

4 (1 )

w w w w
L

w


   
 


  (35) 

and, separating effects of 1r ,  

8 6 4 2 4
1 1

1 2 5 2 5

5 112 586 112 5 32
.

2 6 (1 ) (1 )

L r w w w w w
C

w w



 

 


   
   

 

      (36) 

Besides remaining odd-order terms, similar methods show that the only 
even-order term is  

8 6 4
6 5 4 3 2 2

0 2 7
0

1 24( 3 )
( 3 3 2 ) .

6 (1 )

s

s

w w w
C s s s s s w

w





 
       



      (37) 

From Ref. [17], at small A  we also have  

6 4 2
4 ( 1/ )

2 7

96 ( 3 1)
( , ) ( ),

(1 )

w w A
X

w w w
F A w O e

w

  
  


 (38) 

which bears an uncanny resemblance to 0C .   

B. Leading spectral terms 

In the case of monochromatic radiation, Hankel’s asymptotic expansion 
for Bessel functions of a large argument in Wolf’s result leads to 
asymptotic expansions for ( , )BL v w  and ( , )XL v w .  Equation (30) of 

Ref. [17] presents the leading terms for ( , )BL v w , for which the general 

expansion includes three types of terms with various inverse powers of 
v : non-oscillatory with odd powers, and oscillatory with cos(2 )v  

times even powers or sin(2 )v  times odd powers.  The expressions in 

Eq. (30) of Ref. [17] involve implicit functions of w  labelled n  for 

0,1,2,n  , etc., which are defined in Eq. (28) of the same reference.   

Palindromic polynomials appear to all orders for every type of term in 
this expansion, which is proved in the next Section.  From Ref. [17] we 
have  

 
1 1 2 3

1 2 3

3 4
3 4

( , ) ~ [ cos(2 )

sin(2 ) cos(2 ) ...].

BL v w Av C v v A v

S v v C v v

    

 

  

 
 (39) 

Rearrangement of Eq. (30) of Ref. [17] gives  

2
1

2
2

2 4 6 8 2 5
3

2 4 2 3
3

2 4 6 8 2 5
4

2 / (1 )

1 / (1 )

.(1 20 90 20 ) / [4(1 ) ]

(1 18 ) / [4(1 ) ]

3(3 20 466 20 3 ) / [32(1 ) ]

A w

C w

A w w w w w

S w w w

C w w w w w

 


   


      


     


      

 (40) 

From Wolf, the quantity ( , )XL v w  can be decomposed according to 

( 1/ ) / 2g w w   and  

1 2( , ) (4 / )[ ( , )cos( ) ( , )sin( )].XL v w w v Y v w vg Y v w vg   (41) 

The nY -functions are defined by Wolf as well as in Ref. [17].  Using 

Hankel’s asymptotic formula for Bessel functions of fixed order and 
large argument establishes the pattern for asymptotic expansions for 

both nY -functions: 1/2v times either sin( / 4)s v     divided by odd 

powers of v  or cos( / 4)c v     divided by even powers of v .  

Equations (65-66) of Ref. [17] present leading terms of  

1/22

1

(1) 1 (1) 2 (1) 3
1 2 3

(1 ) 2
( / , )

2

[ ...]

vw w
Y v w w

v

S s v C c v S s v



  
  

  
   

 

  

  (42) 

and 

1/22

2

(2) 1 (2) 2 (2) 3
1 2 3

2
( / , )

2

[ ...].

vw
Y v w w

v

S s v C c v S s v



  
  

 
   

 

  

  (43) 

The leading coefficients of these can be re-expressed in a simpler form 
than was given previously, giving  

(1) 2 2
1

(1) 2 4 2 4
2

2 4 6 8
(1)
3 2 6

2 / (1 )

3(1 30 ) / [4(1 ) ]

15(1 196 1658 196 )

64(1 )

S w

C w w w

w w w w
S

w


 



    


    
 

 (44) 

and  

(2) 2 2
1

(2) 2 4 2 4
2

2 4 6 8
(2)
3 2 6

4 / (1 )

3(5 22 5 ) / [2(1 ) ] .

15(7 420 1194 420 7 )

32(1 )

S w

C w w w

w w w w
S

w


 



    


     
 

(45) 

Palindromic polynomials appear in every term to all orders, a fact that 
is proven later.   
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4. EXACT EVALUATION OF MAIN EFFECTS 

A. Preliminary Considerations 

Equations (21) and (22) of Ref. [17] provide exact integral 
representations of ( , )BL v w  and ( , )BF A w .  To evaluate these integrals, 

we introduce the shorthand,  

2

1
( , ) ( , ; ) ( 2 ).

(2 )
D a w d d G w c c a

 

 

    


 

 

       (46) 

Here we have exp[ ( ) / 2]h i    , exp[ ( )]i    , 1
iw we   , 

2
iw we    , cosc  , cosc   , sins  , sins   , /2ie   , 

/2ie 
 ,  

 
11

log
2 1

i
i e

i i

w

w w





 

 
    

   (47) 

and  

 
1

1 2

1
( , ; ) (1 ) .

h h
G w

h h

 
  

  



 
      

  (48) 

(Unless necessary for clarity, we suppress several dependences.)  
Symmetric ranges of integration and invariance of the integrand with 
respect to the exchange    imply  

 
1

0

( , ) 4 cos(2 ) ( , )BL v w da av D a w     (49) 

and 

 
1

0

( , ) 12 ( ,2 ) ( , ).BF A w da S A a D a w    (50) 

These formulas account for the fact that the boundary-diffraction wave 
portion of light passing from a point on the source to any given point on 
the detector plane would have taken a superposition of two-segment 

paths, but ( , )D a w  expresses the effects of the associated distribution 

functions for path-length differences integrated over a detector area.  In 
this sense, it is an aggregate path-length-difference weighting function.  
The absolute difference between any two such path lengths cannot be 
negative and cannot exceed a value corresponding to /v   in classical 

notation.  Reference [17] and the Appendix discuss the function ( , )S A l

, which helps account for cumulative interference effects in the case of a 
Planck source.  The Appendix also discusses Mellin transforms of 

( , )S A l , 4( , )S A l l , ( , )logeS A l l  and 4[ ( , ) ]logeS A l l l  relevant 

for evaluating ( , )BF A w .   

 Regarding ( , )D a w , one may change the ranges of integration to 

have  

2
0 0

1 1
2 2 1 2

1 1

1
( , )

(2 )

(1 ) ( 2 ).

D a w d d

c c a

 

 


   
  

 

   

 

  

  
         

 (51) 

Three terms indicated but not shown in square brackets are obtained 
from the term shown if one changes the sign(s) of   (thereby inverting 

  and replacing 1
  with 1

 ), and/or   (thereby inverting   and 

replacing 2
  with 2

 ).  The sum of all four terms can be written with 

a common denominator that is  

1 1 1 1 2 2( ) ( ) 4( ) 16c c a               (52) 

and can be taken outside the integral.  Simplifying the resulting 

coefficients of 1
 , 1

 , 2
  and 2

  gives 

2
0 0

1 1 2 2

1 1

12
1 1

( , )
(2 )

[ ]

( 2 )

( 2 )
[ ] .

(2 )

i i i i

i

i
D a w d d

a

e c s e c s e cs e cs

c c a

i c c a
dc dc e c s

ssa

 

   



 


   








      

 


 

  

     

 

  
      

 (53) 

One may rewrite this using only one variable of integration, x , related 

to c  and c  by (1 )c a x a    and (1 )c a x a    , and rewrite the 

denominator using  

 2 2 2 2( ) (1 ) (1 )ss a a R       (54) 

with (1 ) / (1 )k a a     and 2 2 2 1/2[(1 )(1 )]R x k x   .  This gives  

1

12
1

( , ) [ ] / .
(2 ) (1 )

ii
D a w dx e c s R

a a

 







 


  (55) 

 With one additional level of differentiation and integration, 
according to  

 
2

1

1
1 0

( , )
2 (2 ) (1 )

[2 ( ( ) )],
w

i

i
D a w

w a a

dx d
d e c s

R d





   










  

  (56) 

terms that contained logarithmic functions become ones with algebraic 
functions.  We may regroup this to have one term with a denominator 
involving s  and one term with a denominator involving s .  If we 

introduce a function that is even with respect to x ,  

2 2
2

2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2

( , , )
(1 ) 4 (1 ) 4

(1 ) (1 )
,

(1 ) 4 (1 ) 4

cs c s
g a x

s s

c c c c

c c


   

   

 
 

   

  
 

   

 (57) 

we have (with 2
0 1h w  ) 

1
2 2

2
0 0

2

1
0 0

0 0 0

4
( , ) (1 ) ( , , )

(2 ) (1 )

(2 ) (1 )

2 2
log log .

2 2

w

e e

dx
D a w d g a x

Rw a a

i

w a a

h iws h iwsdx
c s cs

R h iws h iws

  






  





     
               

 (58) 

Real a  implies 1
0 0 0log [( 2 ) / ( 2 )] 2tan (2 / )ei h iws h iws ws h    , 

etc.  For complex a , s  is the branch of 2 1/2(1 )c  that is positive for 
21 0c   and has a branch cut for 21 0c  , and similarly for s , and 

the logarithm functions are real for positive argument and have a 
branch cut where the argument is negative.   



7 
 

 Equations (49-50) initially consider 0 1a  , but it is helpful to 

analytically continue ( , )D a w  away from the real- a  axis while only 

considering real w .  The integrand in Eq. (58) is a linear combination of 

terms of the form 2 2 2 2(1 ) (1 )n n n nc s cs c c c c        .  ( , )D a w  is 

therefore a linear combination of terms of the form  

2 2
1 2

0

2 2
2

2 2 2 1

2

(1 )
/

1

(1 / 2) ( 1 / 2) (1 ) 1 1
, ; 1;

2 ( 1) 1 2 2

(1 / 2) ( 1 / 2) (1 ) (1 )

2 ( 1) 1

1 1 4
, ;2 1; .

2 2 (1 )

p q
p

pq

p q

p q p

a a
S dx x R

a

p a a
F p p k

p a

p a a k

p a

k
F p p p

k

 



 



 


 



    
     

    

   
  

  

 
    

 

      (59) 

Here F  is a hypergeometric function and the last step uses a quadratic 

transformation of variables.  With (1 ) / (1 )k a a    , we have 

1 2 / (1 )k a    and 2 24 / (1 ) 1k k a    .  A linear transformation 

of variables simplifies this to  

2 2 2

2
2

0

(1 )
~

2

[( 1 / 2) ]
[ ( 1) ( 1 / 2) log ]

!(1)

p q

pq

nn
e

n n

a a
S

p
n n p a a

n
 








    

 (60) 

so that at small a  one has  

 2 2
0 2 2( , ) ~ ( log ).n n

n n n eD a w c a l a a
    (61) 

The form of ( , )BL v w  also supports such an expansion with even 

powers only.  For, suppose one decomposes the cos(2 )av  in the 

integral representation of ( , )BL v w  given in Eq. (49) into a combination 

of integrals involving exp( 2 )iav  and exp( 2 )iav  and deforms the 

contours of integration to run respectively from zero to i  , to 

1i  , and to 1 .  One then obtains contributions to ( , )BL v w  with 

exponentially damped integrands with complex phases that are very 
nearly zero or 2 mod / 2v  .  Terms featured in the asymptotic 

expansion for ( , )BL v w  indicate even powers of a  near 0a  .   

 Suppose that one introduces partitions of ( , )D a w , ( ,2 )S A a  and 

the integral of their product related to ( , )BF A w , according to  

 ( , ) ( , ) ( , )L RD a w D a w D a w    (62) 

with  

 2 2
0 2 0 2( , ) ( )log ,L eD a w c c a l l a a     (63) 

as well as  

 4 4( ,2 ) [ ( ,2 ) (2 ) ] (2 )S A a S A a a a      (64) 

and  

 

1

0 0

1
4 4

1 0

4

1

1
4

0

( , ) ( ,2 ) ( , ) ( ,2 )

( , ) (2 ) ( , ) (2 )

( , ) [ ( ,2 ) (2 ) ]

( , ) [ ( ,2 ) (2 ) ] .

L

L R

L

R

da D a w S A a da D a w S A a

da D a w a da D a w a

da D a w S A a a

da D a w S A a a




 






 

  

 

 

 (65) 

Relating this to ( , )BF A w  through Eq. (50) furnishes insight.  The first 

integral accounts for the 3C , 1C  and 1L  terms, integrals involving 

4(2 )a   alone are independent of A  and account for the 0C  term, 

whereas the integrals involving 4( ,2 ) (2 )S A a a   vanish at small A  

because we have 4 4 /( ,2 ) ~ (2 ) ( )a AS A a a O e    .  The integral 

involving ( , )LD a w  and 4( ,2 ) (2 )S A a a   vanishes as 4 /( )AO e   at 

sufficiently small A , whereas the integral involving ( , )RD a w  and 

4( ,2 ) (2 )S A a a   accounts for all remaining contributions to 

( , )BF A w  that do not vanish similarly.  Furthermore, its upper limit of 

integration can be reduced to only a few times A  with little 
consequence.  If the upper limit is a  instead of unity, the error incurred 

is only 4 /( )a AO e   .   

 The leading term of ( , )BF A w  and the Mellin transform of 

( , )logeS A l l  confirm 2 2
0 2 / [ (1 )]l w   .  The Mellin transform of 

( , )S A l  vanishes for Mellin exponent 2 0n  , precluding insight into 

the value of 0c , but analysis of Eq. (58) yields the same value for 0l  and 

0 0(2log 2 1 )ec l     .  Relating 1A  terms in ( , )BF A w  to the 

Mellin transforms of ( , )S A l  and ( , )logeS A l l  for 2 2n   gives 

2 12 /l L    and 2 1 1[(3 2 2log 2) 2 ] /ec L C      .  For 1n   

Mellin transforms of the short-ranged functions 4( , )S A l l  and 
4[ ( , ) ]logeS A l l l  imply (see Appendix) 2 2 3 / [12 (2 )]n nl L n  and 

2 2 3 2 3{ [ (2 ) log 2] }/ [12 (2 )]n n e nc C n L n     .  This ensures 

connections between leading terms or pairs thereof in the power series 
expansion of ( , )D a w  about 0a  , leading terms in ( , )BF A w  at small 

A , and non-oscillatory terms in ( , )BL v w , establishing there also being 

palindromic polynomials in the latter.   
 There are likewise connections between terms in the Taylor 
expansion of ( , )D a w  about 1a   and oscillatory terms in ( , )BL v w .  

For 1a    and 0  , k  and ( , )D a w  both vanish, and one has 
2 2( , ) / [ (1 )] ( )D a w w O      .  For any given appearance of 

2nc s  or 2ncs  in the integrand in Eq. (58), there is a multiplier, 
2 1 2 2 1/ (1 )n nw w  .  With 1 (1 )(1 )c a x     and 

1 (1 )(1 )c a x    , 2ns  and 2ns  contain a factor (1 )na .  This 

ensures that, when integrating from 1a   to 1a i   , contributions 

to coefficients of type 1qC  or 1qS   in Eq. (39) can only involve terms 

with n q , having the form  
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2 2

1
1 2 2 2 1

2 2

1
1 2 2 2 1

1 (1 )
.

1 (1 )

q
q

q q

q
q

q q

w
C

w w

w
S

w w







 



 


   

  



   
  

  (66) 

When expressed with a common denominator of 2 2 1(1 ) qw  , the 

numerators in these coefficients are always palindromic polynomials.   

B. Numerical Evaluation of D-function 

Regarding evaluation of the aggregate path-length difference weighting 

function ( , )D a w , we shall first consider having 0.9w .  Here we note 

that Eq. (58) suggests that having 2 2| | /(1 )a w  appropriately 

bounded ensures convergence of the first several terms of Eq. (61) to an 

accurate result.  For 2 2| | 0.01(1 )a w  , therefore, we use Eq. (61) and 

include terms through 12 12
12 12 logec a l a a  with the coefficients 

evaluated as described in Section 3.   
 We also have demonstrated an algorithmically simpler method of 

evaluation which is as follows.  First set 2 2
0 0.01(1 )a w   and 

evaluate ( , )D a w  at 0
ia a e   for representative 0     and use 

( *, ) [ ( , )]*D a w D a w .  Fourier analysis yields leading coefficients 

according to  

2
2 0

0

2
2 0

0

exp(2 ) ( , )

exp(2 ) ( , ) ( , ) log

n
n

n

n
n e

n

l a in a w

c a in D a w a w a

 

 










 


 


 (67) 

with ( , ) [ ( , ) ( , )] / ( )iπa w D a w D ae w i   .  To evaluate each value 

of ( , )D a w  we use Eq. (58) with integration over 1cos x  , with 128 

Gauss-Legendre quadrature points for 1/20 | 8 |a   and for 
1/2| 8 | / 2a    .  For the Fourier analysis, we use 

/ 1/14, 3 /14, ...,13 /14   .  Concentration of quadrature points at 

small   accounts for R  passing near zero for     .  This has 

yielded a relative accuracy of 1210  for ( , )D a w .  For 
2 2| | 0.01(1 )a w   the same quadrature can be used equally well.   

 Having larger values of w  (and/or treating | | 13 /14  ) can 

require enhanced quadrature.  It would be unusual in practical 
radiometry to have a much larger value of w , because that would imply 

having shadow boundaries near the edges of optical surfaces.  
Moreover, it is unlikely that so much attention would be warranted for 
sufficiently small values of a , because leading terms in ( , )BL v w  and 

( , )BF A w  would already give accurate results.   

C. Numerical Evaluation for Planck (thermal) case 

If A  is sufficiently small, one can use  

3 1 1
3 1 1 0

4

0

4 4 /

1

( , ) log

12 [ ( ,2 ) (2 ) ] ( , )

12 [ ( ,2 ) (2 ) ] ( , ) ( ).

B e

a

R

a A
L

F A w C A C A L A A C

da S A a a D a w

da S A a a D a w O e 

  
  





 

   

 

  

 (68) 

Note that a  does not need to be much larger than A  and should never 

exceed unity.  By partitioning ( , )RD a w  into terms with or without 

logarithms at small a , e.g., 2 2min(0.01(1 ) , )a w A  , one can 

integrate each portion of ( ,2 ) ( , )RS A a D a w  by quadrature using 

suitable points and weights.  One can use Gauss-Legendre quadrature 
integration of ( ,2 ) ( , )RS A a D a w  for the remainder of its range of 

integration and that of the exponentially damped 
4[ ( ,2 ) (2 ) ] ( , )LS A a a D a w   outward from 1a  .  If A  is larger, one 

can simply integrate ( ,2 ) ( , )S A a D a w  over 0 1a  :   

0

4 6

4 6

4 6 2

4 6
0

( , ) 6 sin ( , ) ( ,2 )

2

15 63

16
6 sin ( , ) ( ,2 ) .

45 189

BF A w d D a w S A a

A A

a
d D a w S A a

A A





 

 

 
 

 

  

 
   

  

 (69) 

The change of variable of integration to   with (1 cos ) / 2a    and 

extraction of effects of the leading terms of ( ,2 )S A a  from the integral 

accelerate the quadrature’s convergence.  For 0.9,w we achieved 

accuracy in ( , )BF A w  that was 10~ 10  times ( , )F A w  using 128 

Gauss-Legendre quadrature points in the integrals in Eq. (68) for 
0.015A  and the integral in Eq. (69) for 0.015A  .   

D. Numerical Evaluation for spectral case 

For small v  one can likewise evaluate ( , )BL v w  according to Eq. (49) 

using numerical quadrature.  On the other hand, when evaluating 
( , )BL v w  exactly for large v , it has proved useful to decompose it into 

its non-oscillatory part and oscillatory parts that have phase factors 
2ive  and 2ive .  This is achieved by rewriting Eq. (49) as follows: 

2

0 0

2 2
n.o.

( , )

2
( / (2 ), ) (1 / (2 ), )

( , ) ( , ) [ ( , )]*.

B

t iv t

iv iv

L v w

i dt e D it v w ie dt e D it v w
v

L v w e L v w e L v w

 
 


 



  
     

  

  

      (70) 

The advantage of this form is particularly clear when one is to 
incorporate the above result into Eq. (3) to treat extended sources, a 
task that can be accelerated greatly by appropriate use of contour of 
integration in Eq. (3).  The two integrals in Eq. (70) are readily evaluated 
using Gauss-Laguerre quadrature.  They are smooth functions of v , a 

property that allows their evaluation over a range of values of v  for 

fixed u  as in Eq. (3) based on evaluation at a few discrete values of v  

and Chebyshev-Lagrange interpolation.   

5. NUMERICAL EVALUATION OF REMAINING EFFECTS 
Equations (64) and (62) of Ref. [17] provide integral representations for 
numerical evaluation of the interference terms ( , )XF A w  and 

( , )XL v w  when the leading asymptotic terms do not suffice.  Thus, if 

Eq. (38) of this work is not sufficiently accurate, one can evaluate 
( , )XF A w  using quadrature integration; here 128-point Gauss-

Legendre quadrature or Eq. (38) could ensure an accuracy 
11~10 ( , )F A w  for 0.9w .  To obtain ( , )XL v w , one may first 
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decompose the expression in Eq. (62) of Ref. [17] into two exponentials, 

according to ( ) ( )( , ) ( , ) ( , )X X XL v w L v w L v w   , with  

2 2 1/2
1( )

1 2

2 (1 ) exp[ ( )]
( , ) .

1 2
X

w x iv x g
L v w dx

w wx





  
 

 
  (71) 

Gauss-Chebyshev quadrature permits evaluation for small v , while 

contour integration helps for large v , according to  

 

( )

2 2 1/2 ( )
1 1

1 1 2

( ) ( )1 2
1 2

( , )

2 (1 )

1 2

( , ) ( , ),

X

iv x g
i i

i v i v

L v w

w x e
dx dx

w wx

e Q u v e Q u v 






     

 

 


  

 

 

 (72) 

with 2
1( ) ( ) / (2 )v u v u   , 2

2( ) ( ) / (2 )v u v u   , and  

21/2 2 2 1/2

1 0 2

21/2 2 2 1/2

2 0 2

4 [( )(2 / )]
( , )

( ) 2

4 [( )(2 / )]
( , )

( ) 2

s

s

iv ds s e i is v
Q u v

u v ius

iv ds s e i is v
Q u v

u v ius















 
  
  

 

   
  

 (73) 

and likewise for ( )( , )XL v w .  The last integrals are amenable to Gauss-

Hermite quadrature and are also smooth functions of v  amenable to 

interpolation schemes.  This decomposition also proves helpful when 
applying Eq. (3) to treat extended sources.  Note that one also has  

2
1 2

1 2

2

4 cos( )
( , ) 1

1 2

4
[cos( ) sin( ) ],

X

c s

w vx vg
L v w dx x

w wx

w
vg I vg I










 

 

 

 (74) 

with  

1 2

1 2

12 2

1 2 2 2 2

12 2

1 2 2 2 2

cos( )
1

1 2

cos( )
(1 ) 1

(1 ) 4

cos( )
(1 ) 1

(1 ) 4 (1 )

c

vx
I dx x

w wx

vx
w dx x

w w x

vx
w dx x

w w x













 
   

  

 
    

  

 
    

   

 (75) 

and 

1 2

1 2

1 2

1 2 2 2 2

1 2

1 2 2 2 2

sin( )
1

1 2

sin( )
2 1

(1 ) 4

sin( )
2 1 .

(1 ) 4 (1 )

s

vx
I dx x

w wx

x vx
w dx x

w w x

x vx
w dx x

w w x













 
   

  

 
   

  

 
   

   

  (76) 

These two integrals are proportional to 1Y  and 2Y  and give insight into 

their asymptotic properties.  It is first helpful to note  

2 2

2 2 2 2 2 2 2 4

1 1 4 (1 )

(1 ) 4 (1 ) (1 ) (1 )

w x

w w x w w


  

    
 (77) 

Suppose one decomposes cos( )vx  and sin( )vx  into terms involving 
ivxe  and integrates contributions of each exponential from 1  to 

1 i    and from 1 i    to 1 .  Contributions involving 
2 2 2 2(4 ) / (1 )n nw w   have expansions with denominators 

proportional to 3/2nv
  with n n  , the leading power being 

determined by the factor 1/2[ ( 1)]nx   in 2 1/2(1 )nx   near 1x   , 

and higher n  values arising because of expansion of the other factor, 
1/2[ ( 1)]nx   , about 1x   .  If all terms with each value of n  are 

combined with a common denominator, 2 2 2(1 ) nw
 , the numerator 

would be a palindromic polynomial of 2w .   

6. GENERALIZATION TO EXTENDED SOURCES 
It is straightforward to perform the integration in Eq. (3) for ( , )BF A w , 

( , )XF A w  and the non-oscillatory part of ( , )BL v w  numerically via 

Gauss-Chebyshev quadrature.  This is also true for the oscillatory parts 
of ( , )BL v w  and ( , )XL v w  if the argument of the complex exponential 

varies sufficiently slowly, although extended Gauss-Legendre 

quadrature over 1cos x  may accelerate convergence.  In other 

instances, one can eliminate highly oscillatory integrands by deforming 
the contour of integration in Eq. (3), in a manner suitable for the phase 
factor of each term, making it decay instead of oscillate.   
 For contributions from ( , )L v w , deforming the integration so 

that x runs from 1  to 1 i    and from 1 i    to 1  achieves 

this; one can avoid awkwardness of the integrand by changing the 
variable of integration along each vertical contour to t  with 

2
0/ (2 )x t v     and using Gauss-Hermite quadrature.  One can 

estimate contributions to ( , )L v w  beyond those found in Eq. (39) by 

Chebyshev-Lagrange interpolation [18] after sampling ( , )L v w  at N  

points in the range from 0(1 )v v v     to 0(1 )v v v    , 

according to 0 0(1 cos ) (1 )k k kv v v x       with 

( 1/ 2) /k k N    and 1, ,k N .  This necessitates evaluating 

( , )L v w  for values slightly outside of the range, v v v   , but having 

only real sampled values of kv  also ensures evaluating ( , )D a w  only for 

real values of w .  With (complex) 0 0(1 cos ) (1 )v v v x      , one 

has  

1( , ( , )) ( ) ( , ( , ))N
k k k kL v w v u x L v w v u    (78) 

with  

1( ) ( )
( ) .

( )

N N k k
k kk

k k k

T x T x x x
x

N x x x x
 





 
       

 (79) 

The first form can be numerically expedient given a large number of 
sampling points, and the second form helps for kx x .   

 Quadratic exponents in phase factors in Eq. (73) suggest adapting 
Eq. (3) to integrate along hyperbolic contours.  Introducing 

0 0( , ) ( , ) / ( )M v v G x v   implies  

1
01

( )
0

( , ) ( (1 ), )

2 ( , ) ( , ).

X

v
Xv

dx G x L v x w

dv M v v L v w

 










 
   (80) 

The latter can be rewritten using  

 

( )
0

( )

1,2 0, ,

( , ) ( , )

( , ) ( , )

v
Xv

i v

C C

dv M v v L v w

dv dv M v v e Q u v


  







  



   

 (81) 
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On 1,C   one has 2 2 1/2[( ) 2 ]v u v iut u     and 

2 2 2( ) ( ) 2u v u v iut    , and on 2,C   one has 

2 2 1/2[( ) 2 ]v u u v iut     and 2 2 2( ) ( ) 2u v u v iut    .  The 

parameter t  runs from 0  to  , and phase factors are constants (to 

be taken outside of the integral) times 2exp( )t , making integration 

amenable to Gauss-Hermite quadrature.   
 The preponderance of extended sources in practical radiometry 
motivates closed-form formulas for leading-order diffraction effects.  
With the change of variable in Eq. (3) from x  to  

 
2 2

2 2

(1 ) (1 )
2 1

(1 ) (1 )

x
y

 

 

   
  

    
  (82) 

one has 1y    at 1x   , (1 )dy x dx  , and, for any function f ,  

2
1 1 1/2

1 1

11 2
( , ) (1 ) ( )

y
dxG x f x dy f q

q
 

 

 

 

 
   
 
 

 (83) 

with 2 21 2 (1 )q y x       .  A limiting case has 
1/2 1/2 2

0 0( ) 1 2 / [ (1 / )]f q v q w q    , with 2 2
0 0( / )w u v .  The 

ratio of the actual flux L  to the geometrically expected flux 0  is  

 
2

1

12 3/2 2
0 0 0

14
1 .

(1 / )

L
dy y

v q w q



 






  


  (84) 

A non-limiting case has 
1/2 1/2 2

0 0( ) {1 2 / [ (1 )] }f q q v q w q    , 

with 
2 2
0 0( / )w v u , so the ratio of the actual flux NL  to the 

geometrically expected flux is  

 
2

1

12 1/2 2
0 0 0

14
1 .

(1 )

NL
dy y

v q w q



 






  


  (85) 

Ratios affecting total power Planck sources have the replacement 
1

0 0(3) / [3 (4)]v A   .  If desired, integration by Chebyshev 

quadrature is still trivial for the above expressions.   
 It is instructive to expand the integrands in successive powers of 

2
0w  and integrate.  A limiting case ensures 2

0 / 1w q  , giving  

2 2L
0

00 0

2 3 1
1 , ;2; ;

2 2

s

s

w F s s
v




 





 
     

 
 (86) 

and a non-limiting case ensures 2
0 1w q  , giving  

2 2NL
0

00 0

2 1 1
1 , ;2; .

2 2

s

s

w F s s
v




 





 
      

 
 (87) 

With 2
0(1 )w   , a linear transformation of variable gives  

2 2 2 2NL

00 0

2 5 3
1 (1 ) , ;2;

2 2

s

s

F s s
v


  

 





 
      

 
.   (88) 

One can rewrite the summands in Eq. (86-87) as even functions of 
(2 1)s   plus odd functions of (2 1)s  .  Summing even or odd 

contributions over s  at each order in 2  gives a result that features 

palindromic polynomials to all orders, which is  

2 42
0 0

0 0 2 2 3
0 0

2 4 6 84
0 0 0 0

2 5
0

1 61
( , , )

8(1 ) (1 )

7 52 10 52 7

64 (1 )

E

w w
v w

w w

w w w w

w


 



  
      

    
   

 (89) 

or  

2
0 0 0

2 42 4
0 0

2 2 2 4
0 0

( , , ) (1 )

1 6

84(1 ) (1 )

O v w w

w w

w w

 

 

 

   
        

 (90) 

respectively, and we have  

L
0 0 0 0

0 0

NL
0 0 0 0

0 0

1 ( , , ) ( , , )

.

1 ( , , ) ( , , )

E O

E O

v w v w
v

v w v w
v


   

 


   

 

 
    




     

 (91) 

 For small 2
0w , expanding in its powers may be preferred.  With 

2( ) (3 / 2 ,1/ 2 ;2; )sF F s s    , we have 0( ) (4 / ) ( )F D    

and 2 2 2
1( ) {4 / [3 (1 ) ]}[2 ( ) (1 ) ( )]F K D         , and 

properties of contiguous hypergeometric functions give  

2 2 2
1 1(2 3)(1 ) ( ) 4 (1 ) ( ) (2 3) ( ).s s ss F s F s F           (92) 

One can therefore introduce ( ) 2( )D
sm   and ( ) 2( )K

sm   to have  

 
( ) 2 ( ) 2

2 2

( ) ( ) ( ) ( )4
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(2 1)!!(1 )
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

 
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     

 (93) 

with the recurrence relation  

 
( , ) 2 2 ( , ) 2

1

2 2 ( , ) 2
1

( ) 4 (1 ) ( )

(2 3)(2 1)(1 ) ( ).

K D K D
s s
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s

m s m

s s m

  

 





  

  
  (94) 

For all 0s  , ( ) 2( )K
sm   and ( ) 2( )D

sm   are palindromic polynomials 

of order 1s   and s , respectively, with ( ) 2
0 ( ) 0Km   , ( ) 2

0 ( ) 1Dm   , 

( ) 2
1 ( ) 2Km   , and ( ) 2 2

1 ( ) (1 )Dm     .  One may introduce  
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1
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 (95) 

which implies  
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 (96) 

and  
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4
( , ) [ ( , ) ( ) ( , ) ( )].D KM w X w D X w K    


   (97) 

The limiting case gives  

2L
0 0

0 0

2
1 [4 ( ) / ( , )].D w M w

v


  

 
     (98) 

In the Fraunhofer case, one has 0 0w  , and only the first term in the 

square brackets contributes.  The non-limiting case gives  

2 2NL

0 0

2
1 [(1 ) ( , )].M

v


  

 
      (99) 

7. TREATMENT OF MULTIPLE WAVELENGTHS 

Quantities 0v , u  and v are all proportional to 1 .  Diffraction effects 

on spectral power at small   can be described using  

 
7/2

00

( )
1 ( ) { ( ) [ ( )]*}

( )
B Ba a a



 
    

 
       (100) 

for limiting geometries, or using  

7/2
00

3

( )
1 ( ) { ( ) [ ( )]*}

( )

{ ( ) [ ( )]*}

B B

X X

a a a

a a





 
    

 

  

    



 (101) 

for non-limiting geometries.  Here, ( )   and 0 ( )   are the spectral 

power that reaches the detector with and without diffraction.  Several of 
the a  functions above involve other smooth “envelope” functions of   

times complex exponentials: 

 2 2( ) ( ) ( ) ,iv iv
Ba b e b e   

     (102) 

 2 2( ) ( ) ( )iv iv
Ba b e b e   

 
      (103) 

 ( ) ( )1 1
1, 1,

( ) ( )2 2
2, 2,

( ) ( ) ( )

( ) ( ) .

i v i v
X

i v i v

a c e c e

c e c e

 

 

  

 

  
 

  
 

  



 (104) 

This can be reasonably expected because of the asymptotic properties 
of diffraction effects derived in earlier sections.   
 The envelope functions behave like power series’ at small  .  

There, they can be found using interpolation once they have been 
evaluated at a few values of  .  Rearranging the phase factors and a 

leading power of   into multipliers of the envelope functions as shown 

in Eq. (100-104) facilitates this.  If one can establish a m , so that the 

above decomposition is established as adequate for all m  , Gauss-

Chebyshev quadrature according to sampling at regularly spaced values 
of   with (1 cos ) / 2m     similar to that presented in Section 6 

can expedite treatment of a very large number of short wavelengths.   
 To derive the envelope functions for the main diffraction effects, 
we note that, from Eq. (1-3) and Eq. (70), one can deduce  

 1
0 n.o.1

1
( ) ( , ) ( , )a dx G x L v w 






     (105) 

and 

 
2
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 
 
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 
 (106) 

 

with 
2

01 / (2 )x it v   
, 0(1 )v v x 

 and /w u v  in the 
limiting case, as well as  

 

2

1 2
0 n.o.1

0

1
( ) ( , ) ( , ).

u
a dx G x w L v w

v
 







 
  

 
 (107) 

and 

2
2 2

07/2
0 0

1
( ) ( , ) ( , ),tu i

b dt e tG x w L v w
v v

 


 
 

   
    

   
 (108) 

with /w v u  in the non-limiting case.  To derive the envelope 

functions for the remaining effects, one can implement the change of 
variables as outlined for Eq. (80-81).  This gives 

2
2

, 003
0

1
( ) ( , ) ( , )tu dv

c dt e M v v Q u v
v dt

 


 


   
     

  
 (109) 

with the dependence of v  on t  defined by the contour with the same 

subscripts as the envelope function in Eq. (81).  Gauss-Chebyshev and 
Gauss-Hermite quadrature facilitate all integrations in Eqs. (105-109).   

8. RADIOMETRIC APPLICATION EXAMPLES 
Radiometric applications that feature small diffraction corrections 
include total solar irradiance measurements.  A variety of instrument 
designs exist, many of which are discussed in Ref. [19] and Ref. [20], 
which amends geometrical layouts reported in Ref. [19].  Two examples 
are the PMO6 that is described by Brusa and Fröhlich [21] and the Total-
Irradiance Monitor (TIM) that is described by Lawrence et al.[22].  Both 
designs involve an electrical-substitution radiometer (ESR) sensing 
total optical power incident on a cavity entrance.  In an ESR, 
measurement accuracy is achieved by equating the difference in electric 
power delivered by resistive heating to the cavity required to maintain 
a constant temperature when a shutter is closed versus open to the 
optical power delivered when the shutter is open.  In this way, the 
accuracy achievable for electrical power measurements is transferred 
as much as is feasible to the optical power measurements.   

Table 1.  Parameters and diffraction effects for sample SAD 
systems  

 
Parameter Optical System 

 PMO6 TIM Blackbody 
 

sR (mm) 116.75 10  116.75 10  58.78195 

aR (mm) 4.25 3.9894 0.050 

dR (mm) 2.5 7.62 9.99871 

sd (mm) 141.5 10  141.5 10  160.0718 

dd (mm) 95.4 101.6 914.679 

    

0/ ,

5900 KT

 


 

1.0012716882 0.9995771968  

0,/ ,

(5900 K)e

  

 
 

1.0012707926 0.9995771897  

 
 PMO6 has a non-limiting aperture that is upstream from the cavity 
entrance that reduces stray light but results in excess power as reported 
in Ref. [21], whereas TIM has a limiting aperture upstream from the 
cavity that defines the total power but also leads to a diffraction-induced 
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loss in flux [22].  Laboratory-based characterization of these and other 
instruments can involve laser-based monochromatic studies such as 
those conducted in Ref. [23] and Ref. [24].  In such instances diffraction 
effects on spectral power are also pertinent.  For these instruments, we 
have re-evaluated previous diffraction effects on total power and 
spectral power at the effective wavelength for a 5900 K blackbody and 
tabulate results in Table 1.  Diffraction effects on total power and its 
effective-wavelength spectral-power proxy are both included for the 
solar instruments.  The blackbody has a variable temperature, whereas 
the sun’s surface temperature was assumed to be 5900 K.  The digits 
shown in the ratios are significant if one wants to check numerical 
methods.  Uncertainties of input parameters would also contribute to 
the uncertainty of results.  The effective wavelength is 

2(3) / (3 (4) )e c T   .  With it, the 1A  term in Eq. (39) in the 

spectral case and the 3C  term in Eq. (9) in the thermal case give rise to 

the same relative diffraction effect, as emphasized, for instance, by 
Blevin.7  The result for total power for PMO6 differs by about 0.000008 
from our previous result due to a correction in the treatment of 
extended-source effects.  Regarding the spectral power, the present 
result relies on the extended-source methodology described in 
Section 6.  The efficacy of the interpolation procedure described in 
Section 7 is illustrated in Fig. 2, where all oscillatory contributions and 
their sum are shown.  These results are based on calculations with the 
efficient contour integrals at 8 wavelengths over the range 0   mm 

to   0.00825 mm, with an accuracy of 810  of the total flux.   

 

 

Fig. 2.  Shown are b  and b  oscillatory contributions vs. wavelength for 

PMO6 (a), 1c   and 1c   contributions (b), and 2c   and 2c   contributions 

(c).  All are scaled for presentation.  The sum of all oscillatory contributions 

is also presented in panel (c).   

 

 

Fig. 3.  Relative diffraction loss multiplied by temperature for several 

temperatures larger than 50 K (points), and approximated using the leading 

term (line) and using the leading three terms (lines with points).   

 Significant diffraction corrections are typified by losses incurred 
when a cryogenic blackbody is viewed through a pinhole aperture by an 
active-cavity radiometer.  For upcoming tests in the NIST Low-
Background Infrared Radiometry (LBIR) facility [25], anticipated 
geometrical parameters are also indicated in Table 1.  Not shown are 
non-limiting baffles between the pinhole and radiometer, which should 
have a much smaller effect but could also merit attention.  In Fig. 3, we 
indicate diffraction effects on total power over a temperature range that 
brackets upcoming measurements.  Contributions of first-order and 
next-leading-order approximations are also indicated.  The 
temperature-scaled first-order effect is a constant, and the next terms 

vary as combinations of 21/ T  and 2
2[log ( / )] /e T c T .  This 

illustrates the limitations of order-by-order asymptotic expansions for 
diffraction effects as well as the efficacy of Eq. (68) to include the 
remainder term.  Reference [26] also provides an example with 
significant diffraction effects that are also strongly affected by having a 
finite size of source.  This reference also demonstrates that large 
diffraction losses can arise in for far-infrared measurements.   
 Several benefits of the work can be deduced from the above 
examples.  It is anticipated that these benefits will be helpful to many, 
the author included.  First, integration of diffraction-corrected spectral 
power over the entire Planck spectrum to obtain the diffraction-
corrected total power is obviated.  Second, the treatment of extended 
sources is possible without the need to perform integrals of oscillatory 
functions, which was not the case in Ref. [17].  Third, the calculation of 
diffraction effects for a large number of wavelengths is now possible 
with a very low computational cost.  One area of radiometry that can 
benefit from this is the calibration of filter radiometers, such as can be 
done using the methods of Ref. [23].  In that case, power-stabilized, 
wavelength-stabilized laser light can be fiber-fed into an integrating 
sphere to obtain an extended quasi-monochromatic, quasi-Lambertian 
source.  (This typically requires submerging a portion of the fiber in a 
vibrating water bath to minimize speckle.  The complex form of the 
actual in-band and out-of-band transmittance of a filter can necessitate 
detailed wavelength sampling, and the diffraction effects for such a large 
number of wavelengths is clearly in-hand thanks to the methods 
detailed in Section 7.   

9. CLOSING REMARKS 
The methods presented here for evaluating diffraction effects each have 
ranges of validity.  For large A  or small v , direct numerical methods to 

evaluate the effects are possible and numerically expedient.  At small A  
or large v , leading terms in the asymptotic expansions of ( , )BF A w , 
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( , )XF A w , ( , )BL v w  and ( , )XL v w  can be sufficiently accurate.  

Otherwise, methods presented here can be used to evaluate these 
functions.  For extended sources, integration of oscillatory terms in 

( , )BL v w  and ( , )XL v w  can be done numerically as in Eq. (3) when 

these functions oscillate slowly, or according to the methods with 
deformed contours in cases of rapid oscillations.  Likewise, repeated 
calculations for a large of number of wavelengths can be avoided in 
spectral regions that feature large v  by interpolation methods.  Hence, 

except for rare cases emphasizing edge effects in the sense of allowing 
one to have w  too close to unity, an accurate result that is analytically 

compact and/or numerically tractable can be found for single-edge 
diffraction effects in a wide variety of symmetric systems.   
 One caveat also deserves mention.  The concept of an incoherent 
Lambertian source is itself an unrealistic idealization as was noted by 
Walther [27, 28].  Carter and Wolf [29] discuss coherence properties of 
Lambertian and non-Lambertian sources, and Wolf [30] summarizes 
the interplay and tension between coherence that always exists for real 
light fields and classical radiometry, the latter being a topic, of which this 
work only addresses a subtopic, viz. diffraction corrections.  A survey of 
the studies of diffraction effects that are cited in the present work shows 
that the quantitative validity of this work is still defensible in practical 
radiometry.  In this regard, there is one very recent example [31] in 
which a laser was fiber-fed into an integrating sphere source that was 
presented to a trap detector through an intermediate aperture.  There, 
a treatment of diffraction consistent with this work was shown to 
account well for diffraction effects, even while neglecting coherence 
issues.  However, the issues raised beginning with Walther’s analysis are 
a topic of interest of which one should always be mindful, especially in 
cases of novel types of measurement.   
 
Acknowledgment. I thank T.A. Germer, T. Wong and Z.H. Levine for 
helpful comments.   

APPENDIX 
Consider a Planck source at temperature 2 / (2 )T c  , where 2c  is 

the second radiation constant.  Hence, this also defines  .  Suppose 

radiation is emitted at a point on the source and can follow various paths 
to arrive at a point on a detector.  For purposes of knowing the related 
contribution to the total irradiance at the latter point, the function  

 
4 4

1

4 2 6

( , ) [( ) ( ) ]

2 (4) / 20 (6) /

nS l l in l in

l

  

   

 
   

  
 (A1) 

helps quantify interference of two contributions to the field that traveled 
over paths with relative path length difference l .  Summation over n  

leads to the zeta function of Riemann.  If we set 2 /z l   and 

1/ (1 )zf e  , we can rewrite this as  

4

4 2 3 42
( , ) [ ( 7 12 6 ) / 6].S l z f f f f






 
      

 
 (A2) 

At small z , this becomes  

4 4 2 4( , ) 32 / (1/1440 / 6048 / 69120 ).S l z z       (A3) 

 Mellin transforms  

 
0

( , ) ( , )dl l S l   


     (A4) 

 and  

 
0

( , ) ( , )logL edl l S l l   





   (A5) 

are bounded for 1 3   .  One way to evaluate the first case 

involves replacing integration along the positive real axis with 
integration along two contours:   

0

1 1
( , ) ( , ) ( , ).

2 2
C C

dl l S l dl l S l dl l S l    


 
     (A6) 

Obviously, each contour could run from zero to  .  We place the 

branch cuts of loge l  and l  (the latter required for non-integer  ) on 

the negative real axis with 0l   and loge l  being real for 0l  .  For 

each term in ( , )S l  having a pole on the positive imaginary axis, we 

instead deform C  to begin at zero, run just above the negative real axis 

to   and along an infinitely large semicircular arc in the upper half 
plane to  .  However, the contour must also take an excursion from 
the arc to enclose the pole in a positive sense.  For each term in the sum 
with no such pole, no excursion is required.  We modify C  

correspondingly in the lower half plane.  Contributions to ( , )    from 

along the negative real axis are  

1
( , ) ( , ) cos( ) ( , ),

2

i ie e              
 

 (A7) 

contributions from arcs are zero, and contributions from poles are  
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 (A8) 

The latter involve third derivatives of l  at /2il e n  .  Equating the 

combination of the above two expressions with ( , )    gives  

3

( 1)( 2) (3 ) ( 3)
( , ) sin .

23 [1 cos( )]
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 (A9) 

Evaluating this for   approaching 0, 1 or 2, we have ( ,0) 0   , 
2( ,1) (2) / (3 )     , and ( ,2) / (3 )     .  The 2   result 

relies on (1 ) 1/ ( )O        .  Using  
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 (A10) 

and 2(1 ) 1/ (1)O        gives 3( ,0) (3) / (3 )L     , 

2( ,1) [ (2)log (2)] / (3 )L e         and 

( ,2) (2 3 2log ) / (6 )L e        . 

 Transforms  
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are bounded for 3  .  Rearranging ( , )S l  gives  
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with 3( ) ( 1) ( 2) / [96(4 ) ]          , and  
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 (A15) 

with ( ) ( 1) ( 2) / ( 2) log (2 )e              .   
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