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Abstract—In this paper, an energy-efficient strategy is
proposed for tracking a moving target in an environment
with obstacles, using a network of mobile sensors. Typically,
the most dominant sources of energy consumption in a mobile
sensor network are sensing, communication and movement.
The proposed algorithm first divides the field into a grid
of sufficiently small cells. The grid is then represented by a
graph whose edges are properly weighted to reflect the energy
consumption of sensors. The proposed technique searches for
near optimal locations for the sensors in different time instants
to route information from the target to destination, using a
shortest path algorithm. Simulations confirm the efficacy of
the proposed algorithm.

I. INTRODUCTION

Wireless sensor networks have recently emerged as an

increasingly important area of research due to their wide

range of applications such as environmental monitoring,

security surveillance, traffic management and intrusion de-

tection, to name only a few [1], [2], [3]. Target tracking

is one of the topics of interest in mobile sensor networks

(MSN), where it is desired to track a moving target by

properly positioning some or all of the sensors in the field

to create a route from the target to the destination node

(which collects information) [4]. Several sensor deployment

algorithms have recently been developed for this type of

network to tackle the target-tracking problem [5], [6].

In a practical MSN deployment algorithm, limited energy

of sensors needs to be taken into consideration [7]. The

main sources of energy consumption in a mobile sensor are

communication, sensing and movement [8]. Furthermore,

due to the distributed structure of the network, a decentral-

ized decision-making configuration is often more desirable.

This problem is addressed in [9] by considering kinematics

of the target and temporarily deactivating sensors which

are not involved in tracking process. In [10], the desired
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sensing and communication radii of sensors as well as

their locations at each instant are calculated in a network

consisting of sensors which collaboratively track a target

in such a way that the network lifetime is maximized.

The main shortcoming of the method, however, is that it

only takes the communication and sensing energies into

account (neglecting the movement energy). In [11], various

approaches are investigated for target tracking in five differ-

ent categories, namely hierarchical, tree-based, prediction-

based, and mobicast message-based tracking as well as

hybrid methods. A method for predicting target motion

using its movement history, current location, velocity and

motion direction is presented in [12].

The problem of collaborative tracking of mobile nodes

in wireless sensor networks is studied in [13], where

target tracking and node selection procedures are em-

ployed together to identify proper sensor locations and

information route for an energy-efficient tracking strategy.

In [14], an algorithm is provided to estimate the position

of the target, while optimizing the quantization level for

the minimum transmission power. A distributed energy

optimization technique is proposed in [15] for target track-

ing in wireless sensor networks, where sensor nodes are

clustered properly and the sensing area is partitioned for

parallel sensor deployment optimization. Grid exclusion

and Dijkstra’s algorithm are subsequently employed for

coverage and energy metrics, respectively. The coverage

is then maximized while minimizing energy consumption.

In [16] and [17], the authors present efficient algorithms to

maximize the lifetime of a sensor network with and without

obstacles, respectively. It is to be noted that while the

lifetime maximization and energy minimization problems

are closely related, they also have fundamental differences

(this issue has been pointed out in detail later in the paper).

In the present work, an energy-efficient algorithm is de-

veloped for target tracking in a field with obstacles using a

mobile sensor network. It is assumed that the main sources

of energy consumption in the network are communication,

sensing, and movement. First, the field is divided into a

grid, and the candidate sensor positions are calculated in

discrete time instants. A graph is subsequently derived from

this grid, and its edges are weighted properly based on the

proposed algorithm to model the energy consumption in

the network. This graph is used to find a close estimate of

the optimal path for routing information from the target to

destination. Then, the graph is redrawn in such a way that

the minimum energy problem is translated to a constrained



shortest path problem from the target to destination. This

is a well-known problem in network and routing, for which

several algorithms exist in the literature. A preliminary

version of this work has been published in [18].

The organization of the paper is as follows. In Section II,

energy Voronoi diagram is introduced and the problem

statement is provided. Section III presents a target tracking

algorithm as the main contribution of this work. Simulation

results are given in Section IV, which confirm the effec-

tiveness of the proposed technique. Finally, conclusions are

drawn in Section V.

II. PROBLEM FORMULATION

A. Energy Voronoi Diagram

Let S be a set of n sensors S1, . . . , Sn in a 2D field. For

any arbitrary point A, denote the minimum required energy

for Si to travel to point A by Emin(Si, A). In the case

where there is no obstacle in the field, in order to minimize

the movement energy, the sensor Si must move toward

point A in a straight line. In the presence of obstacles,

however, the direct path may be obstructed.

Now, it is desired to partition the field into n regions

Λ1, . . . ,Λn, such that for any arbitrary point Q in region

Λi, the sensor requiring minimum energy to travel to

point Q be Si (this implies that every region contains

only one sensor). The diagram obtained by the partitioning

described above is called the energy Voronoi diagram, and

the corresponding regions are called the energy Voronoi

regions. The mathematical characterization of each energy

Voronoi region obtained by the above partitioning is as

follows:

Λi = {Q ∈ R2|Emin(Si, Q) ≤ Emin(Sj , Q), ∀j ∈ n−{i}}
(1)

for any i ∈ n, where n := {1, 2, . . . , n}.

Definition 1. Similar to conventional Voronoi diagram, the

sensor Si and Sj (i, j ∈ n, i 6= j) in an energy Voronoi

diagram are called neighbors if Λi ∩Λj 6= ∅. The set of all

neighbors of Si, i ∈ n, is denoted by Ni and is formulated

below:

Ni = {Sj ∈ S | Λi ∩ Λj 6= ∅, ∀j ∈ n} (2)

Definition 2. In the remainder of the paper, the distance

between two points A and B is defined as the length of the

shortest path connecting these two points, and is denoted

by dA,B . Obviously, in a field without obstacles this length

is equal to the Euclidean distance.

Remark 1. Note that in the absence of obstacles, the

energy Voronoi diagram is, in fact, the same as the con-

ventional Voronoi diagram.

Fig. 1 shows the energy Voronoi diagram for a field

with obstacles. In this figure, it is assumed that the energy

required for any sensor to move to a specific point is

linearly proportional to the distance between the sensor and

that point.
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Fig. 1: An example of the energy Voronoi diagram for a group of 9
sensors in a field with obstacles.

B. Problem Statement

Consider a group of n mobile sensors S1, . . . , Sn, a fixed

access point (or destination point), and a moving target. The

objectives of this paper are described below.

Problem Definition: It is desired to develop a strategy to:

(i) monitor a moving target and send its information to the

destination point, and (ii) minimize the energy consumption

of the network. In other words, the objective is to find

proper positions for the sensors at any point in time such

that some desired specifications are satisfied, while the total

energy consumption of the sensors is minimized. Note that

limitations in the sensing and communication ranges of

the sensors are formulated as some constraints which are

taken into account in the construction of the energy digraph

introduced in the next section.

Definition 3. Throughout this paper, the nearest sensor to

point P , denoted by S′
P , is the sensor with the following

property:

Emin(S
′
P , P ) ≤ Emin(Si, P ), ∀i ∈ n

In addition, the second nearest sensor to point P , denoted

by S′′
P , is the sensor with the following properties:

Emin(S
′′
P , P ) ≥ Emin(S

′
P , P )

Emin(S
′′
P , P ) ≤ Emin(Si, P ), ∀Si 6= S′

P

For convenience of notation, in the rest of the pa-

per Emin(S
′
P , P ) and Emin(S

′′
P , P ) will be denoted by

Emin(S
′
P ) and Emin(S

′′
P ), respectively.

Assumption 1. It is assumed that the target is in a reachable

distance from the destination through the sensors at all

times. In other words, the sensors can be positioned such

that despite their sensing and communication limitations,

they can cooperatively transfer information about the target

to destination. Additionally, the nearest sensor to the target,



which is referred to as the tracking sensor, is assigned to

detect the target. This sensor is not necessarily fixed, and

may change from time to time, as the target moves. A subset

of the other sensors is used along with the tracking sensor

to route information from the target to destination.

The sensors operate collaboratively to minimize the

overall energy consumption of the network by finding the

optimal locations for them and the best routing path for

information transmission. The problem of energy-efficient

target tracking using a mobile sensor network is very

complicated in its general form. In the next section, a

strategy is presented to place the sensors in proper positions

at any time instant such that the total energy consumption of

the sensors (due to sensing, communication and movement)

is sufficiently close to its minimum value.

III. MAIN RESULTS

Consider a field with obstacles, and a group of n sen-

sors in it. The energy-efficient target monitoring problem

introduced in the preceding section cannot be solved ana-

lytically, in general. As a feasible alternative, the field is

represented by a grid whose nodes are chosen sufficiently

close to each other, such that the target and every sensor

can be assumed to be located at some node of the grid

at all times. In the rest of the paper, the nodes where

the destination and target are located at are referred to

as the destination node and target node, respectively. The

following notation and definitions will prove convenient in

the development of the main results.

Notation 1. The tracking sensor will be denoted by ST

(note that ST ∈ {S1, S2, . . . , Sn} at any time instant). In

addition, the target node and the energy Voronoi region

containing it will be denoted by PT and ΛT , respectively,

and the destination node will be denoted by PD. Note that

the destination node is fixed, but ST , PT and ΛT can change

with time.

Definition 4. Throughout this paper, any node in ΛT from

which a sensor can detect the target, is referred to as a

sensing node.

Definition 5. Given a path Π connecting the target to the

destination, any node on the path except for the target and

destination will hereafter be referred to as a regular node.

The energy digraph is introduced in the sequel, which

will be used later in the deployment strategy.

Construct a directed graph (digraph) whose vertices are

the grid nodes, and whose edges are weighted properly to

model the three sources of energy consumption, i.e. sensing,

communication and movement. In this digraph, there is an

edge from PT to Pj if and only if Pj is a sensing node. The

weight of this edge is equal to the required sensing energy

for a sensor at Pj to detect the target, and is denoted by

ωs(T, j). Fig. 2 demonstrates the directed edges connecting

PT to sensing nodes in a given energy Voronoi diagram.

In this figure, the blue square represents the target located

at PT , and the red circle around it contains all nodes from

which the target can be detected (i.e., the target is in their

sensing range). In addition, there is an edge from a node

Pi 6= PT to Pj if and only if Pj is not a sensing node

and a sensor located at Pi is able to communicate with a

sensor at Pj . The weight of this directed edge depends on

the locations of the two nodes, and is denoted by w(i, j).
The following procedure is used to determine this weight.

Fig. 2: Directed edges connecting the target to sensing nodes for a given
energy Voronoi diagram.

Case 1) Consider the case where Pi and Pj are in

different energy Voronoi regions OR Pj is the destination

node.

i) If the target and Pi are in the same region AND Pi is

not a sensing node, then:

w(i, j) = Emin(S
′′
Pi
) + ωc(i, j)

where ωc(i, j) is the communication cost from node

Pi to node Pj .

ii) If the target and Pi are in different regions OR Pi is

a sensing node, then:

w(i, j) = Emin(S
′
Pi
) + ωc(i, j)

Case 2) Consider the case where Pi and Pj are in the

same energy Voronoi region AND Pj is not the destination

node.

i) If the target and Pi are in the same region AND Pi is

not a sensing node, then:

w(i, j) = Emin(S
′′
Pi
) + ωc(i, j)

ii) If the target and Pi are in different regions, then:

w(i, j) = min[Emin(S
′
Pi
) + Emin(S

′′
Pj
), Emin(S

′
Pj
)

+Emin(S
′′
Pi
)]− Emin(S

′
Pj
) + ωc(i, j)

iii) If Pi is a sensing node, then:

w(i, j) = Emin(S
′
Pi
) + ωc(i, j)

Notice that the above weight assignment in the energy

digraph is done in such a way that the sum of the weights



Fig. 3: An illustrative example of the two cases introduced for the
energy digraph.

allocated to the edges of any arbitrary path from target

to destination is an approximation of the minimum energy

required for a subset of sensors to move to some regular

node locations and route information to the destination

node. It is desired to find the shortest weighted path

connecting the target to destination in the energy digraph,

subject to the constraint that the number of nodes in the

path is less than or equal to n. It will be shown that this

path provides a cost-effective route, which can, under some

conditions, be optimal (Theorem 3).

Fig. 3 is an illustrative example of the above cases, where

similarly to Fig. 2, the blue square represents the target

and the red circle around it shows the reachability area of

the target. Also, nodes A and B in this figure satisfy the

conditions of case 1(i). The edges CD, EF and GH satisfy

the conditions of case 1(ii). Node D (associated with the

edge CD) is the destination, and node G (associated with

the edge GH) is a sensing node. Furthermore, node E and

the target are not in the same region. The edge IJ satisfies

the conditions of case 2(i), as I is not a sensing node and

does not lie in the same region as the target. The edge KL
satisfies the condition of case 2(ii), and the nearest sensor

to K in this case is also the nearest sensor to L. Finally, M
is a sensing node and the edge MN satisfies the conditions

of case 2(iii).

Definition 6. Given a path Π = (PT , P1, P2, ..., Pm, PD)
connecting the target to destination, the minimum en-

ergy required for any group of m sensors to move to

P1, P2, ..., Pm and transmit information from the target

to destination is called the path cost, and is denoted by

C(Π). In the path cost, the amounts of energy required

for sensing the target, communicating information and

moving the sensors to designated locations will hereafter

be called path-sensing cost, path-communication cost and

path-movement cost, respectively. In addition, the sum of

the weights of the directed edges of a path Π in the energy

digraph is referred to as the path weight, and is denoted by

W (Π). Two components of the path weight are ωs(T, j)
and ωc(i, j), which will be referred to as the path-sensing

weight and path-communication weight, respectively, and

the remaining weight will be called the path-movement

weight.

Definition 7. Consider an energy digraph with a path

consisting of at most n nodes, such that there exists a

group of sensors which the cost of moving them to these

nodes and establishing an information link from the target

to destination is minimum, among all possible choices of

paths and sensors. This path will be referred to as the

optimal path, and is denoted by Π∗ [18].

Remark 2. To find the shortest path from the target node

to the destination node in an energy digraph, one can use an

efficient routing method such as Dijkstra’s algorithm. Note

that for the case where the number of nodes in the shortest

path is greater than n, one can use a constrained shortest

path first (CSPF) algorithm, which is normally slower than

its unconstrained counterpart [19].

Remark 3. As noted in the weight assignment procedure,

ωc(i, j) is the communication cost from node Pi to node

Pj . Therefore, after finding the shortest path from the target

to destination, the sum of the communication costs of

the edges in a path is, in fact, the path-communication

cost. Similarly, Emin(.) is the energy consumption due

to movement, and consequently sum of the corresponding

terms in a path reflects the path-movement cost. Finally,

note that since only the tracking sensor consumes sensing

energy, the term ωs(T, j) only appears in edges from the

target to sensing nodes.

Theorem 1. For any path Π from the target to destination

in an energy digraph, the relation W (Π) ≤ C(Π) holds.

Proof: Assume that the path Π passes through the

regions Λ1,Λ2, ...,Λκ, and that the path has ni nodes in

region Λi, i ∈ {1, 2, ..., κ}. Partition Π into κ sub-paths

as follows:

Π1 = (PT , P
1
1 , P

1
2 , ..., P

1
n1
, P 2

1 )
Π2 = (P 2

1 , P
2
2 , ..., P

2
n2
, P 3

1 )
...

Πκ = (Pκ
1 , P

κ
2 , ..., P

κ
nκ

, PD)

In any fixed path in the energy digraph, the path-

communication cost and path-sensing cost are equal to

the path-communication weight and path-sensing weight,

respectively. Thus, to prove the theorem, it suffices to show

that the path-movement cost is greater than or equal to the

path-movement weight. To this end, it will be shown in the

sequel that the path-movement weight of the sub-path Πi

is less than or equal to the corresponding path-movement



cost, for any i ∈ {1, 2, ..., κ}.

If Λi contains exactly one node, then the sub-path Πi

contains only the edge (P i
1, P

i+1
1 ) (note that Pκ+1

1 is, in

fact, PD). In the weight assigned to this edge in the energy

digraph, the component corresponding to the movement

energy is Emin(S
′
P i

1

) (which is the energy required to move

to the location of node P i
1, the nearest sensor to it). Clearly,

the minimum energy required to move a sensor to P i
1 is

equal to Emin(S
′
P i

1

) as well (note that the sensor assigned

to move to a node is not necessarily its nearest sensor

because that may be the nearest sensor to multiple nodes in

the path). Therefore, in this case the path-movement weight

of sub-path Πi is less than or equal to the path-movement

cost.

If Λi contains more than one node, there will be two

possibilities as follows:

Case 1: i = 1 (the region contains the target). In this

case, by assumption, the nearest sensor to the nodes of this

region is assigned to detect the target, and hence cannot be

assigned to another node simultaneously. As a result, the

cost of moving n1 sensors to n1 nodes of the sub-path Π1

is greater than or equal to Y defined below:

Y = Emin(S
′
P 1

1

) +

n1∑

k=2

Emin(S
′′
P 1

k
)

On the other hand, the path-movement weight of the sub-

path Π1 in the energy digraph is:

X = Emin(S
′
P 1

1

) +

n1∑

k=2

Emin(S
′′
P 1

k
)

This means that the path-movement weight of Π1 is less

than or equal to its path-movement cost.

Case 2: i 6= 1. In this case, the path-movement weight

of the sub-path Πi in the energy digraph is:

X =

ni−1∑

k=1

{min[Emin(S
′
P i

k

) + Emin(S
′′
P i

k+1

), Emin(S
′
P i

k+1

)

+ Emin(S
′′
P i

k

)]− Emin(S
′
P i

k+1

)}+ Emin(S
′
P i

ni

)

It is concluded from the properties of the energy Voronoi

diagram that the nearest sensor to any node of the sub-path

Πi is the nearest sensor to all other nodes of this sub-path

as well. However, this sensor can move to only one node;

therefore, the cost of moving ni sensors to the ni nodes of

the path which lie in region Λi is greater than or equal to:

Y = Emin(S
′
P i

j
) +

ni∑

k=1,k 6=j

Emin(S
′′
P i

k

)

for any j ∈ {1, 2, ..., ni}. Now, consider the following

relations:

X1=

j−1∑

k=1

{[Emin(S
′
P i

k+1

) + Emin(S
′′
P i

k

)]− Emin(S
′
P i

k+1

)}

≥

j−1∑

k=1

{min[Emin(S
′
P i

k

) + Emin(S
′′
P i

k+1

), Emin(S
′
P i

k+1

)]

+Emin(S
′′
P i

k

)− Emin(S
′
P i

k+1

)} (3)

X2=

ni−1∑

k=j

{[Emin(S
′
P i

k

) + Emin(S
′′
P i

k+1

)]− Emin(S
′
P i

k+1

)}

+Emin(S
′
P i

ni

)

≥
ni−1∑

k=j

{min[Emin(S
′
P i

k

) + Emin(S
′′
P i

k+1

), Emin(S
′
P i

k+1

)

+Emin(S
′′
P i

k

)]− Emin(S
′
P i

k+1

)}+ Emin(S
′
P i

ni

)

(4)

By expanding and simplifying (3) and (4), one can

conclude that:

Y =X1 +X2

≥
ni−1∑

k=1

{min[Emin(S
′
P i

k

) + Emin(S
′′
P i

k+1

), Emin(S
′
P i

k+1

)

+Emin(S
′′
P i

k

)]− Emin(S
′
P i

k+1

)}+ Emin(S
′
P i

ni

) = X

(5)

Since Y is less than or equal to the path-movement cost

of the sub-path Πi, it results from the above relation that

the path-movement weight of this sub-path is less than or

equal to its path-movement cost.

On the other hand, the path-movement weight and path-

movement cost of Π are, respectively, the sum of the path-

movement weights and path-movement costs of its sub-

paths. It can be concluded from this fact and the results

of the above two cases that the path-movement weight of

the path is less than or equal to its path-movement cost.

This completes the proof.

Theorem 2. Consider a path Π from the target to destina-

tion such that:

i) it has at most two regular nodes in each energy

Voronoi region it passes through, and

ii) if a region contains exactly two regular nodes of the

path, then Π does not pass through any other region

containing the second nearest sensor to these two

nodes.

Then the path cost and path weight of Π are equal.

Proof: Since the path-communication and path-

sensing costs for any fixed path are equal to the path-

communication and path-sensing weights, respectively, it

suffices to show that the path-movement cost and path-

movement weight are equal. To this end, consider the



following three cases:

Case 1: An energy Voronoi region containing only one

regular node. To minimize the movement energy in this

case, one can assign the nearest sensor of this node to it.

From the weight-assignment rule in the energy digraph, it

follows that the path-movement cost and path-movement

weight are equal in this case.

Case 2: An energy Voronoi region containing PT (target)

as well as two regular nodes. In this case, the sum of the

movement weights of the corresponding edges is:

Emin(S
′
Pi
) + Emin(S

′′
Pj
) (6)

where Pi and Pj are the two regular nodes in the above

region. Since Π does not pass through the region containing

the second nearest sensor to Pj , thus (6) gives the minimum

energy required to place two sensors in Pi and Pj .

Case 3: An energy Voronoi region containing two regular

nodes, but not PT . Denote the two regular nodes in this

region by Pi and Pj . Similar to the previous case, it results

from the weight-assignment rule in the energy digraph that

the sum of the movement weights of the edge from Pi to

Pj and the edge coming out of Pj is given by:

Xk =min[Emin(S
′
Pi
) + Emin(S

′′
Pj
), Emin(S

′
Pj
)

+Emin(S
′′
Pi
)]− Emin(S

′
Pj
) + Emin(S

′
Pj
)

=min[Emin(S
′
Pi
) + Emin(S

′′
Pj
), Emin(S

′
Pj
)

+Emin(S
′′
Pi
)] (7)

Since Π does not pass through the energy Voronoi regions

containing the second nearest sensors to Pi and Pj (accord-

ing to the statement of the theorem), the above value is the

minimum energy required to place the sensors in these two

nodes.

Since the above discussions apply to every energy

Voronoi region, one can conclude that the path-movement

cost and path-movement weight are equal, which implies

that the path cost and path weight of Π are also equal, as

pointed out earlier.

Corollary 1. Consider a path Π connecting the target to

destination in a given energy digraph. If Π has exactly one

node in any region it passes through, then the path cost

and path weight of Π are equal.

Proof: The proof follows immediately from Theo-

rem 2, as a special case.

Theorem 3. Assume the shortest path Π̄ from the target

to destination in a given energy digraph has the following

properties:

i) it has at most two regular nodes in each energy

Voronoi region it passes through, and

ii) if Λk contains exactly two regular nodes, then Π̄
does not pass through any other region containing the

second nearest sensor to these two nodes.

Then Π̄ is the optimal path.

Proof: Suppose the shortest path Π̄ and the optimal

path Π∗ are not the same. Then:

C(Π∗) < C(Π̄) (8)

From Theorem 1:

W (Π∗) ≤ C(Π∗) (9)

Also, from Theorem 2:

W (Π̄) = C(Π̄) (10)

Combining the three relations given above, one arrives at

the following inequality:

W (Π∗) < W (Π̄)

which contradicts the fact that Π̄ is the shortest path. Thus,

Π̄ is the same as Π∗.

The following corollary follows directly from Theorem 3.

Corollary 2. If the shortest path Π̄ connecting the target to

destination in the energy digraph has exactly one regular

node in each energy Voronoi region it passes through, then

Π̄ is, in fact, the optimal path.

It is worth mentioning that the energy Voronoi diagram

plays a key role in developing the algorithm. In fact, the

weight assignment procedure, which is one of the most

important parts of the algorithm, highly depends on the

energy Voronoi regions. Also, by partitioning the field into

n energy Voronoi regions based on equation (1), the nearest

sensor (in terms of energy consumption) to the points of any

region is identified. Hence, after finding the shortest path

from target to destination, the nearest sensors can move

to the corresponding shortest path nodes. Note that if an

energy Voronoi region includes exactly one node of the

shortest path, then the corresponding sensor of that region is

assigned to move to that node. Otherwise, if it includes two

nodes of the shortest path, then the corresponding sensor

of the region is assigned to move to the nearest node, and

the second nearest sensor to the remaining node is assigned

to move there.

Remark 4. It is to be noted that weight assignment in the

energy digraph is a challenging problem. In fact, the pro-

posed weight assignment procedure in the energy digraph

is an important (and novel) part of the algorithm, and is

carried out in such a way that it models the three sources

of energy consumption (i.e. sensing, communication and

movement). It is also carried out such that not only is

the path weight always less than or equal to the path cost

for any arbitrary path, but the shortest path from target

to destination generically satisfies the conditions of Theo-

rem 3, and consequently it is the optimal path too. In other

words, using the proposed weight assignment procedure,

the problem of finding the optimal path is simplified to

finding the shortest path from the target to destination.

Remark 5. To the best of the authors’ knowledge, the



problem of target tracking using a wireless sensor network

with a sufficiently accurate energy-consumption model is

not studied in the general form in a continuous-time setup.

In fact, using the strategy proposed in this work, one can

divide the field into a grid in order to transform the problem

to the discrete-time domain, where efficient techniques are

available to solve it. One can use a larger grid (smaller cells)

which leads to a more accurate solution to the underlying

problem at the expense of higher computational complexity.

The proposed strategy can also be very effective in dealing

with constrained trajectory tracking problems (e.g., involv-

ing obstacle avoidance constraints).

Remark 6. The proposed method transforms a highly com-

plex problem to a series of shortest path problems which

can be solved efficiently. To clarify this point, consider a

field with 16 sensors and 900 nodes (similar to Example

1). In order to find the optimal sensor configuration using

a brute force method (instead of using the proposed ap-

proach) in this case, one needs to check all combinations

of 16 out of 900 nodes in each iteration (more than 7×1033

combinations), which is not possible practically.

The weight-assignment and the shortest-path procedures

are the most complex parts of the proposed algorithm.

Given a field of size L × W , let δ denote the distance

between every pair of neighboring nodes in the grid. The

complexity of the procedure for determining the weight of

the edges connecting every pair of nodes in the weight-

assignment technique is of order O(1/δ4). Different meth-

ods can be used, however, to reduce the execution time

significantly. For instance, if the communication range of

sensors is Rc, then for every node in the grid one needs

to check only the nodes whose distance from it is less

than Rc (to simplify the implementation, one can choose a

2Rc × 2Rc square centered at that particular node). This

would reduce the computational complexity, as Rc/δ is

typically smaller than L/δ and W/δ. Note also that these

computations can be performed in parallel for all edges, to

further reduce the execution time.

The complexity of the shortest path algorithm, on the

other hand, is of order O(E+V logV ) [20], where V and E
are the number of vertices and edges of the energy digraph,

respectively. Following a discussion similar to that given

in the preceding paragraph, the complexity of the shortest

path algorithm is of order O(1/δ4), approximately. Thus,

the overall order of complexity of the proposed algorithm

is about O(1/δ4).

Since the complexity of the algorithm is highly depen-

dent on the fineness of the grid, the number of grid nodes

should be chosen carefully, taking into account the tradeoff

between the computational complexity of the algorithm

and the accuracy of the results. In summary, with a finer

grid (higher resolution) the sensors can be placed closer to

the optimal locations at the cost of higher computational

complexity.

Remark 7. Although the algorithm proposed in this paper

is cost-efficient in terms of energy consumption, it may

have some practical limitations in terms of processing

capability of sensors. To address this limitation, some of

the computations (e.g., finding ωc and the distance between

different pairs of nodes, as defined in Definition 2) can be

performed off-line. On the other hand, the shortest path

subroutine, which is an important part of the proposed strat-

egy, can be handled efficiently using the Dijkstra algorithm.

Furthermore, there is a trade-off between the accuracy and

computational complexity of the algorithm, as noted earlier,

which needs to be taken into consideration when choosing

the size of the grid.

To perform the proposed algorithm, each sensor needs

to know the information about the positions of the other

sensors, as well as the position of the target. The destination

node is usually equipped with a transmitter capable of

sharing the information with other sensors, and hence the

required information is transmitted to all sensors as soon

as the destination node receives it. Assume at time ti
the destination node has information about the target and

all sensors (and subsequently all sensors also have this

information). At time interval [ti, ti + ∆T ] the positions

of the target and the sensors collaborating to track it

change. Since a unidirectional multihop communication

link is available from the target to destination through

the collaborating sensors, information about the target and

these sensors can be transferred to the destination. On the

other hand, the position of any sensor that is not involved

in the communication link from the target to destination

does not change in the above time interval, and hence the

destination node still has this information. As a result, the

destination node has all the required information at time

ti+1, and consequently could process it and send the results

to all sensors.

IV. SIMULATION RESULTS

In this section, simulations are performed using MAT-

LAB to test the proposed algorithm. All the parameters

in the simulations (the size of the field, the number of

sensors as well as their sensing and communication ranges)

are chosen close to the ones used in the literature [21],

[22], [23], [24], [25]). The chosen values are also consis-

tent with existing sensor prototypes such as Smart Dust

(University of California, Berkeley), CTOS dust, and Wins

(Rockwell) [26]. Also, the value chosen for the coefficient

β which specifies the movement energy consumption per

unit distance (and highly depends on the friction factor of

the surface on which the sensor is moving) is similar to

that used in [27], [28]. All other coefficients corresponding

to the communication model (α and λ) are similar to those

in [28].

In the first three examples of this section, a 30m ×
30m rectangular field with obstacles is considered, and



the field is divided into a 30 × 30 grid. The effect of

obstacles on sensing, communication and movement of

the sensors can be considered using several models. For

example, they can attenuate electromagnetic sensing and

communication signals or can entirely block them, thus

preventing the sensors from communicating and sensing

in specific directions. In this section, it is assumed that

any pair of nodes whose line of sight is blocked by an

obstacle cannot communicate with each other. Moreover, if

the line of sight from the target to a sensor is blocked by

an obstacle, the target cannot be detected by that sensor.

Other models for the effect of obstacles can also be used

in the proposed algorithm.

Example 1. As the first example, consider 16 identical sen-

sors in the field. The network is aimed to track a target with

an unpredictable movement pattern, by routing information

from it to the destination node. The communication and

sensing ranges are assumed to be 10m and 1.5m, respec-

tively, for all sensors. Let also the respective movement,

communication, and sensing energy consumptions be:

Emin(Si, A) = β × dSi,A, ωc(i, j) = α× dλPi,Pj

ωs(T, j) = θ × dγPT ,Pj

where the constant coefficients in the above relations are

α = 10−7, β = 7.54, θ = 0.1, λ = 2, and γ = 2. Moreover,

dPi,Pj
is the distance between nodes Pi and Pj as specified

in Definition 2. Assume that the target moves randomly

from one node to another within the interval [−7m, 7m]
in both horizontal and vertical directions. The proposed

technique is used to determine the target-to-destination

route and the new locations of the sensors for the next

time instant. Note that data is assumed to be processed in

discrete time instants, where the corresponding time interval

is chosen based on the target’s movement characteristics

such as velocity.

Let initially the sensors be distributed randomly with a

uniform distribution along the horizontal and vertical axes.

Let also the destination be located at the origin, and assume

that the sensors’ maximum velocity is 0.5m

s
. Thus, in order

to maintain the connectivity of a route from the target to

destination, every time step is assumed to be 20s. Fig. 4

illustrates the locations of the target (black square) and

sensors as well as the shortest path between the target and

destination (blue lines) for three consecutive steps. Green

lines show the movement of the sensors from their previous

locations to their current positions whenever they need to

move. Furthermore, the previous locations of the sensors

are shown by asterisks, while the present locations of the

sensors on the shortest path are depicted by small circles.

A comparison of the network energy consumption under

the method proposed in this paper with the one presented

in [16] (which, similar to the proposed method, considers

movement, communication and sensing as the dominant

energy consumption sources for maximizing the life-span

of the network) is provided in Fig. 5. This figure shows the

sum of the residual energies of all sensors versus time in

the proposed minimum energy consumption (solid curve)

and that in the maximum life-span strategy in [16] (dotted

curve). It can be observed from this figure that after 2720s,

the sum of the residual energies of the sensors in the

proposed method is 71% greater than that in the maximum

life-span strategy.
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Fig. 5: The total residual energy of all sensors in Example 1.
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Fig. 7: The total residual energy of all sensors in Example 2.

Example 2. In this example, the performance of the

proposed algorithm is evaluated with a higher number of

sensors. Consider 30 sensors with the same specifications

as in the previous example. The simulation results for this

case are given in Fig. 6, where it can be observed that

usually not many sensors other than the one assigned to

detect the target are required to move under the proposed

technique. This is not surprising, as the link from the target

to destination can be established through different routes,

and hence there is no need to move the sensors in order to

track the target (note that the movement energy is typically

greater than sensing and communication energies). It can

be observed from Fig. 7 that after 6780s, the sum of the

residual energies of the sensors in the proposed method is

43% greater than that in the maximum life-span strategy.
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Fig. 4: Snapshots of the network configuration obtained by the proposed technique for 16 sensors in three consecutive steps of Example 1: (a) 22nd

step; (b) 23rd step, and (c) 24th step.
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Fig. 6: Snapshots of the network configuration obtained by the proposed technique for 30 sensors in three consecutive steps of Example 2: (a) 28th

step; (b) 29th step, and (c) 30th step.
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Fig. 8: Snapshots of the network configuration obtained by the proposed technique for 16 sensors in three consecutive steps of Example 3: (a) 89th

step; (b) 90th step, and (c) 91st step.
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Fig. 9: Snapshots of the network configuration obtained by the proposed technique for 30 sensors in three consecutive steps of Example 3: (a) 55th

step; (b) 56th step, and (c) 57th step.
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Fig. 10: The total residual energy of all sensors in Example 3 for (a) 16 sensors, and (b) 30 sensors.

Example 3. In this example, two different sensor configu-

rations and a different structure for the obstacles are consid-

ered in the field. The sensor specifications are the same as

the previous examples. Figs. 8 and 9 show the field with 16

and 30 sensors, respectively, in three consecutive snapshots

of the network, confirming the results discussed so far.

Fig. 10, on the other hand, demonstrates that the algorithm

proposed in this paper outperforms the one in [16] by 67%

and 22% for 16 and 30 sensors, respectively, as far as

the network energy consumption is concerned. Simulation

results show that in most cases (and different settings), the

shortest path obtained using the proposed algorithm satisfies

the conditions of Theorem 3, which means it is the optimal

path as well.

Example 4. In this example, the size of the field is

assumed to be the same as the previous example, but no

obstacle exists in the field. The chosen route and sensors

for information transmission from the target to destination

are depicted for 16 and 30 sensors in Figs. 11 and 12,

respectively, for three different snapshots. Then in Fig. 13,

the results obtained using the proposed algorithm in this

case are compared to those obtained by using the method

in [17] which maximizes the life-span of the network when

there is no obstacles in the field. It can be seen from

Fig. 13(a) that at t = 2620s, the sum of the residual

energies of the sensors under the proposed technique is 80%

greater than that under the maximum life-span strategy.

Furthermore, Fig. 13(b) shows that the proposed algorithm

outperforms the algorithm in [17] by more than 60% after

t = 2840s.

Remark 8. The simulation results provided in this section

demonstrate that the effectiveness of the proposed algorithm

in finding the optimal path highly depends on the number of

sensors as well as their configuration, their communication

and sensing ranges, and the configuration of obstacles.

Simulations also show that in most configurations the
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Fig. 11: Snapshots of the network configuration obtained by the proposed technique for 16 sensors in three consecutive steps of Example 4: (a) 70th

step; (b) 71st step, and (c) 72nd step.
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Fig. 12: Snapshots of the network configuration obtained by the proposed technique for 30 sensors in three consecutive steps of Example 4: (a) 49th

step; (b) 50th step, and (c) 51st step.
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Fig. 13: The total residual energy of all sensors in Example 4 for (a) 16 sensors, and (b) 30 sensors.



shortest path found by the proposed algorithm is the optimal

path.

Example 5. In this example, the same setting as Example 1

is used to demonstrate the robustness and effectiveness

of the algorithm. The simulations are repeated with 20

different random sensor deployments. Fig. 14 shows the

minimum, maximum, and average values of the total resid-

ual energy over all 20 simulations in each iteration (for

the first 100 iterations). It can be observed from this figure

that the proposed algorithm is robust, and the results are

in a close neighborhood of the average value. Note that

in all iterations the shortest path satisfies the conditions of

Theorem 3, and therefore, it is the optimal path too.
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Fig. 14: The average, minimum, and maximum of the total residual
energy of the network for 20 different random deployments of the

sensors.

Example 6. In this example, the performance of the

proposed algorithm is compared with the technique given

in [28], where a set of mobile sensors operate collabora-

tively to transmit information from multiple sources (whose

locations are fixed) to a designated sink. The authors in [28]

consider both movement and communication as sources

of energy consumption. For this comparison, 12 sensors

are considered with initial energy of 800J. It is worth

mentioning that in order to compare these two algorithms,

the problem is solved using the method in [28]. Then,

after relocating the sensors and calculating their residual

energies and also taking the new location of the target into

consideration, the problem is solved again using the same

algorithm (this is how the method in [28] is used to track

a moving source or target). Fig. 15 shows the remaining

energy of individual sensors in the network obtained by

using the method proposed in this paper (Fig. 15(b)) as

well as [28] (Fig. 15(a)). In addition, Fig. 16 shows the

total residual energy of the network for 100 iterations under

both methods. These figures show that the method provided

in the present work outperforms the one in [28] as under

the proposed method the remaining energy of the sensors

after 100 iterations is greater than that under the method

in [28]. Note that due to the efficiency of the algorithm,

the total residual energy of the network under the proposed

method drops very slightly (from 9600J to 9542J). As it

can be seen from Fig. 15(b), the energy of one sensor

is dropped in iterations 58 to 64. The reason is that in

those iterations the sensor positions and target movement

are such that this sensor (which is assigned as the tracking

sensor) should move to track the target, and consequently

consumes energy due to movement in addition to sensing

and communication.

Fig. 16: The total residual energy of the network after 100 iterations
under the proposed method (solid curve) and the one in [28] (dashed

curve).

Furthermore, the method proposed in this paper has the

following advantages compared to [28]:

• In [28], the authors assume that the communication

graph of the network does not change if the sensors

change their locations. As stated in [28], this is an

acceptable assumption when the communication range

of the sensors is comparable to the size of the field.

The algorithm presented in this paper, however, tackles

the problem in the most general form without such a

restrictive assumption.

• The execution time of the proposed method is typically

less than the one in [28]. In fact, the authors in [28]

formulate an optimization problem and solve it using

a method which includes two nested loops. As noted

in [28], due to these nested loops, the algorithm has

a long execution time. Note that this optimization

problem must be solved in every time step if it is

aimed to track a moving target.

• The proposed method can find the optimal route in the

presence of obstacles, while the method in [28] is only

for an obstacle-free environment.

V. CONCLUSIONS

A novel energy-efficient tracking technique is proposed

in this paper for wireless sensor networks in the presence

of obstacles. The field is first divided into a grid, and is

then converted to a graph. Proper weights are subsequently

assigned to the edges of the graph to efficiently model the

energy consumption due to sensing, communication and

movement, as the main sources of energy expenditure in
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Fig. 15: The residual energy of individual sensors in Example 6 after 100 iterations under: (a) the method in [28], and (b) the proposed method.

this type of network. The problem of finding a proper route

and selecting the corresponding sensor locations for energy-

efficient tracking is translated to the well-known shortest-

path problem by partitioning the field into energy Voronoi

regions and considering different network configurations.

Simulations demonstrate the efficacy of the proposed track-

ing strategy and its superior performance compared to other

methods. As future work, one can develop a distributed

counterpart of the proposed scheme, which would be more

desirable in many applications due to reduced information

exchange requirement and higher reliability (at the cost of

higher amount of computations for each sensor).
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