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Abstract—Mobile sensor networking technology has attracted
considerable attention in various research communities in recent
years due to their widespread applications in civilian and military
environments. One objective when using mobile sensors is to
obtain maximum field coverage by properly deploying sensor
nodes. In many real-world applications a priori knowledge about
the best deployment position for the sensors is not available.
However, the motion capability of the sensors could allow each
node to adjust its position (i.e. relocate) so that a better (and
ultimately maximal) coverage is achieved. In this paper, a
novel autonomous joint sensing range and relocation control
algorithm is presented that achieves improved coverage and
network lifetime at the same time. In the proposed algorithm, the
sensing range of each sensor is adjusted iteratively based on its
residual energy. At the same time, the sensor is directed to move
within its corresponding multiplicatively weighted Voronoi (MW-
Voronoi) region to ultimately increase sensing coverage in the
field. Simulation results demonstrate the efficacy of the technique.

I. INTRODUCTION

Large networks of mobile sensor devices, each capable
of a combination of sensing, computing and communica-
tion are predicted to provide an unprecedented fine-grained
interface between the physical and virtual worlds. The use
of such networks of embedded systems could well dwarf
previous milestones in the information technology revolution
with major impact on the consumer electronics market. One
vision for mobile wireless sensor networks involves end-users
buying collection of sensor nodes, powering them up, and
spreading them across the desired environment. The nodes
then automatically form a network, relocate autonomously to
better positions for optimal network operation, sense their
environment, and report readings back to a central location
for further processing or decision making.
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Recent developments in micro-electro-mechanical systems
(MEMS) technology have provided us with a wealth of in-
expensive, customizable, embedded sensor systems capable
of wireless communication among each other. As a result
of these developments, a broad spectrum of sensor network
applications is currently being investigated. These include
environmental monitoring, civil structure, health monitoring,
industrial process monitoring and military and defense related
applications [1]–[10].

A mobile sensor network (MSN) is typically comprised
of wireless mobile nodes equipped with battery powered
sensors. Each node in a mobile sensor network usually has
limited mobility and data processing capability. Limitations
on the physical resources of each individual node e.g. energy
consumption, bandwidth and mobility make optimization of
the network performance a critical condition in ability of the
network to complete its mission. In addition to the limited
resources and capabilities, lack of centralized control, and
dynamic and unpredictable nature of the network and the
environment contribute to challenges in the performance opti-
mization and evaluation of such networks and their interaction
with their surrounding environment.

With the wide spectrum of application for sensor networks,
mobility adds another dimension of flexibility and at the same
time complexity in the design of such networks. Despite
this complexity, mobility will open the door to a variety of
pervasive applications for autonomous sensor networks and
smart environments. For example, optimal autonomous de-
ployment of mobile sensor nodes in constantly changing radio
environments and the relevant possible trade-offs between
coverage, connectivity, information sensing, as well as network
lifetime and maintenance issues have fundamental technology
impact on mass commercialization of such networks.

In the MSN coverage problem, the objective is to obtain
maximum field coverage by properly deploying sensor nodes.
In many real-world applications a priori knowledge about
the best deployment position for the sensors is not available.
However, the motion capability of the sensors potentially
allows each node to adjust its position (i.e. relocate) so that a
better (and ultimately maximal) coverage is achieved.

This relocation ability of the nodes in a MSN creates
new possibilities for intelligent control of their individual
motion in order to optimize the performance of the whole
network. However, mobility could add additional burden to
an already scarce resource in such networks, i.e. energy. For
example, in the coverage problem, relocating each node to



an appropriate position could lead to a much better global
coverage throughout the field by the network. However, this
comes at the cost of higher energy consumption, and since
each node has limited amount of battery power, excessive
movements for a node could deplete its remaining energy
supply faster. This, in turn, results in an early termination of
its sensing function, hence reducing the overall covered area.
Therefore, relocation of nodes in a mobile sensor network
has to be done very judiciously. Other than node’s position
in the field, sensing range of each sensor directly affects
the network coverage. However, larger sensing range requires
higher energy consumption. Any practical relocation strategy
for providing maximal field coverage by a mobile sensor
network should take energy limitation of individual sensors
into consideration. In fact, the solution should strive for
maximal coverage while ensuring maximum network lifetime.
In addition, it is desirable for the relocation strategy to be
autonomous and have a decentralized structure so that each
sensor can make its decision without much communication
overhead.

In recent years, there has been a burst of research activities
in mobile sensor networking. This research has been mostly
concentrated on potential architectures, lacking several funda-
mental technology issues and specifically potential advantages
of position control for mobile nodes.

A Voronoi-based approach [11] is presented for network
coverage in a MSN, which does not require any global location
assurance condition for the sensors. Fang et al [12] proposed
an energy-efficient cooperative communication technique for
improving data transmission in wireless sensor networks. The
scheme utilizes the overhearing capability of the nodes and can
decrease the number of transmissions times. An algorithm [13]
is proposed to monitor an environmental boundary with mo-
bile agents, where the boundary is optimally approximated
with a polygon. Hong et al [14] proposed a localization
algorithm which has an indefinite traveling direction and can
estimate positions by a small number of anchors. Lee et
al [15] introduced an approach for solving the energy-efficient
coverage of wireless sensor networks using an ant colony
optimization algorithm. Kwok et al [16] provided a gradient-
descent coverage algorithm using the Delaunay graph. A
multi-objective algorithm [17] is proposed for sensor deploy-
ment and power assignment. The algorithm decomposes the
optimization problem into a number of scalar single-objective
subproblems, which are solved simultaneously. In [18], [19]
cost-effective resource management techniques are designed
for prolonging network lifetime. Kaur et al [20] proposed
a cluster-based technique for increasing the lifetime of the
wireless sensor networks. The approach is particularly very
effective for heterogeneous networks.

Cost-effective resource management techniques [21], [22]
are designed for prolonging network lifetime. Cortes et al [23]
developed coordination algorithms to increase coverage, and
also provide a performance analysis using a class of aggregate
objective functions. Zhang et al [24] proposed a novel local-
ization technique for a network of wireless sensors in a noisy

environment and in the presence of obstacles. The scheme is
distributed and range-independent, and is efficient in terms of
energy consumption and computational complexity.

In this paper, a joint sensing range and relocation control
strategy is introduced that leads to better overall coverage
while maximizing the network lifetime. The sensors move-
ment adjustments are iteratively calculated. At each iteration,
sensors also adjust their sensing ranges based on their residual
energies. Every sensor then moves in a direction that leads to
a larger covered area. To accomplish this, the multiplicatively
weighted Voronoi (MW-Voronoi) diagram (see Appendix) is
used to find the coverage gaps. A weight proportional to the
sensing radius is assigned to each sensing node [25], and the
sensor relocates to a new location only if (i) it has sufficient
energy to move to the new location, and (ii) the covered area
in its new location is larger. If any one of these conditions is
not met, then the senor remains in its current position. It is
shown that the proposed algorithm increases the covered area
while maximizing network lifetime.

The organization of the remainder of the paper is as
follows. The problem is formally introduced in Section II,
along with our assumptions and some useful definitions. The
main contributions of the paper are presented in Section III,
where a novel algorithm for efficient sensor deployment is
presented. Simulations are given in Section IV, and finally the
conclusions of the work are summarized in Section V.

II. PROBLEM STATEMENT

Given a group of n nonidentical mobile sensors in a flat
field, let the position of each sensor be represented by a node
with a weight equal to its sensing range. The sensors are
randomly distributed in a 2D field, and the position of sensor
i is denoted by Pi, for any i ∈ n.

One of the common design specifications in any sensor
network is energy efficiency [26]. It is known that power
consumption of a mobile sensor is mainly due to sensing,
communication, and movement. Note that a signal can be
transmitted from node i to node j if and only if the corre-
sponding signal-to-interference-plus-noise ratio SINR exceeds
certain threshold χ. This can be mathematically expressed as:

SINRij =
Pijξij

ηj +
∑

(n,k)̸=(i,j),n̸=i,j Pnkξnj
> χ (1)

where Pij is the power required to transmit information from
node i to node j, ξij is the propagation path loss from node i
to node j,

∑
(n,k) ̸=(i,j),n̸=i,j Pnkξnj is the overall interference

power, and ηj is the noise power at node j. For simplicity,
assume that the interference power is negligible, and that the
noise power ηj is equal to 1, for all j ∈ n. Then, using (1) the
following minimum power consumption by node i is obtained
for direct communication with node j:

Pij =
χ

ξij

The path loss is inversely proportional to some power of the
distance d between nodes i and j, i.e. dγ . The power exponent



γ is typically between 2 and 4, and is closer to 4 for low-lying
antenna and near-ground channels, as in most sensor network
applications [27], [28]. The communication radius of sensor i
at time instant t, denoted by Rci(t), is equal to the radius of
the largest circle around the location of the i-th sensor Pi(t),
such that the corresponding SINR from Pi(t) to any point
inside the circle is greater than the threshold χ. On the other
hand, the power required for sensing is typically greater than
the communication power. This power is also proportional to
dλ, where d is distance and λ ≥ 2. For example in a passive
RFID system, to sense an RFID tag a signal is transmitted
from the RFID reader to the object containing the tag and
reflected back to the sensor. As a result, the path loss for
sensing an object that is away from the reader by distance d
is inversely proportional to d2γ [29]. Therefore, the minimum
power consumption by the i-th sensor such that any point
inside its sensing range Ri can be sensed is proportional to
Rλ

i . On the other hand, an energy consumption model for
sensor relocation is given by

Ereloc
i (Pi, Ṕi) = η

˜́
PiPi (2)

where η is a constant, Ṕi is the i-th sensor’s position after
relocation, and ˜́PiPi is its traveling distance [30]. In this paper,
it is assumed that the sensors can adjust their sensing ranges.
Moreover, a sensors consume energy for stopping or starting to
move (the latter is because of static friction). It is assumed in
this work that the energy required for stopping a mobile sensor
and then overcoming its static friction after a complete stop
is equivalent to the energy required for continuously moving
the sensor 1m [26].

While maximizing coverage area is an important objective
in a MSN, in most applications it is also desirable to maximize
the lifetime of the sensors and consequently increase the
durability of the entire network. Let the sensing range of
sensor i at time instant t be a circle of radius Ri(t), centered at
the position of that sensor. It is desired to move the sensors and
place them in proper locations in the field and adjust their sens-
ing ranges using a distributed deployment strategy such that
while the covered area increases, the lifetime of the network
is also increased as much as possible. Different definitions
are provided for network lifetime in the literature [31], [32].
Here, network lifetime is defined as the time when 20% of the
nodes in the network deplete their energy supply completely,
and therefore stop functioning.

Assumption 1. The sensors are capable of localizing them-
selves in the field with sufficient accuracy (e.g., using the
techniques proposed in [33].

Definition 1. Consider a sensor Si, i ∈ n, and let its sensing
radius and MW-Voronoi region be denoted by Ri(t) and Πi(t),
respectively. Let also Q be a point inside Πi(t). Throughout
this paper, the intersection of Πi(t) and a circle of radius Ri(t)
centered at Q is called the i-th coverage area w.r.t. Q at time
t, and is denoted by βQ

Πi
(t). In particular, the i-th coverage

area w.r.t. the location of the sensor Si at time t is called the

i-th local coverage area at time t, and is denoted by βΠi
(t).

Furthermore, the total covered area of the field by all sensors
at time t is referred to as the total coverage area at time t,
and is denoted by β(t).

In what follows, a performance criterion is defined, which
accounts for both the MSN coverage area and lifetime asso-
ciated with non-renewable energy consumption of the sensor
battery.

Definition 2. Throughout this paper, the expected value of the
i-th local coverage area over the time interval [ta, tb] is called
the i-th average coverage area over [ta, tb], and is denoted
by βi[ta, tb]. Also, the expected value of the total covered
area over the time interval [ta, tb] is called the average total
coverage area, and is represented by β[ta, tb].

Definition 3. Consider an arbitrary point Q inside the MW-
Voronoi region Πi(t), i ∈ n. The area inside Πi(t) which lies
outside the i-th coverage area w.r.t. Q at time t is referred to
as the i-th coverage hole w.r.t. Q at time t, and is denoted by
θQΠi

(t). The i-th coverage hole w.r.t. the location of the sensor
Si at time t is called the i-th local coverage hole at time t, and
is denoted by θΠi(t). Furthermore, the total uncovered area of
the field at time t is called the total coverage hole at time t,
and is denoted by θ(t).

Assumption 2. In this paper, it is assumed that the summation
of the coverage area of all sensors is fixed for all times before
the network dies. In other words, the sensing ranges of sensors
satisfy the following constraint:

n∑
i=1

πR2
i (t) = µ (3)

where Ri(t) is the sensing radius of the i-th sensor at time t
and µ is a prescribed constant.

Remark 1. The communication range of every sensor in the
network is bounded. This practical limitation can prevent a
sensor from communicating with its neighbors, which, in turn,
leads to the wrong MW-Voronoi region around that sensor.
Note that this can negatively affect the detection of coverage
holes. However, since the number of sensors in a MSN is
typically large [34], [35], the likelihood of having one (or
several) sensors isolated from the rest of the nodes is very
low. Therefore, it is often realistic to assume the correspond-
ing communication graph of the network is connected [36].
As a result, each sensor can obtain the information of all
other sensors, and subsequently adjust its sensing range and
calculate its MW-Voronoi region accurately. The results of the
present paper, however, can be extended to the case where the
communication graph of the network is not connected, using
the method provided in [23].

III. JOINT RELOCATION AND SENSING RANGE CONTROL
ALGORITHM

A novel sensor relocation algorithm referred to as the
lifetime maximization farthest point boundary (LMFPB) algo-



rithm will be introduced in this section for efficient coverage
and improved lifetime of the network. The main characteristic
of this algorithm is that the movement of sensors and adjust-
ment of their sensing ranges are performed iteratively until the
network dies. Each round in the proposed algorithm consists
of five phases. The algorithm is run at the time instants t0,
t1 := t0 + ∆T , t2 := t0 + 2∆T , . . ., where ∆T is the
time it takes to complete the computations and relocate the
sensors accordingly. The details of the k-th iteration in the
time interval [tk, tk+1] are discussed below.

First phase: In this phase, every sensor Si, i ∈ n, at time
tk broadcasts its location Pi(tk) and residual energy Ei(tk)
to other sensors and receives similar information from other
sensor. According to Remark 1, each sensor is aware of the
positions and residual energies of all other sensors. Note that
the sensors only need to communicate to each other in a
short period of time at the beginning of the iteration and
the communication links between sensors do not need to be
maintained for the rest of the time interval. It is also assumed
that in each iteration the consumed energy of the sensors due to
communication Ecom is fixed. In order to simplify notations,
the time argument of all time dependent variables will be
omitted in the rest of the paper.

Second phase: In the second phase, each sensor adjusts its
sensing range based on the remaining energy of all sensors
in the network, and subsequently constructs its MW-Voronoi
region. The sensing radius of every sensor is determined in this
phase in such a way that a sensor which has less energy left
consumes less power to increase the durability of the network.
More precisely, the sensing radii are chosen in such a way
that if the remaining energy of a sensor, say the i-th sensor,
is m times larger than that of another sensor, say the j-th
sensor, then the energy consumption rate of the i-th sensor
due to sensing must be m times larger than that of the j-
th sensor. Let the residual energy of the i-th sensor in the
second phase be denoted by Éi = Ei − Ecom. As noted in
the previous section, the power consumption of the i-th sensor
due to sensing is proportional to Rλ

i , where Ri is its sensing
radius. Choose the sensing radii of the sensors as follows:

Ri =

[
ν
π (Éi)

2
λ∑n

i=1(Éi)
2
λ

] 1
2

(4)

where ν is a fixed parameter.
By choosing the sensing radii of the sensors as given in (4),

if the residual energy of sensor i is m times larger than that of
sensor j, then the energy consumption rate of the i-th sensor
due to sensing is m times larger than that of the j-th sensor.
To prove it, choose the sensing radii of the sensors according
to (4). Then, the energy consumption rate of the i-th and j-th
sensors due to sensing satisfy the following relation:

Es
i

Es
j

=
Rλ

i

Rλ
j

=

[
ν
π (Éi)

2
λ∑n

k=1(Ék)
2
λ

]λ
2

[
ν
π (Éj)

2
λ∑n

k=1(Ék)
2
λ

]λ
2

(5)

where Es
i is the energy consumption rate of sensor i due to

sensing. By simplifying the above relation one arrives at:

Es
i

Es
j

=
Éi

Éj

which is equal to m, by assumption.

One can show that:
n∑

i=1

πR2
i =

n∑
i=1

π

[
ν
π (Éi)

2
λ∑n

k=1(Ék)
2
λ

]
=

π ν
π

∑n
i=1(Éi)

2
λ∑n

k=1(Ék)
2
λ

= ν

Now, it follows from the above observations that by using
the sensing radii (4) for sensor i, i ∈ n, with ν equal to
µ (see Assumption 2) the objective of the second phase is
achieved, while the constraint (3) is satisfied. Note that once
the sensing radius of every sensor is determined, one can
choose the weighting factor of each node equal to its sensing
radius and construct the MW-Voronoi diagram accordingly.

Third phase: In this phase, each sensor checks its MW-
Voronoi region to find the possible coverage hole. If a coverage
hole exists, the sensor finds a target location for itself (but does
not move there) using a proper scheme, such that by moving
there the coverage hole would be eliminated, or at least its size
would be reduced by a certain threshold. Various strategies are
reported in the literature for finding the target location and any
of them can be used in this phase (e.g. see [37], [38]). In this
paper, the farthest point boundary (FPB) strategy proposed in
[37] is adopted in this phase. In this strategy, each sensor first
finds the farthest point in its MW-Voronoi region, which is
denoted by Xi,far for the i-th region. Then, a point on the
segment connecting Xi,far to the i-th sensor whose distance
from Xi,far is equal to Ri is chosen as the target location Ṕ
for the i-th sensor. It is important to note that the sensors do
not move in this phase.

Fourth phase: Once the new candidate location Ṕi is calcu-
lated, the coverage area w.r.t. this location, i.e. βṔi

Πi
, is obtained

in this phase.

Fifth phase: If the coverage area w.r.t. the new candidate
location is less than or equal to the current local coverage
area, i.e. βṔi

Πi
≤ βPi

Πi
, the sensor does not move to the new

destination and remains at its current location. If on the other
hand βṔi

Πi
> βPi

Πi
, one of the following three cases can happen:

i) Ei ≤ Ecom + (∆T )Es
i + Ef

i

where Ef
i is the energy required to stop the i-th sensor and

then start to move it as noted earlier. In this case, the i-th
sensor does not move and remains in its current location.
ii) Ei ≥ Ecom + (∆T )Es

i + Ef
i + Ereloc

i (Pi, Ṕi).
In this case, the i-th sensor moves to Ṕi (because it has enough
energy to move, sense, and communicate).
iii) Ecom + (∆T )Es

i +Ef
i < Ei < Ecom + (∆T )Es

i +Ef
i +

Ereloc
i (Pi, Ṕi).

In this case, the energy of the i-th sensor is not enough for
moving to Ṕi (although it is enough for overcoming static
friction). Hence, it obtains the point P̃i from the following



equality:

P̃i = Pi +

(
Ei − Ecom + (∆T )Es

i + Ef
i

Ereloc
i (Pi, Ṕi)

)
→

PiṔi

and moves to P̃i if and only if βP̃i

Πi
> βPi

Πi
.

Different definitions are provided in the literature for net-
work lifetime [31], [32]. In this paper, the network is said
to be dead once 20% of the sensors completely deplete their
energy, at which point the above algorithm is terminated.

Consider a set of n mobile sensors deployed in a 2D field.
Construct the MW-Voronoi diagram by considering the sensing
range of each sensor as its weighting factor. The following
equalities hold:
i) β =

∑n
i=1 βΠi

ii) θ =
∑n

i=1 θΠi

iii) β[ta, tb] =
∑n

i=1 βi[ta, tb]
(The above parameters are introduced in Definitions 1-3).

Note that, if one sensor cannot cover a certain point inside
its MW-Voronoi region, that point cannot be covered by any
other sensor either. Equalities (i) and (ii) follow directly from
this result. Equality (iii) can be easily concluded from (ii).

Similar to Theorem 1 of [39], one can show that by
moving the sensors to their new destinations the total coverage
increases.

Theorem 1. Consider a set of n mobile sensors S1, S2, . . . , Sn

in a 2D plane, and let their positions be denoted by the set
P = {P1, P2, . . . , Pn} with the corresponding MW-Voronoi
regions Π1,Π2, . . . ,Πn. Assume the sensors move to new
positions Ṕ = {Ṕ1, Ṕ2, . . . , Ṕn} such that Ṕi ̸= Pi if and
only if i ∈ k, where k is a non-empty subset of n. If the
i-th coverage area w.r.t. Ṕi in the previously constructed MW-
Voronoi region Πi is larger than the i-th local coverage area in
Πi (i.e., βṔi

Πi
> βPi

Πi
) for every i ∈ k, then the overall network

coverage increases.

Proof. As it was mentioned earlier, the following inequality
holds:

θ =

n∑
i=1

θPi

Πi
(6)

It can be shown that if for any i ∈ k the coverage area in Πi

increases, then the i-th coverage hole decreases. Since the i-th
coverage area w.r.t. Ṕi is assumed to be larger than the i-th
local coverage area for every i ∈ k, it can be concluded that:

θṔi

Πi
< θPi

Πi
, ∀i ∈ k (7)

In addition, note that if Ṕi = Pi, i.e. the i-th sensor did not
move, then:

θṔi

Πi
= θPi

Πi
, ∀i ∈ n\k (8)

Now, the area inside the i-th region Πi, i ∈ n, can be divided
into the following three sub-areas [40]:

• The area βṔi

Πi
which can be covered by sensor i if it moves

to Ṕi.

• The area which is not covered by sensor i if it moves to
Ṕi but every point in this area is covered by at least one
other sensor located for example at Ṕj , j ̸= i. Denote
this area by φ́i.

• The area which is not covered by any sensors after they
move to the new locations Ṕ. Denote this area by γ́i.

Since the union of Π1,Π2, . . . ,Πn is the entire field and their
intersection is the empty, the overall uncovered area after the
sensors move to the new locations Ṕ is, in fact, the union of
the uncovered areas described as the third sub-area category
mentioned above, i.e.:

θ́ =

n∑
i=1

γ́i, i ∈ n (9)

Furthermore, it follows from Definition 3 that with the par-
titioning Π1,Π2, . . . ,Πn, the i-th coverage hole w.r.t. Ṕi can
be expressed as:

θṔi

Πi
= φ́i + γ́i, ∀i ∈ n (10)

It is concluded from the above equation that:

γ́i ≤ θṔi

Πi
, ∀i ∈ n (11)

Now, (9) and (11) yield:

θ́ ≤
n∑

i=1

θṔi

Πi
(12)

In addition, it follows from (7), (8) and (12) that:

θ́ <

n∑
i=1

θPi

Πi
(13)

It is now concluded from (6) and (13) that:

θ́ < θ (14)

This means that the total coverage area increases using the
underlying relocation scheme.

One of the important features of the proposed sensor de-
ployment strategy described in this paper is that every sensor
moves to its new candidate location only if its coverage area
w.r.t. the new location in the current MW-Voronoi region
(corresponding to the positions of the sensors before moving)
increases. Consequently, according to Theorem 1 of [39] by
moving the sensors to their new destinations the total coverage
increases. Note that once the sensors adjust their sensing
ranges, the total coverage may change.

Note that the LMFPB algorithm uses the FPB strategy for
searching target locations. However, by adjusting the sensing
ranges of the sensors and using the relocation technique
outlined above, LMFPB outperforms the FPB strategy in terms
of network coverage and lifetime. This will be shown in the
next section.

IV. SIMULATION RESULTS

Example 1. In this example, consider 20 mobile sensors
with the initial sensing range of 6m randomly distributed
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Fig. 1: Snapshots of the execution of the movement of the sensors under the FPB and LMFPB algorithms. (a) Initial coverage; (b) network coverage at time
t = 2025sec under the FPB algorithm, and (c) network coverage at time t = 2025sec under the LMFPB algorithm.

in a 50m by 50m 2D plane. The initial residual energy of
every sensor is assumed to be a random number between
2500J and 5500J with uniform distribution. The duration of
each iteration is considered to be ∆T = 25sec. The constant
coefficient α and power exponent of the sensing radius (λ)
in the energy consumption model for sensing are assumed to
be α = 0.032J/m2, and λ = 2, respectively. In addition,
the constant coefficient η in the energy consumption due to
relocation of sensors is taken to be η = 40J/m. Assume that
the energy requirement of each sensor for communication at
each iteration is Ecom = 10J. Also, assume that the amount of
additional energy needed to stop and then start the movement
of a sensor is equal to Ef

i = 40J. This is considered to be
identical to the energy that is needed to continuously move a
sensor by 1m [26].

Fig. 1 shows three snapshots of the network configura-
tion under the FPB and LMFPB algorithms for the above-
mentioned set-up. In each snapshot, the coverage area of every
sensor is depicted by a filled circle around it. Since all sensors
have the same sensing radius initially (as can be observed in
the first snapshot) and also in the final deployment at time
t = 2025sec (second snapshot) under the FPB algorithm,
the corresponding regions are polygons, as in conventional
Voronoi diagram. On the other hand, since the sensors do not
have the same sensing radius under the LMFPB algorithm,
the regions are not polygons in the third snapshot and are, in
fact, MW-Voronoi regions. The initial coverage in this set-up
is 56.8%. As it can be seen from the second snapshot, under
the FPB algorithm four sensors die at t = 2025sec, at which
point the network coverage is 62.9%. Finally, Fig. 1(c) shows
that at time t = 2025sec all sensor are still operating under
the LMFPB algorithm, and the network coverage is 77.5%.

Figs. 2(a)-(c) shows the residual energy of all sensors versus
time under the FPB [37], Minmax-curve and Maxmin-curve
algorithms [40] without adjusting the sensing radii of the
sensors. As observed, the first sensor runs out of energy

after 1500sec, 1625sec and 1675sec under FPB, Minmax-
curve and Maxmin-curve algorithms, respectively. In addition,
under FPB, Minmax-curve and Maxmin-curve algorithms four
sensors (20 percent of sensors) deplete their energies after
2025sec, 1950sec and 1850sec respectively. This is equivalent
of network lifetime under those algorithms. In comparison,
Fig. 2(d) exhibits the residual energy of each sensor under
the proposed strategy. It is observed from the figure that all
sensors run out of energy almost at t = 2450sec. From these
figures, it is concluded that under the LMFPB algorithm the
network operates 21.0%, 25.6% and 32.4% longer compared
to the FPB, Minmax-curve and Maxmin-curve algorithms,
respectively.

The coverage factor (defined as the ratio of the covered area
to the overall area) of the network versus time is depicted
in Fig. 3 for all FPB, Minmax-curve, Maxmin-curve and
LMFPB algorithms. As observed, under the FPB, Minmax-
curve and Maxmin-curve algorithms some sensors start to
run out of energy earlier; and, this negatively impacts the
coverage factor. However, under the LMFPB algorithm all
sensors are still operating at t = 2025sec, and the coverage
factor of the network is satisfactory. The average total coverage
area of the network β[0, t] (Definition 2) for all algorithms
is shown in Fig. 4. It is observed from this figure that the
LMFPB algorithm also outperforms all FPB, Minmax-curve
and Maxmin-curve algorithms in terms of average coverage.

Example 2. Consider 25 sensors randomly deployed in a 50m
by 50m 2D plane. Let the parameters ∆, λ, α, η, Ecom and
Ef be equal to the values given in the previous example. The
performance of the proposed algorithm is investigated for two
different scenarios.

Scenario 1: In this scenario all sensors are assumed to have
the same initial energy (4000J) and also same initial sensing
range (6m). Fig. 5 shows the residual energy of sensors versus
time for the FPB and LMFPB algorithms. Under the FPB
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Fig. 2: Residual energy of sensors under (a) the FPB algorithm, (b) the Minmax-curve algorithm, (c) the Maxmin-curve algorithm, and (d) the LMFPB
algorithm.
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Fig. 3: Resultant coverage factor versus time under (a) FPB and LMFPB algorithms, (b) Minmax-curve and LMFPB algorithms, and (c) Maxmin-curve and
LMFPB algorithms.
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Fig. 4: Resultant average coverage versus time under (a) FPB and LMFPB algorithms, (b) Minmax-curve and LMFPB algorithms, and (c) Maxmin-curve
and LMFPB algorithms.
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Fig. 5: Residual energy of sensors under (a) the FPB algorithm, and (b) the LMFPB algorithm in a network of sensors with the same initial energy.
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Fig. 6: Coverage performance under the FPB and LMFPB algorithms. The graphs demonstrate (a) the coverage factor, and (b) average coverage, both versus
time.
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Fig. 7: Residual energy of sensors under (a) the FPB algorithm, and (b) the LMFPB algorithm in the second scenario.
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Fig. 8: Coverage performance under the FPB and LMFPB algorithms. The graphs demonstrate (a) the coverage factor, and (b) average coverage, both versus
time.

algorithm, after t = 2300sec 20% of the sensors in the network
(5 sensors) completely deplete their energy supply and as a
result the network lifetime is over. As observed in Fig. 5(b),
under the LMFPB algorithm all sensors deplete their energy
almost at t = 2425sec. This means that with the same initial
energy for the sensors, the operation of the network under the
proposed algorithm is about 5.4% longer when compared to
the FPB algorithm. In general, the improvement in network
lifetime under the LMFPB algorithm seems to be even higher
when the initial energy levels of the sensors are not the same.
Comparing the results of this scenario with the one provided
in previous example also points to this observation. Fig. 6
shows the coverage factor and average coverage of the network
versus time for the case when the sensors have the same initial
energy. As observed, the LMFPB algorithm outperforms the
FPB algorithm in both measures. where in the beginning of
the FPB algorithm each sensor sets its sensing range based on
its initial energy.

Scenario 2: In this scenario it is assumed that the initial
energy of every sensor is a random number between 3000J
and 4000J and in the beginning of the deployment each
sensor selects its sensing range based on its initial energy.
Fig. 7 shows the residual energy of all sensors versus time
for both algorithms. It can be noticed from Fig. 7(a) that after

t = 1700sec the first sensor runs out of energy under the FBP
algorithm. Similarly, after t = 1900sec five sensors deplete
their energy completely, signifying the end of the network
lifetime. However, under the proposed algorithm all sensors
run out of energy almost at t = 2075sec (see Fig. 7(b)).
Therefore, the lifetime of the network under the LMFPB
algorithm is 9.2% longer compared to the FPB algorithm. In
addition, the results depicted in Fig. 8 confirm the superiority
of the LMFPB algorithm in terms of coverage and average
coverage.

V. CONCLUSIONS

An autonomous sensor deployment algorithm is proposed
to improve field coverage in a mobile sensor network while
increasing the lifetime of the network. The proposed strategy
monitors the residual energy of every sensor, and adjusts the
sensing radii of all sensors accordingly, while relocating them.
The multiplicatively weighted Voronoi (MW-Voronoi) diagram
is used to plan for relocation of the sensors. Every sensor
moves iteratively to improve coverage within its MW-Voronoi
regions, which is guaranteed to increase the coverage of the
entire network. Simulations demonstrate the advantages of the
proposed algorithm.



APPENDIX

Consider a flat surface, and a set of n distinct weighted
nodes on it, denoted by (S1, w1), (S2, w2), . . . , (Sn, wn),
where wi > 0 is the weighting factor associated with the
node Si, for any i ∈ n := {1, 2, . . . , n}. Define the weighted
distance between a point Q and a node (Si, wi), i ∈ n as:

dw(Q,Si) =
d(Q,Si)

wi

where d(Q,Si) denotes the Euclidean distance between the
node Si and the point Q in the plane. The multiplicatively
weighted Voronoi (MW-Voronoi) diagram partitions the plane
into a set of n regions, referred to as the MW-Voronoi regions,
such that: (i) Each region contains only one node, called the
generating node of that region, and (ii) the nearest node to
any point inside a region, in the sense of weighted distance,
is the generating node of that region [40].

Definition 4. A pair of nodes whose MW-Voronoi regions
share a boundary curve are referred to as neighbors. The set
of all neighbors of Si is denoted by Ni.

Definition 5. The Apollonian circle of the segment AB is the
geometric location of all points C such that AC

BC = k [41].
This circle will be denoted by ΩAB,k.

To construct the MW-Voronoi diagram, the Apollonian
circle ΩSiSj ,

wi
wj

is obtained for every i ∈ n and Sj ∈ Ni.
The smallest region generated by these circles which contains
node i is, in fact, the MW-Voronoi region of that node. Fig. 9
illustrates the above procedure for a group of five nodes.

Consider a group of n weighted sensors in a flat field, and
let the position of each sensor be represented as a node with a
weight equal to the sensor’s sensing radius. Then, construct the
MW-Voronoi region for every sensor to obtain a diagram that
covers the whole sensing field. It is noted from the formulation
of the MW-Voronoi diagram that each sensor needs to only
check its own MW-Voronoi region in order to identify the
points that cannot be covered by the sensors. The set of points
in a region which are not covered are called coverage holes.
Note also that if a sensor cannot cover a point in its region,
other sensors cannot cover it either.
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