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We propose a versatile dynamic optical-field manipulator
using a coherently prepared atomic medium. We show that
by locking the pump power change with the two-photon
detuning, a π-phase shifting can be realized with unit probe
fidelity in a broad two-photon detuning range. The two-
photon-insensitive π-phase-shift mode with significantly
reduced fluctuation makes this scheme an attractive system
for low-noise phase-gate operations. © 2015 Optical Society
of America
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Control of phase and intensity of single/few photons using an
atomic medium has always been an important research subject
with potential applications in quantum information processing
and quantum-state manipulation [1,2]. All-optical approaches
are particularly desirable because of remarkable advantages of
a light field such as monochromaticity, fast propagating veloc-
ity, high spatial and temporal coherence, and propagation con-
trollability. In the past two decades, many schemes have been
proposed and investigated [3–15]. Many recent studies have
shown that electromagnetically induced transparency (EIT)-
based schemes can lead to significant nonlinear phase shift in
the classical field limit [13,16]. Experimentally, Kerr nonlinear
effects arising in an N -type EIT medium [17] and a medium
with stored atomic-coherence [18] have been studied for phase-
control operation in the classical field limit. In a Raman gain
medium, a fast, all-optical, continuously controllable Kerr non-
linear phase gate was demonstrated recently [19]. In addition,
fast digital signal processing based on this controllable Kerr gate
operation, all-optical multi-logic gate operations and transistor
functionalities using a Kerr phase-gate method [20], and
high-fidelity fast polarization gate operations have also been
demonstrated with record low gate control and switching light
powers [21].

Although both EIT- and Raman Gain-based schemes have
been widely investigated in atomic media, the direct generali-
zation of these schemes to the single/few photon limit prove to
be more problematic. The low fidelity due to the significant
probe-field attenuation in EIT media [22–24] and the large
quantum noise due to the amplification of the probe field in
a Raman gain medium are the main obstacles that prohibit real-
izing a high-fidelity, low-noise phase shifter in the single/few
photon limit.

In this Letter, we propose a three-level system with coher-
ently prepared states for phase-shifting operation. This system,
which is a hybrid two-wave mixing process with initial atomic
coherence [25–27], has a number of interesting properties.
For instance, with suitable operation parameters, it can act
as a tow-photon-broadband phase shifter or an attenuator/
amplifier with zero phase shift. Specifically, we show that by
locking the pump field intensity and two-photon detuning,
a π-phase shift can be realized with unit probe fidelity
in a broad probe-field frequency range. This two-photon-
insensitive π-phase shift can significantly reduce the phase noise
associated with a Raman gain process, making it an attractive
scheme for high-fidelity, low-noise phase-gate operation. We
also show the possibility to realize a zero-phase dynamic light
attenuator/amplifier and a total transparency with zero phase
shift in a Raman gain medium. Physically, this scheme can
be viewed as a hybrid scheme in which two processes of differ-
ent physical principles are allowed to interfere to achieve the
desired application functionalities.

The scheme under investigation is a three-state atomic
medium interacting with a pump and a weak probe field. The
two lower states are assumed to have been coherently prepared
prior to the injection of the pump and probe fields (see Fig. 1).
The equations of motion for the slowly varying density matrices
elements are (neglecting ρ22 terms in the first-order perturba-
tion treatment)

_̃ρ21 − iδρ̃21 ≈ iΩ21ρ11 � iΩ̂23ρ̃31 − γ21ρ̃21 � F̂ 21; (1a)
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_̃ρ23 − i�δ� δ2ph�ρ̃23 ≈ iΩ̂23ρ33 � iΩ21ρ̃13 − γ23ρ̃23 � F̂ 23;

(1b)

_̃ρ13 � iδ2phρ̃13 ≈ iΩ12ρ̃23 − iΩ̂23ρ̃12 − γ13ρ̃13 � F̂ 13; (1c)

where δ and δ2ph are the (large) one- and (small) two-photon
detunings, Ω21 � ΩP � D21EP∕ℏ is the Rabi frequency of a
classical pump field EP , and Ω̂23 � Ω̂p � D23Ê p∕ℏ is the Rabi
frequency of the quantum probe-field operator Ê p. Operator
F̂ nm describes the quantum noise to the density matrix operator
ρ̃nm [28].

To examine the optical response of the system, we first ne-
glect quantum fluctuations. For a large one-photon detuning,
Eq. (1a) yields the adiabatic approximation ρ̃21 ≈ −Ω21ρ11∕
�δ� iγ21�. Solving Eqs. (1b) and (1c) using the time-
Fourier-transform method, we obtained the Fourier transform
of the density matrix element ρ̃23 that describes the propagation
dynamics of the probe field, R̂23�ω� � D�ω�Ŵ �ω� �
iŴ �ω� C�ω�

B�ω� , where Ŵ �ω� is the Fourier transform of the

quantum probe field Ω̂p, C�ω� � �−iω� iδ2ph � γ13�ρ33−
ijΩ21j2∕�δ − iγ23�ρ11, and B�ω� � jΩ21j2 � �iω − iδ2ph−
γ13��iω� iδ − γ23�. Physically, the first term in C represents
the absorption process starting from j3i, whereas the second
term denotes the Raman gain process starting from the ground
state j1i. This dispersion function contains all the physics of a
three-state Λ-scheme including EIT and Raman processes de-
pending on the relative sizes of the detunings and pump/
driving fields. In accord with the assumption of prepared states,
we assume in the following calculation that ρ11 ≫ ρ22 and
ρ33 ≫ ρ22 (neglect the pump depletion).

In the time Fourier transform domain, the nonlinear polari-
zation for the probe field is given by the operator P̂�ω� �
iκR̂23�ω� with κ � N ajD23j2ωp∕�2ℏε0c�, where N a is atom
density. The DC component of D�ω� is given by

D�0� � −

�
Re�B0�Im�C0� − Im�B0�Re�C0�

Re�B0�2 � Im�B0�2
�

� i
�
Re�B0�Re�C0� � Im�B0�Im�C0�

Re�B0�2 � Im�B0�2
�
; (2)

with Re�B0��jΩ21j2�δ2phδ�γ31γ23, Im�B0��δ2phγ23−δγ13,
Re�C0� � γ13ρ33 − γ23X ρ11, and Im�C0� � δ2phρ33 � δρ11,
where X � jΩ21j2∕�δ2 � γ221� and γ31 � γ13. Since
iκD�0� � iκ Re�D�0�� − κ Im�D�0��, we see that Im�D�0��
gives the gain or loss, whereas Re�D�0�� gives the phase.
Equation (2) has several interesting properties.

1. Two-Photon Broadband Phase Shifter. Setting
κ Im�D�0�� � 0 by making Re�C0�Re�B0��Im�C0�Im�B0��0
in Eq. (2), we obtain

γ23ρ11X 2 � γ13�ρ11 − ρ33�X − γ23
δ22ph � γ213
δ2 � γ223

ρ33 � 0: (3)

Clearly, Eq. (3) has no meaningful solution if ρ33 � 0,
signifying the importance of coherently prepared states.

Equation (3) yields a solution for X as a function of δ2ph,
which “locks the pump with the two-photon detuning.”When
this dynamic-locking condition is enforced, we will always have
Im�D�0�� � 0. Consequently, zero gain/loss to the probe field
everywhere in the region of interest (i.e., the two-photon de-
tuning δ2ph) can be achieved. This “jΩP j2-δ2ph-locking” is the
key operation condition that allows a significant suppression of
the atom-light-interaction noise in a gain medium.

In the case where maximum atomic coherence is created
prior to the injection of the probe and pump fields, i.e.,
ρ11 � ρ33 � ρ31 � 0.5, Eq. (3) gives

X � jΩ21j2
δ2 � γ223

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ22ph � γ213
δ2 � γ223

s
: (4)

Using Re�C0� � −Im�C0�Im�B0�∕Re�B0� from the require-
ment of Im�D�0�� � 0, we immediately obtain the phase shift
per unit propagation distance as ϕ � κ Re�D�0��,

ϕ � −κ
Im�C0�
Re�B0�

� −κ
δ2phρ33 � δρ11X

�δ2 � γ223�X � δ2phδ� γ23γ13
: (5)

Consider the operation condition that δ2phδ dominates
the denominator (i.e., δX < δ2ph), then Eq. (5) gives ϕ0 �
κ Re�D�0�� ≈ − κ

δ ρ33.
This is a remarkably simple result indicating a typical one-

photon transition type of phase shift with a flat zero-gain/loss
dispersion, the situation that cannot be achieved with a one-
photon process. Since the total imaginary part of the dispersion
function decides the gain or loss of the probe light, the con-
dition of Im�D� � 0 leads to the cancellation of the absorption
branch by the gain branch. This results in a zero overall imagi-
nary part and therefore zero gain/loss operation. In addition,
since in a typical operation only δ2ph is scanned, thus we have
achieved a constant phase shift over the entire region of the
operation (i.e., insensitive to δ2ph since it does not appear in
ϕ0). Indeed, these features cannot be achieved by any simple
three-state EIT scheme or Raman gain scheme alone.

In Fig. 2, we plotted probe-field phase shift and the gain/loss
properties as a function of the two-photon detuning. To show a
constant π-phase shift with flat zero loss or gain dispersion, we
choose the system parameters as ρ11 � ρ33 � 0.5 [29], κ �
2.4 × 109 s−1 cm−1 (the corresponding atomic density is about
6 × 1010 cm−3), γ21∕2π � 6 MHz, γ23∕2π � 6 MHz, γ31∕
2π � 10 kHz, δ∕2π � −300 MHz, Ω21∕2π � 30 MHz,
and L � 5 cm. It can be seen that there exists a broad two-
photon detuning range [30] in which a π-phase shift with zero
gain/loss under the ΩP − δ2ph locking condition Eq. (4). We

Fig. 1. Three-level scheme where two lower states are coherently
prepared prior to the injection of a strong pump field EP and weak
quantum probe field Ê p.
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point out that this flat zero gain/loss dispersion contributes to
very low probe-field phase fluctuation (see Section 4).

2. Dynamic Optical-Field Attenuator/Amplifier With
Zero Phase Shift. From Eq. (2), taking Re�B0�Im�C0�−
Im�B0�Re�C0� � 0, we obtain Re�D�0�� � 0 and

δρ11X 2 � δ2phX � δρ33
δ22ph � γ213
δ2 � γ223

� 0: (6)

The dynamic attenuation coefficient is then given by

α � κ Im�D�0�� � κ
δ2phρ33 � δρ11X
δ2phγ23 − δγ13

; (7)

where X is given by the solution of Eq. (6). Thus, one achieves
a phase-insensitive optical-field attenuation or amplification
depending on the choice of parameters.

In Fig. 3, we show the probe phase shift and loss/gain
dispersion (δ∕2π � −300 MHz and Ω21∕2π � 20 MHz;
other parameters are the same as in Fig. 2). Here, two specific
probe-field frequencies, corresponding to two δ2ph at which
dynamic probe field absorption and amplification can be
achieved with zero phase shift.

3. Dynamic Probe-Field Transparency. Probe transparency
in a resonant medium relies on EIT configurations in which
both one- and two-photon detunings are zero, resulting in
the loss of tunability unless a strong pump field is used to create
a large transparency window. It is possible, however, to achieve
a total transparency with a weak pump in our scheme. It is
seen from Eq. (2) that by making X � jΩ21j2∕�δ2 � γ223� �
−ρ33δ2ph∕ρ11δ and −δ2ph∕δ � γ13∕γ23, then C0 � 0 can be
achieved. This is a total transparency without phase shift
(see Fig. 4). Clearly, this is possible only when ρ33 ≠ 0.

4. Low-Noise Probe-Field Phase Shifter. We now examine
the quantum noise characteristics of the probe field when a
large phase shift is realized (see Section 1). The Maxwell equa-
tion for the probe field Rabi frequency in the slowly varying
amplitude and phase approximation is given by

∂Ω̂p

∂z
� 1

c
∂Ω̂p

∂t
� iκρ̃23 �

D23

ℏ
F̂ �z; t�; (8)

where the Langevin-like vacuum fluctuation noise operator is
given by (define D0 � �ω� d 13��ω� d 23� − jΩ21j2)

F̂ �z; t� � b13�t�F̂ 13�z; t� � b23�t�F̂ 23�z; t�; (9)

where b13 � Ω21∕D0, b23 � −�ω� d 13�∕D0.
Equation (8) can be solved in the time-Fourier-transform

domain as a function of the propagation distance z by formal
integration without any approximations. This yields a delayed
output probe field [28,31,32] as

Ŵ �L;ω� � Ŵ �0;ω�e−ΛL � D23

ℏ

Z
L

0

e−Λ�L−s�F �s;ω�ds; (10)

where Λ � Λ�ω� � −iκD�ω� and F �s;ω� is the Fourier trans-
form of Eq. (9). Using Eq. (10) and applying the quantum
regression theorem [33,34], the probe-field amplitude noise
spectrum in the Fourier domain is

SX �L;ω� � SX 1�L;ω� � SX 2�L;ω� � SX 3�L;ω�; (11)

where expressions of SX J�L;ω� (J � 1; 2; 3) can be obtained
using procedures illustrated in Refs. [28,31,32]. In Eq. (11),
SX1�L;ω� arises from the amplitude noise spectrum of the in-
put probe SX �0;ω�, SX2�L;ω� represents the contribution of

Fig. 2. Probe phase shift κ Re�D�0��L (red solid line) and the loss/
gain κ Im�D�0��L (blue dashed line) as a function of the two-photon
detuning δ2ph. A flat zero gain/loss dispersion with a constant π-phase
shift can be achieved by maintaining the locking condition Eq. (4).

Fig. 3. Probe phase shift κ Re�D�0��L (red solid line) and the loss/
gain κ Im�D�0��L (blue dashed line) versus the two-photon detuning.
The vertical dashed and solid lines indicate significant probe attenu-
ation and amplification without phase change.

Fig. 4. Probe phase shift κ Re�D�0��L (red solid line) and the loss/
gain κ Im�D�0��L (blue dashed line) versus the two-photon detuning.
The vertical dashed line denotes the two-photon detuning at which a
total transparency with zero phase shift can be achieved. Here,
Ω21∕2π � 12.2 MHz and other parameters are the same as in Fig. 2.
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the phase noise spectrum of the input probe SY �0;ω� via the
phase-to-amplitude noise conversion [35,36], and SX 3�L;ω�
arises from atomic noise due to the random decay process.
The probe-field phase noise spectrum can be calculated
similarly:

SY �L;ω� � SY 1�L;ω� � SY 2�L;ω� � SY 3�L;ω�: (12)
In Fig. 5, we plot probe amplitude and phase noise spectra

versus δ2ph at the exit of the medium. The input field is in a
3 dB squeezed state with quadrature components SX �0;ω� �
0.5 and SY �0;ω� � 2. The probe field acquires negligible
additional quantum noise in a broad δ2ph region where zero
loss/gain is achieved with a π-phase shift. It is in this broad
two-photon detuning region that a high-fidelity, low-noise
phase-gate operation may be realized.

In conclusion, we have investigated a novel three-state
two-wave mixing scheme with coherently prepared states. The
new scheme has many intriguing properties and may operate in
several modes as a versatile π-phase shifter or a zero-phase
attenuator/amplifier. By locking the pump excitation with
the two-photon detuning, a π-phase shifting can be maintained
with negligible additional operational quantum noise and also a
unit probe fidelity in a broad two-photon detuning range,
which are very attractive aspects of the scheme that may lead
to the realization of a low-noise phase-gate operation.

Funding. National Natural Science Foundation of China
(NSFC) (11104075, 11504272); The Shanghai Science and
Technology Committee (15YF1412400).
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