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ABSTRACT 
Component-based models of bolted double-angle beam-to-column connections have 
been developed for evaluating the structural robustness of steel gravity frames. The 
component-based models were developed based on results from high-fidelity finite-
element models, which used solid elements to model the bolts, angles, and wide-flange 
sections, with explicit modeling of contact and friction. Fracture was modeled using 
element erosion with a plastic-strain-based failure criterion and reduced ductility at the “k-
area” of the angle. The high-fidelity analyses were used to investigate the influence of 
span length on connection failure, including angle deformations at fracture. The 
component-based approach modeled each bolt row using a nonlinear load-displacement 
relationship that captured the effects of plastic hinge formation, straightening of the angle 
legs, and tearing of the angle near the heel. The component-based analysis results were 
compared with experimental data for double-angle connections subjected to combined 
rotation and axial extension representative of column loss scenarios.   

 

 

INTRODUCTION 
Bolted double-angle beam-to-column connections are common in steel gravity framing 
systems and have demonstrated substantial deformation capacity in simulated column 
loss scenarios (Liu et al. 2012). Component-based connection models provide an efficient 
framework for modeling the behavior of connections under extreme loads by providing 



automatic coupling between the in-plane flexural and axial connection behaviors, a 
feature that is essential for modeling connections under column removal. The 
computational efficiency of the component-based modeling approach makes it well suited 
for evaluating the robustness of entire buildings. This paper presents a component-based 
model for steel bolted-angle connections that was developed based on insights obtained 
from high-fidelity finite element analysis. Results from the high-fidelity analyses are first 
presented, including the influence of span length and observations on angle deformations 
at failure. The component-based modeling approach is then presented, and predictions 
of the model are compared to experimental data for bolted angle connections tested 
under a simulated column loss scenario.  

HIGH-FIDELITY FINITE-ELEMENT MODELING 

Modeling Approach 
The behavior of the bolted double-angle connections was first investigated using high-
fidelity finite-element models, as illustrated in Figure 1, which were previously validated 
through comparisons with experimental data under axial loading and under a column 
removal scenario (Liu et al. 2012). The models were developed using the LS-DYNA finite-
element software package (Hallquist 2007). The double angles, bolts, and wide-flange 
sections were modeled using 8-node solid elements with selective-reduced integration. 
The typical element size was about 2.6 mm (0.10 in) in the beam and column near the 
connecting elements and about 1.3 mm (0.05 in) in the bolts. The element size for the 
angles was on the order of 1.3 mm (0.05 in) to best capture plastic hinging mechanisms 
and fracture. The radius of the fillet at the heel of the angle was explicitly modeled. All 
components were initially in contact; static and dynamic friction coefficients of 0.3 were 
used. 

Piecewise linear plasticity material models, calibrated to match data from tensile coupon 
tests, were used to model the steel. Finite element models of tensile coupons with 
appropriate gage length and element size were used to ensure that calculated 
engineering stress-strain curves corresponded to the test data. The plastic strain limit for 
each material (e.g., A36, A992) was calibrated to match the elongation at fracture from 
the tensile coupon tests. Element erosion, or removal of elements upon reaching an 
effective plastic strain limit, simulated fracture of the steel (Liu et al. 2012).   

As proposed by Liu et al. (2012), the fracture strain in the heel of the angle was reduced 
to 60 % of the measured percent elongation for tensile coupons taken from the angle 
legs. This reduced the ductility at the critical location in the k-area, the region in the angle 
leg just past the fillet. The reduction in ductility at the k-area proposed by Liu et al. (2012) 
was based on comparisons to data from monotonic and cyclic tests of double-angle 
connections in tension (Garlock et al. 2003, Shen and Astaneh-Asl 1999). Reduced 
ductility in the k-area of an angle was also supported by coupon test data from Yang and 
Tan (2012). For W-shapes, Tide (2000) showed that percent elongation values at fracture 
were significantly smaller for coupons taken from the k-area than for coupons taken from 



the web and flanges, because the k-area properties were affected by the rotary 
straightening process conducted in the mill. It has been acknowledged (Rees-Evans 
2011) that rotary straightening and cold-working of steel angles could similarly result in 
reduced ductility in the k-area of the angles. 

   

Figure 1: Two-span beam specimen modeled using symmetry boundary constraints 

Influence of Span Length on Connection Failure 
The influence of span length on failure of double-angle connections was investigated for 
a two-span beam assembly with exterior pin supports subjected to displacement-
controlled vertical loading of the unsupported center column. This configuration 
corresponds to a full-scale test series conducted by the Defense Threat Reduction 
Agency and the General Services Administration (Stevens et al. 2011). Only a single span 
of the assembly was modeled, with symmetry boundary conditions at the column 
centerline (Figure 1). The beams and column were A992 W16×26 and W10×49 shapes, 
respectively. The A572 Grade 50, 216 mm (8.5 in) deep angles were L4×3.5×5/16. Three 
rows of 19 mm (0.75 in) ASTM F1852N tension control (TC) bolts were placed in standard 
holes at a column-leg gage of 76 mm (3 in) and a beam-leg gage of 64 mm (2.5 in). The 
bolts had a beam web edge distance of 51 mm (2 in) and the top bolt was located 130 mm 
(5 in) from the top of beam. As illustrated in Figure 1, high-fidelity modeling was used for 
the connection, while most of the beam span was modeled with beam elements, using 
constraints to enforce continuity of displacement and rotation at the interface. Additional 
details of the model can be found in Liu et al. (2012).  

The influence of beam span was investigated by comparing results for the original 5.5 m 
(18 ft) beam span with results for models with span lengths of 2.7 m (9 ft) and 9.1 m 
(30 ft), using the same beam cross section and connection in all cases. Plots of computed 
horizontal reactions versus chord rotations (Figure 2(a)) show that fracture of the double-
angle connection occurred at lower chord rotations for longer spans. Due to kinematics 
of the subassembly, a longer beam span results in greater elongation at the connection 
for the same beam chord rotation. 

Compared to the variation in the chord rotation at failure shown in Figure 2(a), Figure 2(b) 
shows that the horizontal deformation of the angle at first fracture was only slightly 
affected by the span length. First fracture occurred at the bottom of the angle at the k-
area of the column leg and propagated upward through the angle under continued 



loading. While the angle’s horizontal deformation at complete fracture increased 
somewhat with decreasing span, the angle’s deformation at first fracture was nearly 
constant, with values of 37 mm (1.5 in), 34 mm (1.3 in), and 35 mm (1.4 in) for span 
lengths of 2.7 m (9 ft), 5.5 m (18 ft), and 9.1 m (30 ft), respectively. This consistency in 
the angle’s deformation at fracture supported the use of a component-based modeling 
approach with a consistent value of angle deformation at failure, regardless of the span 
length. In the component-based approach, complete fracture of the connection is 
represented by successive fracture of each component in the connection, which allows 
the chord rotation at complete fracture to vary with span length as shown in Figure 2(b). 

  
Figure 2: (a) Horizontal reactions versus chord rotation for different beam spans; 

(b) average horizontal deformation of angle versus chord rotation 

Geometry of Deformed Angle 
Figure 3 shows the geometry of a single angle in plan view, obtained from a high-fidelity 
finite element model in which the column leg and the beam leg of the angle were truncated 
at the centerlines of the column-leg bolts and the beam-leg bolts, respectively, and the 
angle was idealized as fully fixed at these cross sections. Figure 3(a) shows the initial, 
undeformed geometry of the angle, where k is the distance between the angle heel and 
the toe of the angle radius, gc is the column gage length of the angle (i.e., distance 
between the angle heel and the centerline of the column-leg bolt), gb is the beam gage 
length of the angle (i.e., distance between the angle heel and the centerline of the beam-
leg bolt), and t is the angle thickness. Figure 3(b) shows the deformed geometry of the 
angle, in which the angle deformation along the beam axis,δ , is measured from the 
column face to the deformed position of the angle heel. The angle lengthens and 
straightens as it deforms, with two plastic hinges forming in the column leg, as indicated 
in Figure 3(b). This results in lateral deformation of the beam leg, δ ′ , and curvatures γ  
and γ ′  at the ends of the k-area in the column and beam legs, respectively. As is 
discussed subsequently, results of the high-fidelity analyses allowed relationships to be 
established between the curvatures and strains at the k-area, enabling the development 
of the component-based model. 
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Figure 3: Angle geometry: (a) initial; (b) deformed. 

COMPONENT-BASED CONNECTION MODEL 
Component-based connection models provide a versatile analytical framework that can 
be used to model the responses of connections under extreme loads, such as column 
removal. In the component-based model described in this paper, the connection is 
discretized into multilinear component springs that are assembled into a configuration 
representing the geometry of the connection (Figure 4), where each component spring 
embodies an isolated characteristic-width segment of the two angles.  

 
Figure 4: Discretization of bolted angle into characteristic-width angle-segments 

Load-Deformation Relationship 
As illustrated in Figure 5, the nonlinear behavior of the angle segment is represented 
through a piecewise-linear relationship between the axial load P and the angle 
deformation δ (see Figure 3). A single angle is considered with a component width b 
obtained by dividing the total depth of the angle by the number of bolts. The load 
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corresponding to one bolt row of a double-angle connection is obtained by doubling P. 
The yield capacity Py corresponds to formation of plastic hinges in the column leg of the 
angle, and the ultimate capacity Pu is associated with fracture of the angle at the k-area.  

 
Figure 5: Load-deformation relationship for angle 

Plastic Hinge Formation at Yield Load 
The yield load, corresponding to the formation of two plastic hinges in the column leg of 
the angle (Figure 3(b)) is given by 

  = p
y
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2
 

M
P

g
, (1)  

where Mp = (bt 2 / 4)Fy is the plastic moment capacity of the component-width angle 
segment, Fy is the yield strength of the angle, geff = gc – k – dh  ∕  2 is the effective gage 
length of the angle’s column leg after formation of the plastic hinges (i.e., the distance 
between the plastic hinges), and dh is the diameter of the column-leg bolt holes. The angle 
deformation at the formation of the plastic hinges, δy, can be calculated as 

  δ = y
y

i

P
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 , (2)  

where Ki is the initial stiffness of the angle segment. The initial stiffness is calculated from 
the following expression, which was derived by Shen and Astaneh-Asl (2000) based on 
the geometry of the section of angle between the beam-leg bolt and the column-leg bolt, 
assuming elastic bending of the angle’s column leg: 
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where E is the modulus of elasticity of steel and I = bt 3 ∕ 12 is the moment of inertia of the 
angle.  
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Angle Fracture at Ultimate Load 
Expressions for the ultimate load Pu (i.e., the load corresponding to initial tearing in the 
angles) and the corresponding angle deformation δu are derived based on the simplified 
geometry shown in Figure 6, in which the angle’s column leg is modeled as a straight-line 
segment with concentrated plastic hinges at its ends, subjected to axial tension Tu, shear 
force Vu, and bending moment Mu. The plastic hinge lengths are assumed equal to the 
angle thickness t.  

  
Figure 6: Two-hinge idealization of the angle’s column leg at the ultimate load: 

(a) geometry and (b) free-body diagram. 

Equilibrium of forces along the beam axis yields the following expression for Pu: 

  θ θ= +u u u u ucos   sinP V T  , (4)  

in which the chord rotation of the angle’s column leg, θu, can be calculated as 
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where δ ∗
u  is the elongation of the column leg at the ultimate load. The shear and axial 

tension in the angle’s column leg are calculated as 

  α=u yV P      and    α=u y / 3T btF  , (6a,b)  

in which α = 1.2 is a strain-hardening coefficient. The expression for Tu in Eq. (6b) 
assumes that the cross-section is fully yielded with a linear strain profile based on 
observations from high-fidelity models, in which the tensile and compressive strains at 
the faces of the angle’s column leg at fracture (at the toe of the angle radius) were found 
to be εuk  and 1

2 εuk , respectively, where εuk  is the elongation at fracture at the k-area. This 
observed strain profile can be decomposed into a bending strain of 3

4 εuk  and an axial 
strain of 1

4 εuk , from which the column-leg elongation can be calculated as δ ε∗ = 1
u uk2 t , 
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assuming that axial elongation occurs only at the plastic hinges, with plastic hinge lengths 
of t. As proposed by Liu et al. (2012), in the absence of test data for the k-area, 60 % of 
the reported elongation from certified mill test reports or tests of coupons from the leg of 
the angle is recommended for εuk .  

The lateral deformation of the beam leg, uδ ′  in Eq. (5), is calculated from the geometry:  

  γδ γ′ ′= − − ≈ −′ −b u bu u( )sin( ( ) / 2) ( )( ) / 2g t k t g t k t . (7)  

Based on the observed strain profile at the ultimate load, noted above, the curvature of 
the angle’s column leg at the end of k-area can be calculated as 

  ε
γ = uk

u
3
2t

 . (8)  

The curvature of the angle’s beam leg at the end of the k-area, uγ ′  in Eq. (7), can be 
related to the curvature of the angle’s column leg, uγ  in Eq. (8), through the following 
empirical equation, based on the results of high-fidelity finite-element analyses (to be 
published): 

  ( )( )γ γ ′ = + − − + − −3 5 25 5
u u 16 16/ 1 ( 1)( )r r t r t  , (9)  

where r = gc  ∕ gb is the ratio of the angle’s gage lengths. Eq. (9) is considered to be 
applicable for thickness, t, from 6.4 mm (0.25 in) to 15.9 mm (0.63 in), and gages, gb and 
gc, from 51 mm (2.0 in) to 76 mm (3.0 in). Also, gc should be greater than or equal to gb. 
The ultimate deformation of the angle can be calculated from the geometry as 

  ( )δ δ θ= − −u c b utang t  . (10)  

The failure deformation, at which the load P drops to zero, is taken as δf = 1.1δu. 

Comparisons with Experimental Data 
Results of the component-based connection model were compared with experimental 
measurements from bolted-angle connection tests reported by Weigand and Berman 
(2015). In that study, the connections were tested under combined rotation and axial 
deformation demands representative of a column loss scenario, corresponding to 
displacement-controlled vertical loading of an unsupported center column in a two-span 
beam assembly. The double-angle connections at both ends of each beam span were 
assumed to be identical, and the end columns were assumed to be fixed, so that all 
deformations occurred in the connections and beams. In the component-based modeling, 
a single beam span was considered, assuming symmetry of the response about the 
unsupported center column. The load-deformation relationship for single-plate shear 
connections from Main and Sadek (2014) was used for the compressive response of the 
connections, with yield and ultimate capacities corresponding to the combined bearing 
strength at the bolt holes of the two angles’ beam legs.  



Figure 7 shows a comparison of measured and computed values of the vertical load 
applied to the unsupported center column and the horizontal reaction at the end column 
for a double-angle connection with three bolt rows (Weigand and Berman 2015, specimen 
ba3b|34|14). For that connection test, the thickness of the angles was t = 6.4 mm (0.25 in) 
and the gages of the column leg and the beam leg were gc = 76 mm (3.0 in) and gb = 
70 mm (2.8 in), respectively. The measured yield strength of the angle steel was Fy = 
382 MPa (55.4 ksi). Initial differences between the measured and computed values, for 
displacements less than about 300 mm (11.8 in), resulted from frictional resistance of the 
connection due to pre-tensioning of the bolts, which was not considered in the model. The 
subsequent response, after frictional slippage and loss of pre-tension, is captured fairly 
well by the component-based model. The peak vertical load and the peak horizontal 
reaction from the model exceed the measured values by 9 % and by 0.7 %, respectively. 
The model prediction for the center column displacement at the ultimate vertical load was 
7 % less than the experimental value. 

  
Figure 7:  Comparisons of component-based model with experimental measurements 

for a double-angle connection with three bolt rows (estimated uncertainty in 
experimental data is less than ±0.5 %, based on repeated calibrations of instruments)  

CONCLUSIONS 
Building on insights obtained from high-fidelity finite element analyses of bolted double-
angle connections, a component-based model was developed to capture the response of 
the connections under the combined axial and flexural loading that occurs in column 
removal scenarios. The high-fidelity modeling provided key insights on the initiation of 
angle fracture at a consistent level of deformation and the relationship between strains 
and curvatures in the angle at the point of fracture. By considering the mechanics of angle 
deformation associated with the formation of two plastic hinges in the column leg of the 
angle, equations were developed for the yield capacity and the ultimate capacity of the 
angle, along with the corresponding deformations. Using these equations, a nonlinear 
load-displacement relationship was defined to represent the axial response for each bolt 
row of the angle. Predictions of the component-based model were compared with 
experimental results for a bolted double-angle connection under a column removal 
scenario, showing that the model captured the key features of the measured response. 
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