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ABSTRACT  
 
Clocks are deeply integrated into practically every cyber-
physical system either explicitly as provenance for time-
triggered actions, or implicitly in cases where cyber 
components operate in lock step with physical dynamics. 
Recognizing the criticality of timing components, this 
paper investigates an analysis approach that allows a 
system designer to formally incorporate timing 
uncertainty as a factor when evaluating the uncertainty of 
the overall cyber-physical system. A set theoretic 
approach is considered in this paper that offers advantages 
in the form of computational scalability and in its ability 
to accommodate a general class of hybrid dynamic 
systems. A demonstration of the approach is provided via 
illustrative example using a charge pump phase locked 
loop and a second order dynamic system. We anticipate 
that the proposed approach is particularly applicable to 
systems where safety or reachability guarantees are 
required. 
 

1) INTRODUCTION  
Unification and global traceability of time scales are 
particularly critical in systems spread over a wide 
geographical area where collaborative actions between 
components are frequently imputed to UTC. Examples of 
such systems include the cellular telecom network, the 
electric power system and wide area process control 
systems (pipelines and gas supply networks).  
Most of these cyber-physical systems (CPS) involve 
controllers, consisting of: (a) a set of sensors and 
actuators, representing the interface between the 
controller and its environment; (b) a control logic 
(implemented as one or more circuits or as one or more 
pieces of software running concurrently); and (c) the 

underlying timing system, which determines the rate, 
precision and accuracy of coordinated actions.  Such 
systems are commonly modeled as hybrid automata. 
Hybrid automata are finite-state machines equipped with 
continuous variables. Each discrete state of an automaton 
has a system of differential equations that govern its 
continuous variables.  
When designing a CPS or while integrating components 
into a CPS, designers typically perform correctness tests 
of the system as a whole. These tests typically evaluate all 
likely behaviors or trajectories of the system against a set 
of ‘performance’ criteria [1]. A simplified notion of 
performance would be that the system provides the 
minimum expected functionality while not entering an 
unsafe or bad state. Ensuring correctness, however, is 
often not a trivial task. Simulation of the system is not 
adequate, since it can only help examine a limited number 
of trajectories. Analytical methods are often not 
applicable, considering the complexity of systems with a 
large number of dynamic interactions. 
Analytical and simulation studies are particularly 
inadequate when assessing the safety of a closed-loop 
CPS in relation to uncertainty associated with timing 
components [2]. Firstly, the timing system is a CPS in 
itself, characterized by interacting continuous (Phase and 
Frequency Locking) and discrete (Synchronization logic) 
states. Further, the stochastic properties of oscillators are 
rarely amenable to closed form analytical expression. And 
lastly, manufacturer data for clocks frequently represent 
uncertainty in the form of bounded sets (min/max, PPM) 
making simulation studies impractical.  
An alternative to analytical and simulation studies is 
reachability analysis [3]. It consists of computing the set 
of all reachable states of the system and then checking 
that an application specific safe set encloses it. In our 
paper we focus on analyzing the impact of timing 
uncertainty on safety criteria. Reachability, as used in our 
analysis, involves mapping the performance envelope for 
the timing system onto the safe set for an enclosing CPS. 
In our paper we consider a timing subsystem comprised 
of a Type-II Charge Pump Phase Locked Loop (PLL) and 
model (as hybrid automata) the interactions between a 
VCO, a three state phase frequency detector, a loop filter 
and frequency divider. 
In Section 2 we present the model of our system including 
the hybrid automata we use to describe it. In Sections 3 
and 4 we introduce our geometric interpretation of 



uncertainty and apply it to sensor uncertainty and 
uncertainties associated with the PLL system respectively. 
Section 5 presents hybrid set theoretic reachability and the 
geometric results that enable our analysis. Finally, Section 
6 concludes our analysis by highlighting some 
preliminary results showing that the correctness of a 
synchronous generator control system can be evaluated 
from the perspective of measurement uncertainty 
(combining sensor and timing uncertainty) using our set 
theoretic approach. We also propose next steps for the 
work presented in this paper.  
 

2) HYBRID AUTOMATA 
A linear hybrid automaton is a generalized finite state 
automaton that is equipped with continuous variables. The 
discrete changes of the hybrid system are modeled by 
edges of the automaton and the continuous evolution of 
the system at each location in the automaton is 
constrained by linear time invariant dynamics of the 
form 𝑥 = 𝐴𝑥 + 𝐵𝑢. The syntax we use for hybrid 
automaton in our paper is defined in detail in [4]. 
Following conventional notation, let us consider a hybrid 
automaton 𝐻 represented by the tuple 
𝐿𝑜𝑐,𝐸𝑑𝑔𝑒,𝛴,𝑋, 𝐼𝑛𝑖𝑡,𝐹𝑙𝑜𝑤, 𝐽𝑢𝑚𝑝    where 
𝐿𝑜𝑐: {𝑙!, 𝑙!…   𝑙!} is a set of finite control locations that 
represent control modes. Instantaneous discrete transitions 
between control modes are denoted with a set of labeled 
edges 𝐸𝑑𝑔𝑒 ⊆   𝛴  ×  𝐿𝑜𝑐 where the labels are drawn from 
set 𝛴. The automaton is equipped with a set of 
differentiable continuous variables 𝑋 ∈ ℝ!, with 𝑋 and 𝑋 
representing the first derivative and the updated value of 
𝑋 respectively. The 𝐼𝑛𝑖𝑡 and 𝐼𝑛𝑣 predicates attached to 
each location in the automaton represent inequality 
constraints on the initial value and magnitude limits of 𝑋 
within each mode respectively. Finally, the functions 
𝐹𝑙𝑜𝑤 and 𝐽𝑢𝑚𝑝 represent the evolution trajectory acting 
on 𝑋 ∪ 𝑋 and the discrete update acting on 𝑋 ∪ 𝑋 
respectively.  
 
2.1) Running CPS example 
To illustrate the analysis approach in this paper let us 
consider a simplified example of a control problem 
requiring synchronized clocks. The example we use in 
this paper is based on the control requirements for power 
regulation in a ‘microgrid’ [5]. Microgrids with multiple 
generators require precise coordination of generator set 
points in order to maintain stable voltage and frequency. 
This coordination is particularly critical in a small power 
grid that is susceptible to fluctuations in voltage 
magnitude and frequency due to changes in loads, or 
external conditions such as a fault on the main grid. 
Control methodologies must respond to local variations in 
voltage waveforms, while still tracking a reference 
performance schedule for the microgrid. Since microgrids 
can span several hundred meters in area, control and 
sensor signals are typically transmitted over an Ethernet 
network, with control authority delegated to multiple 

generators. Accurate clock synchronization is required 
across all generators, sensors and circuit breakers to 
ensure operation of the entire networked control system. 
 
A simplified dynamic representation of the microgrid 
problem is shown in Figure 1. In our example, we assume 
two generators represented by the linearized swing 
dynamics as shown in Equation 1 coupled through a 
complex impedance 𝑍!". This simplified example 
highlights the coupling interaction between two sets of 2nd 
order differential equations. In the case of our example, 
the impedance between the generators manifests 
dynamics corresponding to a first order filter in the form 
of a phase lag between 𝑏! and 𝑏!. The dynamic response 
of each generator is governed by its rotary inertia and 
damping ratio 𝐽! and 𝐷! respectively. The state of each 
generator is represented by its terminal voltage 𝐸! and 
rotor angle 𝛿!. The generator is controlled via regulation 
of input power 𝑃!,!. The cumulative dynamics of the two-
generator system in response to perturbations of the state 
𝑉! , 𝜃! ! about a synchronized network in steady state may 

be represented by the dynamic linearized swing equation 
and the algebraic DC power flow equation. These 
equations can be assembled into a state-space model for 
the network, producing a small signal version of the 
structure-preserving power network model shown in 
Equation 2 as derived in [6]. 

 
Figure 1: Schematic representation of a two generator 
microgrid 

Equation 1: Linearized swing equation for generators 

 
 
Equation 2: Structure preserving power network model 

 
  
Assuming that the generators in the network are of PV-
Type [7], we can decouple Equation 2 into a system of 
Ordinary Differential Equations in the linear time 
invariant form  𝑥 = 𝐴𝑥 + 𝐵𝑢 and a set of linear algebraic 
constraints 𝛼 ≥ [ℤ!"]!!  𝑥 on the relative phase between 
adjacent buses where [ℤ!"] is the impedance weighted 
adjacency matrix for the two generator circuit. Note that 
such algebraic constraints are compatible with the 𝐼𝑛𝑣 
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predicate defined in Section 2. Let us now consider the 
discrete changes in the circuit topology represented by the 
circuit breaker 𝑄!. In the event of a large fault current 
between 𝑏! and 𝑏!, the phase constraint represented by 
𝑍!" is released and the two generators operate 
independently. In power systems terms, this event 
represents a fault triggered decoupling event. 𝑄! may be 
triggered by other considerations such as a phase angle, 
thermal or voltage excursions. In our formalism for 
hybrid automata these triggers comprise the 𝐽𝑢𝑚𝑝 
predicate. 
Without the loss of generality, we can reduce the 
microgrid regulation control problem within each 
operating mode of the circuit breaker to a phase 
synchronization problem for 𝐺!. The synchronization 
torque for 𝐺! is given by the equation: 

 
 
 
Integrating this control law into the dynamics in Equation 
2 and linearizing the system we get a closed loop system 
of the form 𝑥 = [𝐴 + 𝐵𝐾]𝑥. The closed loop system after 
a circuit breaker tripping event is represented by 
𝑥 = [𝐴∗ + 𝐵𝐾∗]𝑥. Combining both operating modes, we 
get the hybrid system shown in Figure 2. 

 
Figure 2: Hybrid automata describing the three operating 
modes for the two generator system. 

3) SENSOR UNCERTAINTY  
The sources of uncertainty that limit the performance of 
the phase tracking control problem range from model 
errors, to inaccuracies in measurements to actuator 
bandwidth limitations and network latency. Since 
Equation 1 has an inherent pole at the origin (an 
integrator), our generator phase synchronization problem 
presents a tracking error that is proportional to the integral 
of any error in the control inputs. The control input 𝑃!,! in 
turn, is an algebraic function of the system state with a 
gain proportional to 𝑍!"!!. For most distribution circuits, 
this gain is in the order of about 10! making the control 
system particularly sensitive to uncertainties in the system 
state  𝑥. 
Inaccuracies in the estimation/measurement of the system 
state will be the primary focus of our analysis in this 
paper in keeping with growing interest in the microgrid 
community for real time, high quality sensor 
measurements. The state of our example system (Equation 
2) includes the explicit variables [𝜃, 𝛿] that correspond to 
measurements of phase on circuit buses and generator 
terminals respectively. These measurements are typically 

obtained using a Phasor Measurement Unit (PMU). PMUs 
estimate the phase, frequency, frequency modulation and 
amplitude of the fundamental grid frequency (60Hz in the 
U.S.). The primary PMU generated measurement, 
however, is called a synchrophasor which is a vector 
representation of a sinusoidal voltage and current 
waveform as illustrated in Figure 3. 
Several algorithms exist to compute the synchrophasor, 
however a majority of the algorithms utilize a recursive 
peak tracking implementation of the discrete Fourier 
transform or a similar algorithm [8]. The synchrophasor 
phase angle 𝜃 is measured in reference to the ‘second’ 
transition on a UTC synchronized clock within the PMU. 
As a result, clock offsets in the PMU clock manifest as 
phase error of the vector measurement [9].   
The C37.118.1-2011 synchrophasor standard and its 
amendment [10], [11] bound the total vector error (TVE) 
for synchrophasors to a threshold 𝜖 (typically 𝜖 ≤ 1% 
under steady state conditions). TVE is the magnitude of 
the error vector between the true synchrophasor for a 
given sinusoidal waveform to the phasor measured by the 
PMU. The TVE bound includes all sources of error within 
the PMU including errors in the potential transformers 
and other transducers, limitations in sampling, A/D 
conversion and timing errors. The TVE limit is illustrated 
in Figure 3 by a circle with radius 𝜖. Note that the 
maximum tolerable phase error  𝑃𝐸 is represented by 
tangents to the circular TVE region.  

 
Figure 3: A synchrophasor plotted on the I/Q plane showing 
limits for total vector error. 

Equation 3: TVE in terms of magnitude and phase error 

 
 
Transforming the TVE criterion from the I/Q plane to a 
real basis of magnitude and phase errors, we get the 
relation shown in Equation 3. Where 𝑃𝐸 and 𝑀𝐸 
correspond to phase and percent magnitude errors 
respectively.  An interesting outcome of this change of 
basis is that the graphical interpretation of Equation 3 is 
an ellipsoidal level set. 
Figure 4 shows the level curves for Equation 3 at different 
values of 𝜖. Based on this geometric interpretation, we 
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propose that uncertainty in the system state 𝑥 for the 
microgrid system, as measured by a PMU, may be 
represented by a spherical or hyper-ellipsoidal geometric 
error criterion. Our uncertainty model is not stochastic but 
rather deterministic and set based. In the following 
sections, we will extend this interpretation of uncertainty 
and generalize our uncertainty model in order to develop 
a non-probabilistic test for safety or correctness of the two 
generator power system for any realization of state 
uncertainty within the set. 

 
 

Figure 4: Contour plot showing ellipsoidal level curves 
corresponding to different values of 𝝐 

4) UNCERTAINTY FROM TIMING COMPONENTS 
An important factor affecting PMU performance is its 
internal timing system. As highlighted in the previous 
section, timing errors result in errors in measurement of 
phase. Prior evaluations of PMU performance and 
uncertainty include timing errors in their analysis by 
simply translating the maximum tolerable measurement 
error to the corresponding clock offset i.e. for the 𝜖 ≤ 1% 
criterion to hold in a 60 Hz system, errors in the timing 
system must be ≤26.5  𝜇𝑠. Clearly, this is a fairly 
superficial treatment of timing errors. As the constraints 
on sensor performance are tightened and the complexity 
of algorithms used for CPS continually increase, there is 
concern in the metrology community that the dynamics 
associated with clock regulation and time synchronization 
might result in rare but unpredictable negative 
interactions within a CPS.  
Let us re-examine PMU measurement uncertainty from 
the perspective of first order effects introduced by phase 
noise in the primary oscillator driving its sampling clock. 
 

 
Figure 5: Schematic diagram showing measurement noise 
introduced through phase modulation of the sampling clock. 

Assuming that the measurand is an ideal sinusoidal signal 
𝜔!, Figure 5 illustrates the impact of phase noise in the 
sampling clock 𝜔! on the Signal-to-Noise ratio of the 
output signal 𝐹(𝜔!) from the PMU [12]. When the 
sampling clock is derived from a free running oscillator 
its single side-band phase noise in dBc/Hz is typically a 

function of frequency offset from the oscillator resonant 
frequency. This function is available as published test 
data for the oscillator typically approximated to a number 
of regions having a slope of 1 𝑓!. Figure 6 shows an 
example of this phase noise profile published in [13]. We 
assume for simplicity that the time domain jitter is 
dominated by “white” broadband phase noise. An 
assumption justified by the fact that sampling clocks in 
PMUs are typically phase locked oscillators. Phase locked 
loops significantly attenuate close-in phase noise. We can 
then compute the timing jitter introduced by the integrated 
noise power across a frequency domain of interest. 
Typically, a range of twice the sampling rate is adequate 
as shown in Figure 6 by the brown highlighted 
rectangular region.  

 
Figure 6: Oscillator phase noise profile 

The root mean square timing jitter introduced by the total 
phase noise represented by the area labeled ‘A’ is given 
by: 

 
We can now perform a change of basis in a similar 
fashion to the previous section to find the manifestation of 
this timing jitter in the output of an N-point Discrete 
Fourier Transform computed from discrete samples 
𝑓!  [𝑛 ∈ 𝑁].  
First, assuming that 𝑇!"##$% is uniformly distributed across 
the 𝑁 sample DFT window, the standard deviation of the 
sampled signal in the time domain is given by: 

 
Where 𝛼! is the first derivative of the sampled sinusoidal 
(60Hz) waveform at sampling instant 𝑛.  
Transforming this uncertainty to the phasor space or the 
I/Q plane as in Figure 3 we get the relation in Equation 4. 
See [14] for a more detailed presentation. 
Equation 4: Uncertainty associated with sampling jitter 
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two terms we see that by the trigonometric identity 
sin! 𝑥 + cos! 𝑥 = 1 that the geometric interpretation of 
the cumulative uncertainty in signal magnitude and phase 
due to timing jitter is ellipsoidal in nature.  As in Section 
3 with sensor uncertainty, timing uncertainty can also be 
modeled using a set based hyper-ellipsoidal geometric 
error criterion. 
 
4.1) Dynamics of timing components 
Our analysis of timing uncertainty so far has focused on 
jitter and phase noise as ergodic parameters. There are 
also deterministic dynamics at play in the timing system 
that are seldom included when evaluating the correctness 
of CPS. For example, consider the dynamics of jitter 
mitigation and clock synchronization introduced into the 
sampling subsystem in a PMU. In the following analysis 
we focus on the dynamics of a three state charge-pump 
phase locked loop (3PD-CP-PLL) in conjunction with a 
voltage-controlled crystal oscillator (VCXO). This type of 
PLL is popular in embedded analog to digital converters 
and is unique in that the output of its phase detector is a 
current that is ‘pumped’ in and out of a loop-filter and is 
able to serve as a frequency detector as well. The reader is 
directed to [15]–[17] for more detailed discussion on PLL 
design illustrated in Figure 7. 

 
Figure 7: Block diagram of 3PD-CP-PLL driving the 
sampling system 

The linearized closed loop dynamics associated with 
phase 𝜙 and frequency modulation 𝜔 due to the PLL can 
be described by the following differential equation: 
 

 
 
The phase detector has three discrete operating modes 
(phase lead, phase lock and phase lag) that can be 
represented by the finite state machine in Figure 8. Note 
that the three state phase detector in conjunction with the 
linearized PLL dynamic equation produces a hybrid 
automata of the form described in Section 2. 

 
Figure 8: Hybrid system model of a three state phase 
detector. 

The core challenge we address in our work is the 
propagation of uncertainty expressed in Equation 3 and 
Equation 4 through the dynamics shown in Figure 2 and 
Figure 8. In a larger sense, we are interested in a 
computationally feasible strategy to evaluate the impact 
of uncertainty originating from subsystems such as the 

timing system or the sampling system on the performance 
of a CPS. Our approach is a treatment of uncertainty 
using the same compositional primitives used to 
effectively compose a CPS from sub-systems. In the 
following section we will present one strategy to achieve 
this goal by exploiting the spherical and ellipsoidal fitting 
of geometric error criterion (such as TVE or Timing jitter) 
in ℝ!. 

5) REACHABILITY ANALYSIS 
We treat uncertainty propagation as a dual to the problem 
of reachability of hybrid dynamic systems i.e., reach of a 
set of uncertain states represents a measure of correctness. 
In contrast to Monte-Carlo strategies of exploring the 
uncertainty space that are limited in scale to a finite 
number of simulated trajectories, we use a simplification 
of the uncertainty space represented as a convex set 
bounded by the functions in Equation 3 and Equation 4. 
Extending the observation that our convex uncertainty 
sets can be approximated by a family of hyper-ellipsoids 
ℇ 𝑞,𝑄 = {𝑥| 𝑥 − 𝑞,𝑄!! 𝑥 − 𝑞 ≤ 1}[𝑞 ∈ ℝ!,𝑄 ∈
ℝ!×!] we use the results in [11] and [12] to propagate 
these ellipsoids through hybrid automata with small signal 
linear dynamics 𝑥 ⊆ 𝐴𝑥 + 𝐵𝑢: Using the linear 
transformation  𝐴[ℇ 𝑞,𝑄 ] + 𝑏 = ℇ(𝐴𝑞 + 𝑏,𝐴𝑄𝐴!).  
 
The guards of the discrete transition 𝑋! → 𝑋 (recall the 
notation for the hybrid automaton 𝐻) are usually 
represented as linear inequalities. If the geometric 
interpretation of these inequalities is a half space 
𝑆 = 𝑥 𝑏, 𝑥 ≥ 𝛼  then the ellipse ℇ 𝑞 + 𝑝 ,𝑄 + 𝑝  
is an approximation of ℇ 𝑞,𝑄 ∩ 𝑆 at any point 
𝑝 ∈ 0, !

!!!
!

.  
The geometric union of ellipsoids can also be estimated 
by an approximating ellipse ℇ 𝑞! + 𝑞!,𝑄 𝛽 ⊂
ℇ 𝑞!,𝑄! ∪ ℇ 𝑞!,𝑄!  s.t. 𝑄 𝛽 = 1 + 𝛽!! 𝑄! +
1 + 𝛽 𝑄!  ∀𝛽 > 0. 

 
Using these geometric operations, we are able to 
analytically determine the correctness of hybrid systems 
for any realization of the uncertainty in a given set. As a 
result, correctness as evaluated using this approach is 
deterministic. In hybrid systems with a large number of 
interacting components, this deterministic approach 
consumes significantly less memory than comparable 
probabilistic approaches since each ellipse is stored as a 
tuple and every interaction between subsystems manifests 
as an intersection of ellipses which in turn is 
approximated as an ellipse. In comparison interacting 
dissimilar probability distributions result in very large sets 
of posterior probabilities. 
Geometric operations for the intersection, union, linear 
transformation and geometric sum of convex sets can be 
performed very efficiently. As noted in [18], the 
complexity of the reachability analysis using ellipsoidal 
approximations is polynomial in time and quadratic in 
dimension. While a more detailed presentation of 
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verification guarantees for our ellipsoidal approximations 
are beyond the scope of this paper, we would like to 
highlight our approach as it applies to the CPS example in 
Section 2.1. First, the ability to efficiently detect 
intersections between ellipses and half spaces gives us a 
tool to test the hybrid system for violations such as the 
limit threshold on circuit breaker 𝑄!. Second, the 
geometric union of ellipses gives us the ability to 
compose multiple sources of uncertainty as in the 
uncertainty originating from PMUs expressed as TVE and 
the sampling jitter introduced by the timing system. 
Algorithms used to detect intersections and unions are 
either closed form, or guaranteed to converge to the 
global optimum in a finite number of iterations and they 
work without restriction in spaces of generic dimension.  
Lastly, the dynamics of the generators, the PLL system 
and the electrical network constraints are implemented as 
linear transformations on uncertainty ellipses. As 
described in [20], parameter uncertainty in dynamic 
models may also be expressed as unknown but bounded 
sets and so may be considered using our approach. 

6) CONCLUSIONS AND FUTURE EXTENSIONS 
As a preliminary evaluation of our approach, we 
considered two operating conditions for our CPS 
example. In the first case, an uncertainty set bounded by 
ℇ 0

0 , 1 0
0 0.5  was applied to the hybrid system 

comprising the charge pump PLL and the two generator 
network. Both systems are asymptotically stable in their 
primary operating modes and as a result |𝑄| remains 
bounded as the reach set is propagated through the system 
dynamics. Figure 9 illustrates the evolution of reach set 
over ten simulated seconds constructing a ‘reach tube’.  

 
Figure 9: Reach tube showing stable evolution of phase and 
magnitude variation when the initial uncertainty set does not 
trip the circuit breaker. 

Repeating the analysis for a case when the reach set 
intersects the half space facet representing a circuit 
breaker tripping event, we see that the same uncertainty 
set results in unbounded expansion of the reach set. 
Clearly not all trajectories are unstable within the set but 
the analysis does show that a sequence of dynamic 
transitions are possible that might drive the system to an 
unstable operating state. The phase tracking system, 
therefore, is no longer ‘correct’. 

 
Figure 10: Reach tube showing an unstable evolution of 
phase and magnitude when the uncertainty set erroneously 
triggers a tripping event. 

The analysis presented here is fairly simple in order to 
introduce our approach and to present its value to 
evaluating the correctness of hybrid dynamic systems; 
particularly in relation to the impact of timing uncertainty 
on large interconnected CPS. Our research continues to 
focus on this reachability approach for compositions of 
interconnected subsystems with a large number of set 
intersections. Our upcoming work includes simulations 
using real data for timing uncertainties and model 
parameters. 
 
Official contribution of the National Institute of Standards and 
Technology; not subject to copyright in the United States. 
Certain commercial equipment, instruments, or materials are 
identified in this paper in order to specify the experimental 
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imply recommendation or endorsement by the National Institute 
of Standards and Technology, nor is it intended to imply that the 
materials or equipment identified are necessarily the best 
available for the purpose. 
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