
Extensible Access Control Markup Language (XACML) and Next
Generation Access Control (NGAC)

David Ferraiolo, Ramaswamy Chandramouli, Rick Kuhn and Vincent Hu

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

{dferraiolo, mouli, Kuhn, vhu}@nist.gov

ABSTRACT
Extensible Access Control Markup Language (XACML) and Next

Generation Access Control (NGAC) are very different attribute

based access control standards with similar goals and objectives.

An objective of both is to provide a standardized way for

expressing and enforcing vastly diverse access control policies in

support of various types of data services. The two standards differ

with respect to the manner in which access control policies and

attributes are specified and managed, and decisions are computed

and enforced. This paper is presented as a consolidation and

refinement of public draft NIST SP 800-178 [21], describing, and

comparing these two standards.

Keywords
ABAC; XACML; NGAC; Policy Machine; Access Control

1. INTRODUCTION
Extensible Access Control Markup Language (XACML) and Next

Generation Access Control (NGAC) offer different approaches to

attribute based access control (ABAC). XACML, available since

2003, is an Extensible Markup Language (XML) based language

standard designed to express security policies, as well as the

access requests and responses needed for querying the policy

system and reaching an authorization decision [17]. XACML was

developed as collaboration among vendors with a goal to separate

policy expression and decision-making from proprietary operating

environments in support of the access control needs of

applications. NGAC is an emerging, relations and architecture-

based standard designed to express and enforce access control

policies, through configuration of relations [2], [20]. NGAC stems

from and is in alignment with the Policy Machine, a research

effort to develop a general-purpose ABAC framework [6], [7],

[8], [9].

What are the similarities and differences between these two

standards? What are their comparative advantages and

disadvantages? These questions are particularly relevant because

XACML and NGAC provide different means of achieving a

This paper is authored by an employee(s) of the United States Government and

is in the public domain. Non-exclusive copying or redistribution is allowed,

provided that the article citation is given and the authors and agency are clearly
identified as its source.

ABAC'16, March 11 2016, New Orleans, LA, USA

ACM 978-1-4503-4079-3/16/03

DOI: http://dx.doi.org/10.1145/2875491.2875496

common access control goal—to allow vastly different access

policies to be expressed and enforced in data services using the

features of the same underlying mechanism in diverse ways.

These are also important questions, given the prevalence of data

services in computing. Data services include computational

capabilities that allow the consumption, alteration, management,

and sharing of data resources. Data services can take on many

forms, to include applications such as time and attendance

reporting, payroll processing, and health benefits management,

but also including system level utilities such as file management.

This paper describes XACML and NGAC and compares them

with respect to five criteria. The first criterion is the relative

degree to which the access control logic of a data service can be

separated from a proprietary operational environment. The other

four criteria are derived from ABAC issues or considerations

identified by NIST Special Publication (SP) 800-162 [13]:

operational efficiency, attribute and policy management, scope

and type of policy support, and support for administrative review

and resource discovery.

2. BACKGROUND
Controlling and managing access to sensitive data has been an

ongoing challenge for decades. ABAC represents the latest

milestone in the evolution of logical access control methods. It

provides an attribute-based approach to accommodate a wide

breadth of access control policies and simplify access control

management.

Most other access control approaches are based on the identity of

a user requesting execution of a capability to perform an operation

on a data resource (e.g., read a file), either directly via the user’s

identity, or indirectly through predefined attribute types such as

roles or groups assigned to the user. Practitioners have noted that

these forms of access control are often cumbersome to set up and

manage, given their need to, and the difficulty of, associating

capabilities directly to users or their attributes. Furthermore, the

identity, group, and role qualifiers of a requesting user are often

insufficient for expressing real-world access control policies. An

alternative is to grant or deny user requests based on arbitrary

attributes of users and arbitrary attributes of data resources, and

optionally environmental attributes that may be globally

recognized and tailored to the policies at hand. This approach to

access control is commonly referred to as attribute-based access

control (ABAC) and is an inherent feature of both XACML and

NGAC.

The XACML and NGAC standards also enable decoupling of data

service access control logic from proprietary operating

environments (e.g., operating system, middleware, application).

http://dx.doi.org/10.1145/2875491.2875496

More precisely, a data service is normally comprised of an

application layer and an operating environment layer that can be

delineated by their functionality and interfaces. The application

layer provides a user interface and methods for presentation,

manipulation, management and sharing of data. The application

layer does not carry out operations that consume data, alter the

state of data, organize data, or alter the access state to data, but

instead issue requests to the operating environment layer to

perform those operations. An operating environment implements

operational routines (e.g., read, write/save) to carry out

application access requests as well as access control routines to

ensure executions of user processes involving operational routines

are policy preserving.

Access control routines comprise several components that work

together to bring about policy-preserving data resource access.

These components include access control data for expressing

access control policies and representing attributes, and a set of

functions for trapping access requests, and computing and

enforcing access decisions over those requests. Most operating

environments implement access control in different ways, each

with a different scope of control (e.g., users, resources), and each

with respect to different operation types (e.g., read, send, approve,

select) and data resource types (e.g., files, messages, work items,

records).

This heterogeneity introduces a number of administrative

and policy enforcement challenges. Administrators are forced to

contend with a multitude of security domains when managing

access policies and attributes. Even if properly coordinated across

operating environments, global controls are hard to visualize and

implement in a piecemeal fashion. Furthermore, because

operating environments implement access control in different

ways, it is difficult to exchange and share access control

information across operating environments. XACML and NGAC

seek to alleviate these problems by creating a common and

centralized way of expressing all access control data (policies and

attributes) and computing and enforcing decisions, over the access

requests from applications.

3. XACML
For purposes of brevity and readability, the XACML specification

is presented as a summary that is intended to highlight XACML’s

salient features and should not be considered complete. In some

instances, actual XACML terms are substituted with equivalent

terms to accommodate a simpler and more consolidated

presentation.

3.1 Attributes and Policies
An XACML access request consists of subject attributes

(typically for the user who issued the request), resource attributes

(the resource for which access is sought), action attributes (the

operations to be performed on the resource), and environment

attributes.

XACML attributes are specified as name-value pairs, where

attribute values can be of different types (e.g., integer, string). An

attribute name/ID denotes the property or characteristic associated

with a subject, resource, action, or environment. For example, in a

medical setting, the attribute name Role associated with a subject

may have doctor, intern, and admissions nurse values, all of type

string. Subject and resource instances are specified using a set of

name-value pairs for their respective attributes. For example, the

subject attributes used in a Medical Policy may include: Role =

“doctor”, Ward = “pediatrics”; an environmental attribute: Time =

12:11; and resource attributes: Resource-id = “medical-records”,

WardLocation = ”pediatrics”, Patient = “johnson”.

Subject and resource attributes are stored in repositories and are

retrieved through the Policy Information Point (PIP) at the time of

an access request and prior to or during the computation of the

decision. XACML formally defines an action as a component of a

request with attribute values that specify operations such as read,

write, submit, and approve.

Environmental attributes, which depend on the availability of

system sensors that can detect and report values, are somewhat

different from subject and resource attributes, which are

administratively created. These environmental characteristics are

subject and resource independent, and may include the current

time, day of the week, or threat level.

Figure 1. XACML Policy Constructs

As shown by Figure 1, XACML access policies are structured as

PolicySets that are composed of Policies and optionally other

PolicySets, and Policies that are composed of Rules. Policies and

PolicySets are stored in a Policy Retrieval Point (PRP). Because

not all Rules, Policies, or PolicySets are relevant to a given

request, XACML includes the notion of a Target. A Target

defines a simple Boolean condition that, if satisfied (evaluates to

True) by the attributes, establishes the need for subsequent

evaluation by a Policy Decision Point (PDP). If no Target matches

the request, the decision computed by the PDP is NotApplicable.

In addition to a Target, a rule includes a series of boolean

conditions that if evaluated True have an effect of either Permit or

Deny. If the target condition evaluates to True for a Rule and the

Rule’s condition fails to evaluate for any reason, the effect of the

Rule is Indeterminate. In comparison to the (matching) condition

of a Target, the conditions of a Rule or Policy are typically more

complex and may include functions (e.g., “greater-than-equal”,

“less-than”, “string-equal”) for the comparison of attribute values.

Conditions can be used to express access control relations (e.g., a

doctor can only view a medical record of a patient assigned to the

doctor’s ward) or computations on attribute values (e.g., sum(x, y)

less-than-equal:250).

3.2 Combining Algorithms
Because a Policy may contain multiple Rules, and a PolicySet

may contain multiple Policies or PolicySets, each Rule, Policy, or

PolicySet may evaluate to different decisions (Permit, Deny,

NotApplicable, or Indeterminate). XACML provides a way of

reconciling the decisions each makes. This reconciliation is

achieved through a collection of combining algorithms. Each

algorithm represents a different way of combining multiple local

decisions into a single global decision. There are several

combining algorithms, to include the following:

 Deny-overrides: if any decision evaluates to Deny, or no

decision evaluates to Permit, then the result is Deny. If all

decisions evaluate to Permit, the result is Permit.

 Permit-overrides: if any decision evaluates to Permit, then

the result is Permit, otherwise the result is Deny.

Combining algorithms are applied to rules in a Policy and Policies

within a PolicySet in arriving at an ultimate decision of the PDP.

Combining algorithms can be used to build up increasingly

complex policies. For example, given that a subject request is

Permitted (by the PDP) only if the aggregate (ultimate) decision is

Permit, the effect of the Permit-overrides combining algorithm is

an “OR” operation on Permit (any decision can evaluate to

Permit), and the effect of a Deny-overrides is an “AND” operation

on Permit (all decisions must evaluate to Permit).

3.3 Obligations and Advice
XACML includes the concepts of obligation and advice

expressions. An obligation optionally specified in a Rule, Policy,

or PolicySet is a directive from the PDP to the Policy

Enforcement Point (PEP) on what must be carried out before or

after an access request is approved or denied. Advice is similar to

an obligation, except that advice may be ignored by the PEP. A

few examples include:

 If Alice is denied access to document X: email her manager

that Alice tried to access document X.

 If a user is denied access to a file: inform the user why the

access was denied.

 If a user is approved to view document X: watermark the

document “DRAFT” before delivery.

3.4 Example Policy
Consider the following example XACML policy specification.

For purposes of maintaining the same semantics as XACML, we

use the same element names, but specify policies and rules in

pseudocode for purposes of enhanced readability (instead of exact

XACML syntax).

Policy 1 applies to “All read or write accesses to medical records

by a doctor or intern” (the target of the policy) and includes three

rules. As such, the policy is considered “applicable” whenever a

subject with a role of “doctor” or “intern” issues a request to read

or write a “medical-records” resource. The rules do not refine the

target, but describe the conditions under which read or write

requests from doctors or interns to medical records can be

allowed. Rule 1 will deny any access request (read or write) if the

ward in which the doctor or intern is assigned is not the same

ward where the patient is located. Rule 2 explicitly denies “write”

access requests to interns under all conditions. Rule 3 permits read

or write access to medical-records for “doctor”, regardless of Rule

1, if an additional condition is met. This additional condition

pertains to patients in critical status. Since the intent of the policy

is to allow access under these critical situations, a policy

combining algorithm of “permit-overrides” is used, while still

denying access if only the conditions stated in Rule 1 or Rule 2

apply.

<Policy PolicyId = “Policy 1” rule-combining-

algorithm=”permit-overrides”>

 // Doctor Access to Medical Records //

 <Target>

 /* :Attribute-Category :Attribute ID :Attribute Value */

 :access-subject :Role :doctor

 :access-subject :Role :intern

 :resource :Resource-id :medical-records

 :action :Action-id :read

 :action :Action-id :write

 </Target>

 <Rule RuleId = “Rule 1” Effect=”Deny”>

 <Condition>

 Function: string-not-equal

 /* :Attribute-Category :Attribute ID */

 :access-subject :WardAssignment

 :resource :WardLocation

 </Condition>

 </Rule>

 <Rule RuleId = “Rule 2” Effect=”Deny”>

 <Condition>

 Function: string-equal

 /* :Attribute-Category :Attribute ID :Attribute Value */

 :access-subject :Role :intern

 :action :Action-id :write

 </Condition>

 </Rule>

 <Rule RuleId = “Rule 3” Effect=”Permit”>

 <Condition>

 Function:and

 Function: string-equal

 /* :Attribute-Category Attribute ID :Attribute Value */

 :access-subject :Role :doctor

 Function: string-equal

 /* :Attribute-Category :Attribute ID :Attribute Value */

 :resource :PatientStatus :critical

 </Condition>

 </Rule>

 </Policy>

Together policies (PolicySets and Policies) and attribute

assignments define the authorization state. Table 1 defines the

authorization state for Policy 1 by specifying attribute names and

values. We use a functional notation for reporting on attribute

values with the format A(), where the parameter may be a subject

or resource.

Table 1. Attribute Names and Values and the Authorization

State for Policy 1

Subject Attribute Names and their Domains:

 Role = {doctor, intern}

 WardAssignment = {ward1, ward2}

Resource Attribute Names and their Domains:

 Resource-id = {medical-records}

 WardLocation = {ward1, ward2}

 PatientStatus = {critical}

Action Attribute Names and their Domains:

 Action-id = {read (r), write (w)}

Attribute value assignments when there are two subjects (s1,

s2) and three resources (r1, r2, r3):

 A(s1) = <doctor, ward2>,

 A(s2) = <intern, ward1>,

 A(r1) = <medical-records, ward2, ‘ ‘>,

 A(r2) = <medical-records, ward1, ‘ ‘>, and

 A(r3) = < medical-records, ward1, critical>.

Authorization state:
 (s1, r, r1), (s1, w, r1), (s1, r, r3), (s1, w, r3), (s2, r, r2)

3.5 Delegation
The XACML Policies discussed thus far have pertained to Access

Policies that are created and may be modified by an authorized

administrator. These access policies are not associated with a

specific “Issuer” and are considered “trusted”. As such, a “Trusted

Access Policy” is directly used by the PDP in a combining

algorithm applicable for the policy. In situations where policy

creation needs to be delegated from a centralized administrator to

a subordinate administrator, there is the need to create a new

category of policies that control what policies can be created by

the subordinate administrators. This new category of policies is

called “Administrative Policies”. Similer to Access Policies,

Administrative Policies not associated with a specific issuer are

considered trusted and refered to as “Trusted Administrative

Policies”.

Administrative policies include a delegate and a situation in its

Target. A situation scopes the access rights that can be delegated

and may include some combination of subject, resource, and

action attributes. The delegate is an attribute category of the same

type as a subject, representing the entity(s) that has (have) been

given the authority to create either access or further delegation

rights. If the delegate creates an Access Policy, then he/she

becomes the “Issuer” for that policy. Such an Access Policy then

is considered an “Untrusted Access Policy” since the authority

under which it was created has to be verified. Similarly, when the

delegate creates an “Administrative Policy”, the newly created

policy is considered as an “Untrusted Administrative Policy”

with the same trust verification requirement as “Untrusted Access

Policy”.

Trusted Administrative Policies serve as a root of trust. They are

created under the same authority used to create trusted Access

Policies. A Trusted Administrative Policy gives the delegate the

authority to create Untrusted Administrative Policies or Untrusted

Access Policies. The situation for a newly created Untrusted

Administrative Policy or Untrusted Access Policy is a subset (the

same or narrower in scope) of that specified in the Trusted

Administrative Policy. In addition, an Untrusted Administrative

Policy or Untrusted Access Policy includes a policy issuer tag

with a value that is the same as that of the delegate in the

Administrative Policy under which it was created. Both of these

policies have at least one rule with a PERMIT or DENY effect.

XACML with delegation profile recognizes two types of requests

– Access Requests and Administrative Requests. Access Requests

are issued to (attempt to match targets of) Access Policies or

Untrusted Access Policies. An Untrusted Access Policy includes a

Policy Issuer tag and an Access Policy does not. If the Access

Request matches the target of an Access Policy, the PDP

considers the Access Policy authorized and it is directly used by

the PDP in a combining algorithm to arrive at a final access

decision. If the Access Request matches the target of an Untrusted

Access Policy, the authority of the policy issuer must first be

verified before it can be considered by the PDP. Authority is

determined through establishment of a delegation chain from the

Untrusted Access Policy, through potentially zero or more

Untrusted Administrative Policies, to a Trusted Administrative

Policy. If the authority of the policy issuer can be verified, the

PDP evaluates the access request against the Untrusted Access

Policy; otherwise it is considered an unauthorized policy and

discarded. In a graph where policies are nodes, a delegation chain

consists of a series of edges from the node representing an

Untrusted Access Policy to a Trusted Administrative Policy. To

construct each edge of the graph, the XACML context handler

formulates Administrative Requests.

An Administrative Request has the same structure as an Access

Request except that in addition to attribute categories – access-

subject, resource, and action – it also uses two additional attribute

categories, delegate and decision-info. If a policy Px happens to

be one of the applicable (matched) Untrusted Access Policies, the

administrative request is generated using policy Px to construct an

edge to policy Py using the following:

 Convert all Attributes (and attribute values) used in the

original Access Request to attributes of category delegated.

 Include the value under the PolicyIssuer tag of Px as value

for the subject-id attribute of the delegate attribute category.

 Include the effect of evaluating policy Px as attribute value

(PERMIT, DENY, etc.) for the Decision attribute of

decision-info attribute category.

The Administrative Request constructed is evaluated against the

target for a policy Py. If the result of the evaluation is “Permit”,

an edge is constructed between policies Px and Py. The objective

is to verify the authority for issuance of policy Px. For this to

occur there must exist a policy with its “delegate” set to the policy

issuer of Px. If that policy is Py, then it means policy Px has been

issued under the authority found in policy Py. The edge

construction then proceeds from policy Py until an edge to a

Trusted Administrative Policy is found. The process of selecting

applicable policies for inclusion in the combining algorithm is

illustrated in Figure 2.

By matching of the attributes in the original access request to the

targets in various policies, Untrusted Access Policies P31, P32,

and P33 can be found applicable. A path to a Trusted

Administrative Policy P11 can be found directly from the

applicable Untrusted Access Policy P31. A path to a Trusted

Administrative Policy P12 can be found through Untrusted

Administrative Policy P22 for the applicable Untrusted Access

Policy P32. Because no such path can be found for P33, only the

policies P31 and P32 will be used in the combining algorithm for

evaluating the final access decision.

Figure 2. Utilizing Delegation Chains for Policy Evaluation

3.6 Reference Architecture
XACML reference architecture defines necessary functional

components (depicted in figure 3) to achieve enforcement of its

policies. The authorization process depends on four layers of

functionality: Enforcement, Decision, Access Control Data, and

Administration.

At its core is a PDP that computes decisions to permit or deny

subject requests (to perform actions on resources). Requests are

issued from, and PDP decisions are returned to a PEP using a

request and response language. To convert access requests in

native format (of the operating environment) to XACML access

requests (or convert a PDP response in XACML to a native

format), the XACML architecture includes a context handler. In

the reference architecture in Figure 3, the context handler is not

explicitly shown as a component since we assume that it is an

integral part of the PEP or PDP.

Figure 3. XACML Reference Architecture

A request is comprised of attributes extracted from the PIP,

minimally sufficient for Target matching. The PIP is shown as

one logical store, but in fact may comprise multiple physical

stores. In computing a decision, the PDP queries policies stored in

a PRP. If the attributes of the request are not sufficient for rule

and policy evaluation, the PDP may request the context handler to

search the PIP for additional attributes. Information and data

stored in the PIP and PRP comprise the access control data and

collectively define the current authorization state.

A Policy Administration Point (PAP1) using the XACML policy

language creates the access control data stored in the PRP in terms

of rules for specifying Policies, PolicySets as a container of

Policies, and rule and combining algorithms. The PRP may store

trusted or untrusted policies. Although not included in the

XACML reference architecture, we show a second Policy

Administration Point (PAP2) for creating and managing the

access control data stored in the PIP. PAP2 implements

administrative routines necessary for the creation and

management of attribute names and values for users and

resources. The Resource Access Point (RAP) implements routines

for performing operations on a resource that is appropriate for the

resource type. In the event that the PDP returns a permit decision,

the PEP issues a command to the RAP for execution of the

approved operation resource pair. As indicated by the dashed box

in Figure 3, the RAP, in addition to the PEP, runs in an

application’s operating environment, independent of the PDP and

its supporting components. The PDP and its supporting

components are typically implemented as modules of a

centralized Authorization Server that provides authorization

services for arbitrary types of operations.

4. NGAC
NGAC takes a fundamentally different approach from XACML

for representing requests, expressing and administering policies,

representing and administering attributes, and computing and

enforcing decisions. NGAC is defined in terms of a standardized

and generic set of relations and functions that are reusable in the

expression and enforcement of policies.

For purposes of brevity and readability, the NGAC specification

is presented as a summary that highlights NGAC’s salient features

and should not be considered complete. In some instances, actual

NGAC relational details and terms are substituted with others to

accommodate a simpler presentation.

4.1 Policy and Attribute Elements
NGAC’s access control data is comprised of basic elements,

containers, and configurable relations. While XACML uses the

terms subject, action, and resource, NGAC uses the terms user,

operation, and object with similar meanings. In addition to these,

NGAC includes processes, administrative operations, and policy

classes. Like XACML, NGAC recognizes user and object

attributes; however, it treats attributes along with policy class

entities as containers. These containers are instrumental in both

formulating and administering policies and attributes. NGAC

treats users and processes as independent but related entities.

Processes through which a user attempts access take on the same

attributes as the invoking user.

Although an XACML resource is similar to an NGAC object,

NGAC uses the term object as an indirect reference to its data

content. Every object is an object attribute. The reference to an

object is the value of its “name” attribute. Thus the value of the

“name” attribute of an object is synonimus with the object. The

set of objects reflects entities needing protection, such as files,

clipboards, email messages, and record fields.

Similar to an XACML subject attribute value, NGAC user

containers can represent roles, affiliations, or other common

characteristics pertinent to policy, such as security clearances.

Object containers (attributes) characterize data and other

resources by identifying collections of objects, such as those

associated with certain projects, applications, or security

classifications. Object containers can also represent compound

objects, such as folders, inboxes, table columns, or rows, to satisfy

the requirements of different data services. Policy class containers

are used to group and characterize collections of policy or data

services at a broad level, with each container representing a

distinct set of related policy elements. Every user, user attribute,

and object attribute must be contained in at least one policy class.

Policy classes can be mutually exclusive or overlap to various

degrees to meet a range of policy requirements.

NGAC recognizes a generic set of operations that include basic

input and output operations (i.e., read and write) that can be

performed on the contents of objects that represent data service

resources, and a standard set of administrative operations that can

be performed on NGAC access control data that represent policies

and attributes. In addition, an NGAC deployment may consider

and provide control over other types of resource operations

besides the basic input/output operations. Administrative

operations, on the other hand, pertain only to the creation and

deletion of NGAC data elements and relations, and are a stable

part of the NGAC framework.

4.2 Relations
NGAC does not express policies through rules, but instead

through configurations of relations of four types: assignments

(define membership in containers), associations (to derive

privileges), prohibitions (to derive privilege exceptions), and

obligations (to dynamically alter access state).

4.2.1 Assignments and Associations
NGAC uses a tuple (x, y) to specify the assignment of element x

to element y. In this publication we use the notation x→y to

denote the same assignment relation. The assignment relation

always implies containment (x is contained in y). The set of

entities used in assignments include users, user attributes, and

object attributes (which include all objects), and policy classes.

To be able to carry out an operation, one or more access rights are

required. As with operations, two types of access rights apply:

non-administrative and administrative.

Access rights to perform operations are acquired through

associations. An association is a triple, denoted by ua---ars---at,

where ua is a user attribute, ars is a set of access rights, and at is

an attribute, where at may comprise either a user attribute or an

object attribute. The attribute at in an association is used as a

referent for itself and the policy elements contained by the

attribute. Similarly, the first term of the association, attribute ua,

is treated as a referent for the users contained in ua. The meaning

of the association ua---ars---at is that the users contained in ua

can execute the access rights in ars on the policy elements

referenced by at. The set of policy elements referenced by at is

dependent on (and meaningful to) the access rights in ars.

Figure 4 illustrates assignment and association relations depicted

as a graphs with two policy classes—Project Access, and File

Management. Users and user attributes are on the left side of the

graphs, and objects and object attributes are on the right. The

arrows represent assignment or containment relations and the

dashed lines denote associations.

Collectively associations and assignments indirectly specify

privileges of the form (u, ar, e), with the meaning that user u is

permitted (or has a capability) to execute the access right ar on

element e, where e can represent a user, user attribute, or object

attribute. Determining the existence of a privilege (a derived

relation) is a requirement of, but as we discuss later, not sufficient

in computing an access decision.

Figure 4: Two Example Assignment and Association Graphs

NGAC includes an algorithm for determining privileges with

respect to one or more policy classes and associations.

Specifically, (u, ar, e) is a privilege, if and only if, for each policy

class pc in which e is contained, the following is true:

 The user u is contained by the user attribute of an

association;

 The element e is contained by the attribute at of that

association;

 The attribute at of that association is contained by the policy

class pc, and

 The access right ar is a member of the access right set of that

association.

The left and right columns of Table 2 respectively list derived

privileges for Figures 4a and 4b, when considered independent of

one another. Table 3 lists the privileges for these graphs in

combination.

Note that (u1 r, o1) is a privilege in table 3 because o1 is only in

policy class Project Access and there exist an association

Division---{r}--- Projects, where u1 is in Division, r is in {r}, and

o1 is in Projects. Note that (u1, w, o2) is not a privilege in table 3

because o2 is in both Project Access and File Management policy

classes, and although there exist an association Alice---{r, w}---

o2, where u1 is in Alice, w is in {r, w}, and o2 is in o2 and File

Management, no such association exists with respect to Project

Access.

Table 2: List of derived privileges for the independent

configuration of Figures 4a and 4b

(u1, r, o1), (u1, w, o1), (u1, r,

o2), (u2, r, o1), (u2, r, o2), (u2,

w, o2), (u2, r, o3), (u2, w, o3)

(u1, r, o2), (u1, w, o2), (u2, r,

o2), (u2, w, o2), (u2, r, o3),

(u2, w, o3), (u2, r, o4), (u2, w,

o4)

Table 3. List of derived privileges for the combined

configurations of Figures 4a and 4b

(u1, r, o1), (u1, w, o1), (u1, r, o2), (u2, r, o1), (u2, r, o2), (u2, w,

o2), (u2, r, o3), (u2, w, o3), (u2, r, o4), (u2, w, o4)

Just as access rights to perform read/write operations on resource

objects are defined in terms of associations, so too are capabilities

to perform administrative operations on policy elements and

relations. In contrast to non-administrative access rights, where

resource operations are synonymous with the access rights needed

to carry out those operations (e.g., a “read” operation

corresponding to an “r” access right), the authority stemming

from one or more administrative access rights may be required for

an administrative operation. Administrative access rights to

perform an administrative operation maybe explicitly divided into

two parts, as denoted by “from” and “to” suffixes.

For example, in the in context of Figure 4 we could create two

associations Bob---{create ooa-from}---Bob Home and Division--

-{create ooa-to}---Projects, meaning that the intersection of users

in Bob and Division may create “object to object attribute

assignments” (ooa) from objects in Bob Home to object attributes

in Projects. Remember that the set of referenced policy elements

in the third term of an association (at) is dependent on the access

rights in ars. As such, the absolute mean of the two associations is

that user u2 can create assignments from o2, o3, or o4 to Projects,

Project1, or Project2.

4.2.2 Prohibitions (Denies)
In addition to assignments and associations, NGAC includes three

types of prohibition relations: user-deny, user attribute-deny, and

process-deny. In general, deny relations specify privilege

exceptions. We respectively denote a user-based deny, user

attribute-based deny, and process-based deny relation by

u_deny(u, ars, pe), ua_deny(ua, ars, pe), and p_deny(p, ars, pe),

where u is a user, ua is a user attribute, p is a process, ars is an

access right set, and pe is a policy element used as a referent for

itself and the policy elements contained by the policy element.

The respective meanings of these relations are that user u, users in

ua, and process p cannot execute access rights in ars on policy

elements in pe. User-deny relations and user attribute-deny

relations can be created directly by an administrator or

dynamically as a consequence of an obligation (see Section 4.2.3).

An administrator, for example, could impose a condition where no

user is able to alter their own Tax Return, in spite of the fact that

the user is assigned to an IRS Auditor user attribute with

capabilities to read/write all tax returns. When created through an

obligation, user-deny and user attribute-deny relations can take on

dynamic policy conditions. Such conditions can, for example,

provide support for separation of duty policies (if a user executed

capability x, that user would be immediately precluded from

being able to perform capability y). In addition, the policy

element component of each prohibition relation can be specified

as its complement, denoted by ¬. The respective meaning of

u_deny(u, ars, ¬pe), ua_deny(ua, ars, ¬pe), and p_deny(p, ars,

¬pe) is that the user u, and any user assigned to ua, and process p

cannot execute the access rights in ars on policy elements not in

pe.

Process-deny relations are exclusively created using obligations.

Their primary use is in the enforcement of confinement conditions

(e.g., if a process reads Top Secret data, preclude that process

from writing to any object not in Top Secret).

4.2.3 Obligations
Obligations consist of a pair (ep, r) (usually expressed as when ep

do r) where ep is an event pattern and r is a sequence of

administrative operations, called a response. The event pattern

specifies conditions that if matched by the context surrounding a

process’s successful execution of an operation on an object (an

event), cause the administrative operations of the associated

response to be immediately executed. The context may pertain to

and the event pattern may specify parameters like the user of the

process, the operation executed, and the attribute(s) of the object.

Obligations can specify operational conditions in support of

history-based policies and data services.

Included among history-based policies are those that prevent

leakage of data to unauthorized principals. Consider, for example

the “Project Access” policy depicted in Figure 4(a). Although this

policy suggests that only Group2 users can read Gr2-Secrets, data

in Gr2-Secrets can indeed be leaked to Group1 users. Specifically,

u2 or one of u2’s processes can read o3, and subsequently write

its content to o2, thereby providing u1 the capability to read the

content of o3. Such leakage can be prevented with the following

obligation:

When any process p performs (r, o) where oGr2-Secret do

create p-deny(p, {w}, ¬Gr2-Secret)

The effect of this obligation will prevent a process (and its user)

from reading an object in Gr2-Secret and subsequently writing its

content to an object in a different container (not in Gr2-Secret).

Other history-based policies include conflict of interest (if a user

reads information from a sensitive data set, that user is prohibited

from reading data from a second data set) and Work Flow

(approving (writing to a field of)) a work item enables a second

user to read and approve the work item).

4.3 NGAC Decision Function
The NGAC access decision function controls accesses in terms of

processes. The user on whose behalf the process operates must

hold sufficient authority over the policy elements involved. The

function process_user(p) denotes the user associated with process

p.

Access requests are of the form (p, op, argseq), where p is a

process, op is an operation, and argseq is a sequence of one or

more arguments, which is compatible with the scope of the

operation. The access decision function to determine whether an

access request can be granted requires a mapping from an

operation and argument sequence pair to a set of access rights and

policy element pairs (i.e., {(ar, pe)}) the process’s user must hold

for the request to be granted.

When determining whether to grant or deny an access request, the

authorization decision function takes into account all privileges

and restrictions (denies) that apply to a user and its processes,

which are derived from relevant associations and denies, giving

restrictions precedence over privileges:

A process access request (p, op, argseq) with mapping (op,

argseq)→{(ar, pe)}) is granted iff for each (ari, pei) in {(ar, pe)},

there exists a privilege (u, ari, pei) where u = process_user(p), and

(ari, pei) is not denied for either u or p.

In the context of Figure 4, an access request may be (p, read, o1)

where p is u1’s process. The pair (read, o1) maps to (r, o1).

Because there exists a privilege (u1, r, o1) in table 3 and (r, o1) is

not denied for u1 or p, the access request would be granted.

Assume the existence of associations Division---{create ooa-to}--

-Projects, and Bob---{create ooa-from}---Bob Home in the

context of Figure 4, and an access request (p, assign, <o4,

Project1>) where p is u2’s process. The pair (assign, <o4,

Project1>) maps to {(create ooa-from, o4), (create ooa-to,

Project1)}. Because privileges (u2, create ooa-from, o4) and (u2,

create ooa-to, Project1) would exist under the assumption, and

(create ooa-from, o4) and (create ooa-to, Project1) are not denied

for u2 or p, the request would be granted.

4.4 Delegation
The question remains, how are administrative capabilities

created? The answer begins with a superuser with capabilities to

perform all administrative operations on all access control data.

The initial state consists of an NGAC configuration with empty

data elements, attributes, and relations. A superuser either can

directly create administrative capabilities or more practically can

create administrators and delegate to them capabilities to create

and delete administrative privileges. Delegation and rescinding of

administrative capabilities is achieved through creating and

deleting associations. The principle followed for allocating access

rights via an association is that the creator of the association must

have been allocated the access right over the attribute in question

(as well as the necessary create-assoc-from and create-assoc-to

rights) in order to delegate them. The strategy enables a

systematic approach to the creation of administrative attributes

and delegation of administrative capabilities, beginning with a

superuser and ending with users with administrative and data

service capabilities.

4.5 NGAC Administrative Commands and

Routines
Access requests bearing administrative operations can create and

destroy basic elements, containers and relations. Each

administrative operation corresponds on a one-to-one basis to an

administrative routine, which uses the sequence of arguments in

the access request to perform the access. Each administrative

operation is carried out through one or more primitive

administrative commands. NGAC defines the complete set of

administrative commands and their behavior in detail. The

definitions specify the preconditions that need to exist for the

effect of a command to occur, and the specific effect that the

command has on the contents of NGAC’s Policy Information

Point (policies and attributes store).

The access decision function grants the access request (and

initiation of the respective administrative routine) only if the

process holds all prohibition-free access rights over the items in

the argument sequence needed to carry out the access. The

administrative routine, in turn, uses one or more administrative

commands to perform the access. Administrative commands and

routines are thus the means by which policy specifications and

attributes are formed.

Consider the administrative command CreateAssoc shown below,

which specifies the creation of an association. The preconditions

here stipulate membership of the x, y, and z parameters

respectively to the user attributes (UA), access right sets (ARs),

and attributes (AT) elements of the model. The body describes the

addition of the tuple (x, y, z) to the set of associations (ASSOC)

relation, which changes the state of the relation to ASSOC′.

 createAssoc (x, y, z)

 x ∈ UA ⋀ y ∈ ARs ⋀ z ∈ AT ⋀ (x, y, z) ∉ ASSOC

 {

 ASSOC′ = ASSOC ⋃ {(x, y, z)}

 }

An administrative routine consists mainly of a parameterized

interface and a sequence of administrative command invocations.

Each formal parameter of an administrative routine can serve as

an argument in any of the administrative command invocations

that make up the body of the routine. Administrative routines are

used in a variety of ways. Although an administrative routine

must be in place on a one-to-one basis to carry out an

administrative operation, they can also be used to carry out more

complex administrative tasks comprising of a sequence of

administrative actions.

Consider the following administrative routine that creates a “file

management” user in the context of Figure 4b. The routine

assumes the pre-existence of the user attribute “Users” assigned to

the “File Management” policy class shown in Figure 4b.

create-file-mgmt-user(user-id, user-name, user-home) {

 createUAinUA(user-name, Users);

 createUinUA(user-id, user-name);

 createOAinPC(user-home, File Management);

 createAssoc(user-name, {r, w}, user-home);

 createAssoc(user-name, {create-o-to, delete-o-from}, user-

 home);

 createAssoc(user-name, {create-ooa-from, create-ooa-to,

 delete-ooa-from, create-oaoa-from, create-oaoa-to,

 delete-oaoa-from}, user-home);

 createAssoc(user-name, {create-assoc-from, delete-assoc-

 from}, Users);

 createAssoc(user-name, {create-assoc-to, delete-assoc-to, r-

 allocate, w-allocate}, user-home);}

This routine with parameters (u1, Bob and Bob Home) could have

been used to create “file management” data service capabilities

for user u1 already in Figure 4b. Through the routine the user

attribute “Bob” is created and assigned to “Users”, and user u1 is

created and assigned to “Bob”. In addition, the object attribute

“Bob Home” is created and assigned to policy class “File

Management”. In addition, user u1 is delegated administrative

capabilities to create, organize, and delete object attributes

(presented folders) in Bob Home, and u1 is provided with

capabilities to create, read, write, and delete objects that

correspond to files and place those files into his folders. Finally,

u1 is provided with discretionary capabilities to “grant” to other

users in the “Users” container capabilities to perform read/write

operations on individual files or to all files in a folder in his

Home.

4.6 Arbitrary Data Service Operations
NGAC recognizes administrative operations for the creation and

management of its data elements and relations that represent

policies and attributes, and basic input and output operations (e.g.,

read and write) that can be performed on objects that represent

data service resources. In accommodating data services, NGAC

may establish and provide control over other types of operations,

such as send, submit, approve, and create folder. However, it does

not necessarily need to do so. This is because the basic data

service capabilities to consume, manipulate, manage, and

distribute access rights on data can be attained as combinations of

read/write operations on data and administrative operations on

data elements, attributes, and relations. For example, the create-

file-mgmt-user routine specified above provides a user with

capabilities to create and manage files and folders, and control

and share access to objects in the user’s home directory.

4.7 NGAC Functional Architecture
NGAC’s functional architecture (shown in Figure 5), like

XACML’s, encompasses four layers of functional decomposition:

Enforcement, Decision, Administration, and Access Control Data,

and involves several components that work together to bring

about policy-preserving access and data services.

Among these components is a PEP that traps application requests.

An access request includes a process id, user id, operation, and a

sequence of one or more operands mandated by the operation that

pertain to either a data resource or an access control data element

or relation. Administrative operational routines are implemented

in the PAP and read/write routines are implemented in the RAP.

Figure 5: NGAC Standard Functional Architecture

To determine whether to grant or deny, the PEP submits the

request to a PDP. The PDP computes a decision based on current

configuration of data elements and relations stored in the PIP, via

the PAP. Unlike the XACML architecture, the access request

information from an NGAC PEP together with the NGAC

relations (selectively retrieved by the PDP) provide the full

context for arriving at a decision. The PDP returns a decision of

grant or deny to the PEP. If access is granted and the operation

was read/write, the PDP also returns the physical location where

the object’s content resides, the PEP issues a command to the

appropriate RAP to execute the operation on the content, and the

RAP returns the status. In the case of a read operation, the RAP

also returns the data type of the content (e.g., PowerPoint) and the

PEP invokes the correct data service application for its

consumption. If the request pertained to an administrative

operation and the decision was grant, the PDP issues a command

to the PAP for execution of the operation on the data element or

relation stored in the PIP, and the PAP returns the status to the

PDP, which in turn relays the status to the PEP. If the returned

status by either the RAP or PAP is “successful”, the PEP submits

the context of the access to the Event Processing Point (EPP). If

the context matches an event pattern of an obligation, the EPP

automatically executes the administrative operations of that

obligation, potentially changing the access state. Note that NGAC

is data type agnostic. It perceives accessible entities as either data

or access control data elements or relations, and it is not until after

the access process is completed that the actual type of the data

matters to the application.

5. COMPARISON OF XACML AND NGAC
XACML is similar to NGAC insofar as they both provide flexible,

mechanism-independent representations of policy rules that may

vary in granularity, and they employ attributes in computing

decisions. However, XACML and NGAC differ significantly in

their expression of policies, treatment of attributes, computation

of decisions, and representation of requests. In this section, we

analyze these similarities and differences with respect to the

degree of separation of access control logic from proprietary

operating environments and four ABAC considerations identified

in NIST SP 800-162: operational efficiency, attribute and policy

management, scope and type of policy support, and support for

administrative review and resource discovery. For the purposes of

comparison we normalize some XACML and NGAC

terminology.

5.1 Separation of Access Control Logic from

Operating Environments
Both XACML and NGAC achieve separation of access control

logic of data services from proprietary operating environments,

but to different degrees. XACML’s separation is partial. XACML

does not envisage the design of a PEP that is data service

agnostic. An XACML deployment consists of one or more data

services, each with an operating environment-dependent PEP, and

operating environment-dependent operational routines and

resource types, that share a common PDP and access control

information consisting of policies and attributes. In other words, a

PEP under the XACML architecture is tightly coupled to a

specific operating environment for which it was designed to

enforce access.

The degree of separation that can be achieved by NGAC is near

complete. Although an NGAC deployment could include a PEP

with an Application Programming Interface (API) that recognizes

operating environment-specific operations (e.g., send and forward

operations for a messaging system), it does not necessarily need to

do so. NGAC includes a standard PEP with an API that supports a

set of generic, operating environment-agnostic operations (read,

write, create, and delete policy elements and relations). This API

enables a common, centralized PEP to be implemented to serve

the requests of multiple applications. Although the generic

operations may not meet the requirements of every application

(e.g., transactions that perform computations on attribute values),

calls from many applications can be accommodated. This includes

operations that generically pertain to consumption, alteration,

management, and sharing of data resources. As a consequence,

NGAC can completely displace the need for an access control

mechanism of an operating environment in that through the same

PEP API, set of operations, access control data elements and

relations, and functional components, arbitrary data services can

be delivered to users, and arbitrary, mission-tailored access

control policies can be expressed and enforced over executions of

application calls.

5.2 Operational Efficiency
An XACML request is a collection of attribute name, value pairs

for the subject (user), action (operation), resource, and

environment. XACML identifies relevant trusted and untrusted

access policies and rules for computing decisions through a search

for Targets (conditions that match the attributes of the request).

Because multiple Policies in a PolicySet and/or multiple Rules in

a Policy may produce conflicting access control decisions,

XACML resolves these differences by applying collections of

potentially several rule and policy combining algorithms. If the

attributes are not sufficient for the evaluation of an applicable

rule, the PDP may search for additional attributes. The entire

process involves converting a PEP request into an XACML

canonical form, collecting attributes, matching target conditions,

computing rules, (optionally) issuing administrative requests (for

determining a chain of trust for applicable untrusted access

policies), resolving conflicts, and converting an XACML access

decision to a PEP specific response, involving at least two data

stores.

NGAC is inherently more efficient. An NGAC request is

composed of a process id, user id, operation, and a sequence of

one or more operands mandated by the operation that affects

either a resource or access control data. NGAC identifies relevant

policies, attributes and prohibitions, by reference (through

relations) when computing a decision. Like XACML, NGAC

combines policies. However, it does not compute and then

combine multiple local decisions, but rather takes multiple

policies into consideration when determining the existence of an

appropriate privilege. All information necessary in computing an

access decision resides in a single database. NGAC does not

include a context handler for converting requests and decisions to

and from its canonical form or for retrieving attributes. Although

considered a component of its access control process, obligations

do not come into play until after a decision has been rendered and

data has been successfully altered or consumed.

5.3 Attribute and Policy Management
Because XACML is implemented in XML, it inherits XML’s

benefits and drawbacks. The flexibility and expressiveness of

XACML, while powerful, make the specification of policy

complex and verbose [12]. Applying XACML in a heterogeneous

environment requires fully specified data type and function

definitions that produce a lengthy textual document, even if the

actual policy rules are trivial. In general, platform-independent

policies expressed in an abstract language are difficult to create

and maintain by resource administrators [14]. Unlike XACML,

NGAC is a relations-based standard, which avoids the syntactic

and semantic complexity in defining an abstract language for

expressing platform-independent policies [12]. NGAC policies are

expressed in terms of configuration elements that are maintained

at a centralized point and typically rendered and manipulated

graphically. For example, to describe hierarchical relations and

inheritance properties of attributes, NGAC requires only the

addition of links representing assignment relations between them;

in XACML, relations need to be inserted in precise syntactic

order.

XACML’s ability to specify policies as logical conditions

provides policy expression efficiency. Consider the XACML

Policy specified in Section 3.4 and the attribute names, values and

value assignments in table 1. NGAC could express this same

policy and authorization state using enumerated attributes,

assignments, and associations. See [21] for a detailed

configuration. The NGAC eqivelent policy would include five

association relations, while XACML uses just three rules. As the

number of Wards that are considered by the policy increases, so

will the number of NGAC association relations, but the number of

XACML rules will always remain the same. Recognize that for

this policy, the number of attributes and attribute assignments will

always be the same for XACML and NGAC regardless of the

number of Wards considered. On the other hand, for some

policies, the number of XACML attribute assignments can far

exceed those necessary for an NGAC equivalent policy. Consider

the TCSEC MAC Policy [3, 5] expressed using XACML rules

and NGAC relations. For the XACML TCSEC MAC policy to

work (using static rules), all resources whether classified or

unclassified are required to be assigned to attributes to prevent

classified data from being leaked to unclassified data. For the

NGAC TCSEC MAC policy to work (using obligations (e.g.,

when any process p performs (read, o) where o→Top Secret do

create p-deny(p, {write}, ¬Top Secret)), only objects that are

actually classified (e.g., Secret and Top Secret) are required to be

assigned to attributes. See [21] for detailed XACML and NGAC

expressions of the TCSEC MAC policy.

Proper enforcement of data resource policies is dependent on

administrative policies. This is especially true in a federated or

collaborative environment, where governance policies require

different organizational entities to have different responsibilities

for administering different aspects of policies and their dependent

attributes.

XACML and NGAC differ dramatically in their ability to impose

policy over the creation and modification of access control data

(attributes and policies). NGAC manages attributes and policies

through a standard set of administrative operations, applying the

same enforcement interface and decision making function as it

uses for accessing data resources. XACML does not recognize

administrative operations, but instead manages policy content

through a Policy Administration Point (PAP) with an interface

that is different from that for accessing data resources. XACML

provides support for decentralized administration of some of its

access policies. However the approach is only a partial solution in

that it is dependent on trusted and untrusted policies, where

trusted policies are assumed valid, and their origin is established

outside the delegation model. Furthermore, the XACML

delegation model does not provide a means for imposing policy

over modification of access policies, and offers no direct

administrative method for imposing policy over the management

of its attributes.

NGAC enables a systematic and policy-preserving approach to

the creation of administrative roles and delegation of

administrative capabilities, beginning with a single administrator

and an empty set of access control data, and ending with users

with data service, policy, and attribute management capabilities.

NGAC provides users with administrative capabilities down to the

granularity of a single configuration element, and can deny users

administrative capabilities down to the same granularity.

5.4 Scope and Type of Policy Support
Although data resources may be protected under a wide variety of

different access policies, these policies can be generally

categorized as either discretionary or mandatory controls.

Discretionary access control (DAC) is an administrative policy

that permits system users to allow or disallow other users’ access

to objects that are placed under their control [15]. Although

XACML can theoretically implement DAC policies, it is not

efficient. Consider the propagation feature of DAC. DAC permits

owners/creators of objects to grant some or all of their capabilities

to other users, and the grantees can further propagate those

capabilities on to other users. The overall DAC feature to grant

privileges to another user and the ability of the grantee to

propagate those privileges cannot be supported in XACML syntax

using “Access Policies” alone.

Therefore, all the capabilities of the owner/creator of an object

together with administrative capabilities to grant those privileges

have to be specified using a Trusted Administrative policy. The

capabilities held by owner/creator can be captured by designating

the owner/creator of the object as the “access-subject”, and the

administrative capability to grant privileges to others can be

captured by designating the owner/creator as a delegate in that

policy type. The creation of this trusted administrative policy

enables creation of derived administrative policies with the

owner/creator as the policy issuer with the specified set of

capabilities. The specification of a “delegate” in this derived

administrative policy (not trusted) provides a means for the

owner/creator to grant capabilities to other users, as well as the

ability for the grantee to propagate those capabilities to other

users. However, while it is theoretically possible to implement

DAC by leveraging XACML’s delegation feature, this approach

involves significant administrative overhead. The solution

requires the specification of a trusted administrative policy and a

set of derived administrative policies for every object

owner/creator, and for all grantees of the capabilities.

Conversely, NGAC has a flexible means of providing users with

administrative capabilities to include those necessary for the

establishment of DAC policies, as shown in section 5.4.

In contrast to DAC, mandatory access control (MAC) enables

ordinary users’ capabilities to execute resource operations on data,

but not administrative capabilities that may influence those

capabilities. MAC policies unavoidably impose rules on users in

performing operations on resource data. MAC policies can be

further characterized as controls that accommodate confinement

properties to prevent indirect leakage of data to unauthorized

users, and those that do not.

Expression of non-confinement MAC policies is perhaps

XACML’s strongest suit. XACML can specify rules and other

conditions in terms of attribute values of varying types. There are

undoubtedly certain policies that are expressible in terms of these

rules that cannot be easily accommodated by NGAC. This is

especially true when treating attribute values as integers. For

example, to approve a purchase request may involve adding a

person’s credit limit to their account balance. Furthermore,

XACML takes environmental attributes into consideration in

expressing policy, and NGAC does not. However, there are some

non-confinement MAC properties, such as a variety of history-

based policies that NGAC can express, and XACML cannot.

Although XACML has been shown to be capable of expressing

aspects of standard RBAC [1] through an XACML profile [16],

the profile falls short of demonstrating support for dynamic

separation of duty, a key feature used for accommodating the

principle of least privilege, and separation of duty, a key feature

for combatting fraud. Annex B of Draft standard Next Generation

Access Control – Generic Operations and Data Structures

(NGAC-GOADS) [20] demonstrates NGAC support for all

aspects of the RBAC standard.

In addition to static and dynamic separation of duty, NGAC has

shown support for history-based separation of duty [7]. In their

seminal paper on the subject [19], Simon and Zurko describe

history-based separation of duty as the most accommodating form

of separation of duty, subsuming the policy objectives of other

forms.

In contrast to NGAC, XACML does not recognize the capabilities

of a process independent of the capabilities of its user. Without

such features, XACML is ill equipped to support confinement and

as such is arguably incapable of enforcement of a wide variety of

policies. These confinement-dependent policies include some

instances of role-based access control (RBAC), e.g., “only doctors

can read the contents of medical records”, originator control

(ORCON) [10] and Privacy, e.g., “I know who can currently read

my data or personal information”, conflict of interest [4], e.g., “a

user with knowledge of information within one dataset cannot

read information in another dataset”, or Multi-level Security [3].

[5]. Through imposing process level controls in conjunction with

obligations, NGAC has shown [7] support for these and other

confinement-dependent MAC controls.

5.5 Administrative Review and Resource

Discovery
A desired feature of access controls is review of capabilities (op,

o) of users and access control entries (u, op) of objects, where u is

a user, op is an operation, and o is an object [15] [11]. These

features are often referred to as “before the fact audit” and

resource discovery. “Before the fact audit” is one of RBAC’s

most prominent features [18]. Being able to discover or see a

newly accessible resource is an important feature of any access

control system. NGAC supports efficient algorithms for both per-

user and per-object review. Per-object review of access control

entries is not as efficient as a pure access control list (ACL)

mechanism, and per-user review of capabilities is not as efficient

as that of RBAC. However, this is due to NGAC’s consideration

of conducting review in a multi-policy environment. NGAC can

efficiently support both per-object and per-user reviews of

combined policies, where RBAC and ACL mechanisms can do

only one type of review efficiently, and rule-based mechanisms

such as XACML, although able to combine policies, cannot do

either efficiently. In other words, there exists no method of

determining the authorization state without testing all possible

decision outcomes.

6. REFERENCES
[1] Information technology – Role-Based Access Control

(RBAC), INCITS 359-2004, American National Standard for

Information Technology, American National Standards

Institute, 2004.

[2] Information technology - Next Generation Access Control -

Functional Architecture (NGAC-FA), INCITS 499-2013,

American National Standard for Information Technology,

American National Standards Institute, March 2013.

 [3] D. Bell and L. La Padula. Secure computer systems: unified

exposition and MULTICS. Report ESD-TR-75-306, The

MITRE Corporation, Bedford, Massachusetts, March 1976.

[4] D.F.C. Brewer and M.J. Nash, “The Chinese Wall Security

Policy,” 1989 IEEE Symposium on Security and Privacy,

Oakland, California, USA, May 1-3, 1989, pp. 206-214.

http://dx.doi.org/10.1109/SECPRI.1989.36295 [accessed

11/15/15]

[5] DoD Computer Security Center, Trusted Computer System

Evaluation Criteria (December 1985).

[6] D.F. Ferraiolo, S.I. Gavrila, V.C. Hu, and D.R. Kuhn,

“Composing and Combining Policies Under the Policy

Machine,” Tenth ACM Symposium on Access Control

Models and Technologies (SACMAT ‘05), Stockholm,

Sweden, 2005, pp. 11-20.

[7] D.F. Ferraiolo, V. Atluria, and S.I. Gavrila, “The Policy

Machine: A Novel Architecture and Framework for Access

Control Policy Specification and Enforcement,” Journal of

Systems Architecture, vol. 57, no. 4, pp. 412-424, April

2011. http://dx.doi.org/10.1016/j.sysarc.2010.04.005

[accessed 11/15/15]

[8] D. Ferraiolo, S. Gavrila, and W. Jansen, National Institute of

Standards and Technology (NIST) IR-7987 Revision 1,

“Policy Machine: Features, Architecture, and Specification,”

October 2015.

http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7987r1.pdf

[9] D. Ferraiolo, S. Gavrila, and W. Jansen, “On the Unification

of Access Control and Data Services,” in Proc. IEEE 15th

International Conference of Information Reuse and

Integration, 2014, pp. 450 – 457.

http://csrc.nist.gov/pm/documents/ir2014_ferraiolo_final.pdf

[10] R. Graubart, On the need for a third form of access control,

in: Proc. National Computer Security Conference, 1989, pp.

296 –304.

[11] V.C. Hu, D.F. Ferraiolo, and D.R. Kuhn, National Institute

of Standards and Technology (NIST) Interagency Report

(IR) 7316, “Assessment of Access Control Systems,”

September 2006.

http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf

[12] V. C. Hu, D.F. Ferraiolo, and K. Scarfone, Access Control

Policy Combinations for the Grid Using the Policy Machine,

Cluster Computing and the Grid, 2007, pp. 225-232.

[13] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R.

Miller, and K. Scarfone, National Institute of Standards and

Technology (NIST) SP-800-162, Guide to Attribute Based

Access Control (ABAC) Definition and Considerations,

January 2014.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.S

P.800-162.pdf

[14] M. Lorch et al, “First Experience Using XACML for Access

Control in Distributed Systems, ACM Workshop on XML

Security, Fairfax, Virginia, 2003.

[15] Guide to Understanding Discretionary Access Control in

Trusted Systems, NCSC-TG-003, Version-1, National

Computer Security Center, Fort George G. Meade, USA,

September 30, 1987, 29 pp.

http://csrc.nist.gov/publications/secpubs/rainbow/tg003.txt

[16] XACML Profile for Role Based Access Control (RBAC),

Committee Draft 01, February 2004.

[17] The eXtensible Access Control Markup Language

(XACML), Version 3.0, OASIS Standard, January 22, 2013.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-

en.pdf

[18] 2010 Economic Analysis of Role-Based Access Control, RTI

Number 0211876, Research Triangle Institute, December

2010.

[19] R. Simon, M. Zurko, Separation of duty in role based access

control environments, Proc. New Security Paradigms

Workshop, 1997.

[20] Information technology – Next Generation Access Control –

Generic Operations and Data Structures, INCITS 526,

American National Standard for Information Technology,

American National Standards Institute, to be published.

[21] D. F. Ferraiolo, R. Chandramouli, V. Hu, and R. Kuhn,

National Institute of Standards and Technology DRAFT

(NIST) SP-800-178, A Comparison of Attribute Based

Access Control (ABAC) Standards for Data Services,

December 2015.

http://csrc.nist.gov/publications/drafts/800178/sp800_178_dr

aft.pdf

http://dx.doi.org/10.1109/SECPRI.1989.36295
http://dx.doi.org/10.1016/j.sysarc.2010.04.005
http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7987r1.pdf
http://csrc.nist.gov/pm/documents/ir2014_ferraiolo_final.pdf
http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf
http://csrc.nist.gov/publications/secpubs/rainbow/tg003.txt
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

