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a b s t r a c t

We present a comprehensive approach to handle perception uncertainty to reduce failure rates in robotic
bin-picking. Our focus is on mixed-bins. We identify the main failure modes at various stages of the bin-
picking task and present methods to recover from them. If uncertainty in part detection leads to per-
ception failure, then human intervention is invoked. Our approach estimates the confidence in the part
match provided by an automated perception system, which is used to detect perception failures. Human
intervention is also invoked if uncertainty in estimated part location and orientation leads to a singu-
lation planning failure. We have developed a user interface that enables remote human interventions
when necessary. Finally, if uncertainty in part posture in the gripper leads to failure in placing the part
with the desired accuracy, sensor-less fine-positioning moves are used to correct the final placement
errors. We have developed a fine-positioning planner with a suite of fine-motion strategies that offer
different tradeoffs between completion time and postural accuracy at the destination. We report our
observations from system characterization experiments with a dual-armed Baxter robot, equipped with a
Ensenso three-dimensional camera, to perform bin-picking on mixed-bins.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Bin-picking is a precursor to kitting [1,2] and assembly opera-
tions in many discrete-part manufacturing applications [3–5]. The
use of robots for bin picking can enable handling a wide variety of
parts without any change in the hardware; hence it offers a flex-
ible automation solution. Machine vision is a key enabling tech-
nology in this context [6,7]. Robotic bin-picking, guided by vision
and other sensor modalities, has been successfully demonstrated
with a high degree of reliability for bins containing a single type of
part with a relatively simple shape [8].

When bins are complex, the reliability of robotic bin picking
operations is reduced. The complexity in bins might arise due to
the presence of multiple different types of parts. Such bins are
called mixed bins. Recognizing the desired part in a mixed bin
and estimating its location is a much more challenging problem
from the perception point of view. Unstructured, randomly dis-
tributed, mixed-bins make the perception problem challenging
rvel),
due to the following reasons: (1) parts may lie in widely different
three dimensional (3D) postures and (2) parts may be either
partially or completely occluded by other parts. The problem is
compounded due to factors such as sensor noise, background
clutter, shadows, complex reflectance properties, and poor
lighting conditions.

The complexity of the bin might also increase because the parts
present in the bin have complex shapes, and can only be removed
by holding them at certain locations and moving them in certain
directions. Uncertainty in part location and orientation estimates
may lead to a failure when the robot tries to extract the part from
the bin. The potential for part tangling, and occlusion of grasping
surfaces, makes the planning problem challenging because of
perception uncertainties.

The effect of perception uncertainty propagates through every
stage of task execution including, part recognition and pose esti-
mation, singulation, and positioning. This thereby impacts the
overall system performance. For example, the detected part match
may not correspond to the specified part. Uncertainty in pose es-
timation may lead to poor singulation plans, and thereby singu-
lation failures. Finally, uncertainty in the initial grasped posture of
the part may lead to errors in part posture at the destination after
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Fig. 1. Flowchart showing how uncertainty is handled at various stages of the bin-picking task.

K.N. Kaipa et al. / Robotics and Computer-Integrated Manufacturing 42 (2016) 17–3818
final drop off. However, many manufacturing applications require
parts to be placed in a specified posture, within tight tolerances,
before tasks like assembly or packaging can take place [9].

To improve the reliability of the bin-picking operations, we
need to characterize the effect of perception uncertainty on bin-
picking task execution performance. We also need to develop
methods to deal with situations when high perception uncertainty
requires specialized methods to prevent the failure. In this paper,
we present a comprehensive approach to handle perception un-
certainty to reduce failure rates in unstructured robotic bin-pick-
ing. The main failure modes at various stages of the bin-picking
task and methods to recover from them are shown in Fig. 1. We
first characterize the uncertainty in estimating the six dimensional
(6D) posture of a part match found by using an automated per-
ception system. The input to the system is a CAD model of the part
to be singulated and a 3D point cloud of the mixed-bin. The re-
sulting uncertainty information is used to estimate confidence in
part recognition and pose estimation. If perception uncertainty
results in a part detection failure or singulation planning failure,
then human intervention is invoked. We have developed a user
interface that enables remote human interventions when neces-
sary. Intervention in this context may correspond to the human
finding a good part match and obtaining an improved estimate of
the part pose by using appropriate controls present in the user
interface. If perception uncertainty results in an unacceptable er-
ror in the final posture of the part at the destination, then fine
positioning is invoked to achieve the desired postural accuracy.
We have developed a fine-positioning planner to correct errors in
the destination posture of the part arising due to uncertainty in
the initial grasped state. We have developed a suite of fine-motion
strategies that offer different tradeoffs between completion time
and postural accuracy at the destination.

In our earlier works, we presented preliminary versions of
automated perception algorithm [10], perception failure resolution
using human intervention [11], singulation planning [12], and fine-
positioning [13]. We treated each problem in an isolated manner.
This paper significantly improves upon methods reported in our
previous works and presents a comprehensive approach to iden-
tify and address perception-uncertainty-induced failure modes in
robotic unstructured bin-picking.
2. Related work

Many research groups have addressed the problem of robotic
bin-picking. Different aspects of robotic bin-picking include per-
ception, grasp-planning, and motion planning. Each of these re-
presents a vast area of research in itself. Therefore, we survey only
prior research that integrated these aspects to achieve bin-picking
or grasping. A summary of the focus of various works on bin-
picking is shown in Table 1. In our survey, we also pay attention to
whether uncertainty was taken into account, and if so, how it was
handled at different stages of task execution. Most of the research
in bin-picking considered the problem up to stage where the part
is successfully picked from the bin, while ignoring the next stage
of delivering the part in a known posture accurately at the desti-
nation. We survey the field of sensorless manipulation where this
problem was treated separately.

2.1. Perception for robotic bin-picking

Most previous attempts on a systems approach to bin-picking
mainly focussed on the perception problem
[25,24,23,21,4,20,19,18,16,15,14], while assuming accurate robot
grasping. However, model inaccuracies and sensor uncertainties
make it difficult for a majority of the perception algorithms to
provide reliable object recognition and localization estimates,
thereby affecting overall bin-picking performance.

Except for a few, many of these methods ignored the evaluation
of perception quality before proceeding to picking the part. Liu
et al. [4] presented a directional, chamfer-matching-based, object
localization and pose estimation in heavy clutter for robotic bin
picking. The accuracy of their method was tested empirically by
evaluating the consistency of a pose estimate across multiple
viewpoints of the camera. This was achieved by placing an object
in the scene, estimating its pose in local frames of different camera
viewpoints, transforming them into the world frame, and plotting
the histogram of deviations from the median pose estimate in 6D.
But there was no mechanism in place to rate the perception result
during task execution.

Papazov et al. [33] presented a 3D object-recognition and pose-
estimation approach for grasping, based on geometric descriptors,
hashing techniques, and random-sampling consensus (RANSAC)-
like sampling strategies. The authors evaluated the quality of a
recognition hypothesis by defining an acceptance function,



Table 1
Summary of aspects addressed in various works on bin-picking.

Main focus Sensor Bins Parts Robot implementation

[14] Perception Sick Ranger and laser diode Mixed Plastic gears, rings, etc. No
[15] Perception 3D depth sensor Homogeneous No
[16,17] Perception Kinect Homogeneous Connector pipes Yes
[18] Perception 2D monochrome camera Homogeneous 2D planar objects Yes
[19] Perception 2D camera with multi-lighting Homogeneous Shiny brackets Yes
[20] Perception Stereo camera Homogeneous Wheel hubs, brake disks, piston rods Yes
[4] Perception Multi-flash camera Mixed Shiny metal parts, texture-less plastic

objects
Yes

[21] Perception 3D camera Homogeneous Alternators No
[22] Perception Laser scanner Homogeneous Joist hangers, plug gauges, piston rods Yes
[23] Perception Laser ranging No
[24] Perception Laser ranging and video imaging Mixed Gears, balls, wooden objects No
[25] Perception Photometric stereo Homogeneous toroid shaped parts Yes
[26] Grasp planning 3D camera Homogeneous Coil springs, metal linkages Yes
[27] Grasp planning 3D camera Mixed piston rods, plastic toys Yes
[28] Grasp planning 3D camera Homogeneous piston rods Yes
[29] Motion planning 3D grid scanner Homogeneous Metal pipes Yes
[30] Perception and grasp planning SICK IVP Ruler E1200 laser line

scanner
Homogeneous piston rods Yes

[31] Perception and grasp planning solid state range camera Homogeneous Boxes Yes
[32] Grasp and motion planning 3D camera Homogeneous Bananas Yes
[33] Perception, grasp, motion planning 3D laser scanner Mixed cans, polyhedral shaped objects Yes
[34] Systems approach, human robot

collaboration
Time-of-flight camera Homogeneous Plastic pipes Yes

[35] Learning to improve grasping 3D camera Homogeneous Yes
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comprising a visibility term and a penalty term. The visibility term
was computed as the ratio of transformed model points that fell
within a certain threshold band of the scene to the total number of
the model points. The penalty term penalized a hypothesis if it
violated the condition that a scene point lying behind the localized
model cannot be seen through an opaque surface when viewed
from the perspective of the camera. The penalty was computed as
a ratio of transformed model points, which are between the pro-
jection center of the range image and a range-image pixel, to the
total number of model points. The hypothesis was accepted if the
visibility term was greater than, and the penalty term was lesser
than, certain manually set thresholds. The authors addressed un-
certainty by empirically testing how the recognition rate of their
algorithm varied as a function of zero-mean Gaussian noise added
into the noise-free, scene data.

Perception failures were not addressed explicitly in most of the
above approaches. The robotic bin-picking system developed by
Fuchs et al. [34] has built-in mechanisms to detect object-locali-
zation failures. In particular, they assume significant uncertainty in
object pose estimation and initiate grasping only when the relia-
bility of the pose hypothesis falls below a given threshold.
Otherwise, the localization is restarted from a different view point
of the camera. Another relevant work is an algorithm, presented
by Pronobis and Caputo [36], which is able to measure its own
level of confidence in performing a visual, place-recognition task.
Taking a support vector machine approach, the authors propose a
method for measuring the confidence level of the classification
output based on the distance of a test image and the average
distance of training vectors.

2.2. Grasping under uncertainty

Grasp planning literature is very vast. Approaches can be
broadly divided into analytical and data-driven methods [37]. A
review of analytical approaches to grasp synthesis can be found
in [38]. A comprehensive survey on data-driven grasp synthesis
can be found in [39]. Data-driven approaches have become more
popular over the past decade with the advent of simulation-
based tools like Graspit! [40]. Grasp evaluation is usually based
on a widely used, force-closure, quality metric for precision
grips [41].

Given that pose-estimation error impacts grasping perfor-
mance in practice, many researchers have addressed the problem
of grasp planning under perception uncertainty [42–46] and
uncertainty in object shape due to manufacturing tolerances, and
mechanics, due to limits on sensing during grasping [47]. Nguyen
[42] incorporated contact-location uncertainty into force-closure
analysis. Roa and Suarez [43] proposed a grasp-synthesis ap-
proach that accounted for the fact that the real fingers can never
contact the object at the computed points. Zheng and Qian [44]
considered both friction uncertainty and position uncertainty in
their force-closure analysis. Each of these approaches considered
the effects of contact location uncertainty independently, but did
not address the effects of calibration error and object pose un-
certainty on grasp quality. Grasping under pose uncertainty was
addressed in the works of Berenson et al. [45] and Weisz and
Allen [46].

Kehoe et al. [47] considered uncertainty in object shape due to
manufacturing tolerances, and mechanics, due to limits on sensing
during grasping. Their algorithm takes three inputs: an approx-
imate object outline, Gaussian uncertainty around each vertex, and
center of mass. The grasp-quality metric was defined as a lower
bound on the probability of achieving force closure, and was
computed using Monte Carlo sampling. Glover et al. [48] proposed
probabilistic models of object geometry for grasp planning. Baye-
sian models have been used by Goldberg and Mason [49] and
Hsiao et al. [50] to address pose uncertainty in grasping.

Most approaches described above focus on grasping problems
that involve interactions between the gripper and the single object
to be grasped. However, we are interested in the class of bin-
picking problems where performance is measured as a composite
of (1) quality of approach toward the object, (2) grasp quality, and
(3) quality of extraction of the grasped object. Dupius et al. [28]
proposed a two-fingered, grasp-planning method in the context of
vision-guided robotic bin-picking. Off-line grasp candidates are
generated for each instance of the object based on the quality
metrics provided by the Graspit! simulator. Each candidate in-
stance is evaluated online based on how many pre-generated
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grasps are collision-free with respect to neighboring objects. Their
approach dealt with bins with the same type of parts.

2.3. Sensorless manipulation to reduce uncertainty in positioning

Sensorless manipulation approaches can be broadly divided
into two categories based on whether part manipulation is in-
duced by the robot through external surfaces, or achieved by the
robot directly using non-prehensile manipulation moves. Erdmann
and Mason [51] presented a robot motion planner that generated
tray-tilting plans to orient planar objects. In particular, a robot
tilted the tray containing the randomly oriented object causing the
object to slide into walls, along walls, and into corners, until the
object settled into a desired orientation. Erdmann et al. [52] ex-
tended the tilting strategy to three-dimensional polyhedral parts.
Akella et al. [53] used a combination of a controlled one degree-of-
freedom joint and a constant-velocity conveyor belt to orient
planar parts.

In all the above approaches, the robot induced part motions
through an external surface rather than applying the forces di-
rectly on the part. Later, non-prehensile manipulation methods
were proposed where the gripper fingers interacted with the part
without encompassing it [54,55]. Goldberg [54] presented a sen-
sorless manipulation method, in which a simple parallel-jaw
gripper applied forces on the part directly, resulting in its specified
orientation in a finite sequence of steps. Similarly, Erdmann [55]
presented a non-prehensile, two-palm, manipulation method for
orientation of polyhedral objects. The entire palms were used ra-
ther than the fingertips alone. Dogar and Srinivasa [56] used the
notion of task mechanics to introduce push-grasp plans for dex-
terous hands in the presence of object-pose uncertainty and high
clutter. However, this was presented as a grasping technique as
opposed to post-grasp manipulation. Kristek and Shell [57] ex-
tended the sensorless, non-prehensile manipulation to deformable
polygonal parts. Other recent examples of sensorless manipulation
include [58,59], and [60].
1 Video link: https://www.youtube.com/watch?v¼ZfcCmijILsw
2 DISCLAIMER: Any commercial product or company name in this paper is

given for informational purposes only. Their use does not imply recommendation
or endorsement by NIST or the University of Maryland.
3. Problem formulation

3.1. Hybrid cell

Hybrid cells support different human–robot collaboration
(HRC) modes [61–64]. State-of-the-art HRC approaches have
mainly considered humans and robots physically sharing the
workspace inside the hybrid cell. Human and robot may be
working concurrently on a task, sequentially on the task, or one of
them may perform most of the operations, while the other plays
an assistive role. We take a different approach to achieving HRC in
hybrid cells. We are mainly interested in a human-on-the-call
mode that enables a remotely located human to take over when
the robot needs help.

However, implementing this mode requires the robot to be cap-
able of detecting an impending failure and invoking human inter-
vention. Currently, robots have difficulty in assessing their own
capability to complete a task. Consider the following case. A robot is
capable of picking a part if the part is presented to it at a certain
location. However, if the part has shifted from its nominal location,
the robot might not be able to pick it. The robot does not simply
knowwhere the transition boundary between task-execution success
and failure lies. As it attempts to pick the part, it might bump into it,
push it further away, and jam the material handling system. This can,
in turn, trigger a system fault and cause a shut-down of the system.

To use robots in small-production batch operations, they must
be able to estimate the probability of task completion before be-
ginning the task. This will enable robots to assess their confidence
in doing a task. If the robot does not have a high confidence in
completing a task, then it can call for help. This will enable human
operators to provide the robot the needed assistance and prevent
major system faults that result from task-execution failures. Pro-
viding such task assistance to robots is cheaper than recovering
from a system shutdown. We illustrate these concepts in the
context of robotic bin-picking in this paper.

The experimental setup used (Fig. 2) consists of RoboSAM,1 a
ROBotic Smart Assistant for Manufacturing and a user interface that
allows remote human interventions. The RoboSAM system is built
using a Baxter Research Robot2 and an Ensenso 3D camera. We are
mainly interested in part-order problems that specify multiple
quantities of different parts to be singulated from a bin of randomly
scattered parts and to be delivered in a known posture at a desti-
nation location as rapidly as possible. An illustration of the singu-
lation task is shown in Fig. 3. Successful singulation, given a noisy
estimate of part posture, primarily depends on (1) planning the
approach of the gripper toward the part such that it does not collide
with other nearby parts, (2) determining grasp postures that result
in force-closure of the grasped part, and (3) performing tangle-free
extraction. Different singulation-failure scenarios are shown in
Fig. 4. We consider representative industrial parts that afford dif-
ferent recognition and grasping complexities to illustrate various
challenges encountered during the bin-picking task. Fig. 5 shows
examples of part placements in a bin with varying degrees of per-
ception and singulation complexities. In this context, the quality of
the point cloud is a function of the fraction of points on the surface
of the part that are exposed to the camera, and thereby, get regis-
tered in the point cloud. For example, in Fig. 5(a), the part to be
singulated gives a good point cloud, since a large fraction of its
surface area is visible from the camera. However, in Fig. 5(b), the
part is in an orientation such that relatively few points get regis-
tered, resulting in a poor quality of the point cloud. Finally, fine
positioning is invoked if needed to achieve the desired postural
accuracy. Fig. 6 illustrates the problem of fine-positioning.

3.2. Definitions
Definition 1. A general 6D posture is represented by
 α β γℓ ∈ = { }x y z, , , , ,6 where ( )x y z, , and α β γ( ), , represent the

position and orientation (in Euler angle representation), respec-
tively in 3D.

Definition 2. A mixed-bin κ( { })n n, , i is a bin of randomly scat-
tered pile of n parts, comprising multiple instances ni of κ different
part types:

∑

κ κ( { }) = { = … = … }|

| = =
( )

κ

( )

=

n n p j n i

n n

, , : 1, 2, , , 1, 2, ,

1

i i
j

i

i
i

1

where part ( )pi
j represents the jth instance of part type i.

Definition 3. Given a mixed-bin , we define a part-order
( { ¯ })n, i as an order placed by a customer requesting a set of

parts ⊆ , while requiring each part ∈( )pi
j to be transferred

and positioned at a destination posture ℓ( )
i
j within an expected

postural accuracy Δℓ, where = … ¯ ≤ ∈j n n i1, 2, , ,i i , κ(| | ≤ )
represents the set of indices of the part types to be selected.
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Fig. 2. Hybrid Cell showing the RoboSAM system built using the Baxter robot and the Ensenso 3D camera and the remote human operator.

Fig. 3. Illustration of the singulation task: (a) Robot gripper in the initial approach posture. (b) Part grasped. (c) Part successfully singulated.
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Definition 4. A sequenced-order is defined as a part-order that
requires the parts to be delivered in a specified sequence.

Definition 5. Singulation is defined as the concatenation of four
stages including positioning the gripper at an appropriate posture
above the bin, approaching the gripper toward the part, grasping
the part, and extracting the part out of the bin.

Definition 6. We define tangle-free-singulation as a singulation of
a part from a bin such that it is not tangled with other neighboring
parts in the bin during extraction, thereby ensuring singulation of
only one part at a time (Fig. 3).

Definition 7. Fine-positioning refers to the act of applying appro-
priate sliding forces on the part until its posture is within the
desired accuracy limits.

3.3. High-level decision making in the hybrid cell

Given a mixed bin κ( { })n n, , i and a sequenced part-order
( { ¯ })n, i , our goals in this paper are to achieve tangle-free sin-

gulation of the first part ∈p in the sequence and to position that
part at a destination posture within a specified postural accuracy
Δℓ. The inputs to the system are a CAD model of the part pd to be
singulated and a 3D point cloud of the mixed-bin .

The steps in the high-level planner are given below:

1. Characterize the uncertainty in estimating the 6D posture of a
part instance ( )p j that is detected by using an automated
perception system (Section 4), while reporting the following:

• Estimate of part posture ℓ̂
( )j

with postural uncertainty σ( )j .
• Confidence in the part match by using a signature based
method (Section 4.2).

2. If confidence is acceptable, then
• Perform singulation planning (Section 5) to generate and
evaluate singulation plans, while accounting for
○ Uncertainty in the estimated part pose σ( )j .
○ Grasp-approach quality qa.
○ Grasp quality based on force-closure qg.
○ Part being tangle-free during singulation.
• If a singulation plan exists (for given σ( )j ), then
○ Execute the singulation plan.
○ Proceed to fine-positioning if needed (Section 6): Given σ( )j

and Δℓ, select a fine-positioning strategy.

else-if σ( )j is low (plan fails as the part is in a difficult-to-reach
posture)
○ Randomize-bin and restart perception characterization

else Initiate human intervention (Section 7) to detect part with
high confidence

• If match found, then proceed with singulation planning
else Send Randomize-bin command to robot

else Initiate human intervention (Section 7) to reduce σ( )j

• If match found, then proceed with singulation planning
else Send Randomize-bin command to robot



Fig. 4. Different failure scenarios during singulation of a desired part from the bin: (a) Failure during the approach phase. The two striped circles represent the relative
positions of the two fingers with respect to the part to be grasped during approach. (b) Failure during the grasping phase. (c) Failure during the extraction phase. (d) Failure
as a result of the part being tangled with another part.
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A flow chart of the high-level planner is shown in Fig. 7.
4. Confidence estimation in perception

Given a mixed bin κ( { })n n, , i and a desired part pd to be
singulated, the first step in the high-level decision making in the
hybrid cell (Section 3.3) is to characterize the uncertainty in esti-
mating the 6D posture of a part instance ( )p j . This part instance is
detected by using an automated perception system, while re-

porting pose estimate ℓ̂
( )j

with postural uncertainty σ( )j .

4.1. Automated perception algorithm

Given a CAD model of the desired part to be singulated and the
3D point cloud of the mixed-bin, the automated perception system
attempts to identify both an instance of that part in the bin and its
6D posture. Let = { ∈ }p p: ,i i

3 be the point cloud of the bin of

parts captured from the 3D sensor. Let = { ∈ }q q:i i
3 be the

point cloud obtained by uniform surface sampling of the CAD
model of the part to be identified. Our approach consists of ex-
tracting features (e.g., edges) available in the sensed data and
exploiting these features to collapse the problem from a 6D search
to a finite number of line searches. Feature extraction [65–67] is
one of the preprocessing procedures used in many scene re-
construction tasks. The extracted features help in docking the CAD
model of the desired part at possible postures in the point cloud of
the scene where a part match is likely to be found. The algorithm
steps are given below:

1. Estimate surface normals at each point in the point cloud.
2. Cluster surface normals into a Gauss map to recognize planes.
3. Use intersection of planes to extract oriented edges.
4. For each oriented edge
(a) Align the part CAD model along the oriented edge.
(b) Filter the CAD model to contain only the points perceivable

from the camera for that orientation of the CAD model.
(c) Obtain a part match by moving the filtered CAD model f

along the edge where it is docked as a function of a transla-
tion parameter s, and finding the sn that minimizes the mean
point-to-point distance ρ from the filtered CAD model to the
point cloud from the sensor.
∑ρ =
| |

( )
( )=

| |

d qmin
1

,
2s f i

i
1

f



Fig. 5. Graph showing examples of bin scenarios with varying degrees of percep-
tion and singulation complexities: (a) The part is easy to perceive as it gives a good
point cloud. It is also easy to singulate as it enables collision-free approach, a good
quality grasp, collision-free extraction, and finally a tangle-free singulation. (b) The
part is difficult to perceive as it does not give a good point cloud. However, it is easy
to singulate. (c) The part is easy to perceive but difficult to singulate. (d) The part is
difficult to perceive and singulate as well.
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( ) = ∥ − ∥ ∈ ∈
( )

d q q p q pwhere , min , ,
3i j i j i f j

5. Select the match that gives the minimum ρ.
∫
σ

+ ( − )
( )−

x
dx

1
2

exp

4L x
2

0 2

2
m

δ μ σ μ σ∉ ( − + ) ( )3 , 3 5m

⇒ ( )low confidence 6

⇒ ( )part match failure 7

We illustrate the working of the algorithm by applying it to
detect the part shown in Fig. 8(a) from a simple bin shown in Fig. 8
(b). This part presents recognition as well as grasping
Fig. 6. (a) Part in the initial grasped state. (b) Specified final lo
complexities. In particular, the quality of the point cloud corre-
sponding to this part is heavily influenced by its orientation re-
lative to the 3D camera. Whereas the part is symmetric along its
longitudinal axis, it is asymmetric along its lateral axis making the
grasping problem nontrivial. Fig. 8(c) shows the corresponding
point cloud obtained from a 3D camera. Figs. 9(a)–(d) show the
steps in the part matching algorithm. Fig. 10 shows the matching
results by running the algorithm on some representative bin sce-
narios. In particular, this experiment reveals how the matching
performance (ρ value) changes as a function of bin complexity-
parts of same type not touching with each other (Fig. 10(a, b)),
parts of same type overlapping with each other (Fig. 10(c, d)), and
parts of different type overlapping with each other (Fig. 10(e, f)).
Fig. 11 illustrates a bin scenario that results in a part matching
failure, where the desired part model (highlighted) is localized
erroneously.

4.2. Confidence estimation

We compute confidence estimate in the part-matching result of
the perception algorithm by using a signature based method. This
involves obtaining (1) the ideal part match signature, (2) reference
signatures based on synthetically generated point clouds, (3) the
probability distribution of dissimilarity between ideal and re-
ference signatures, and (4) the observed signature based on the
test point cloud.

Given a sample point cloud of a single part and its CAD model, a
part match signature is defined as the fraction of points ξ for
which the minimum point-to-point distance ( )d q ,i given in Eq.
(3) is below a threshold distance dt, plotted as a function of dt. Note
that this is a monotonically non-decreasing function.

The ideal signature is generated by performing calibration ex-
periments to obtain the sensor noise model. Note that points from
a sampled CAD model are used in the computation of ρ, which
degrades the approximation of true ρ. To address this issue, we use
a perfect cuboid-shaped object (Fig. 12(a)) in the calibration ex-
periments. The CAD model of the object can be approximated by
orthogonal planes. This enables us to compute point-to-plane
distances, which gives a better approximation of ρ by isolating the
sampling noise and discretization error and only accounting for
sensor noise. The experiment is performed by placing the object in
the scene such that three orthogonal planes are exposed to the
sensor and obtaining a point cloud. Next, the automated
cation of the part. (c) Good placement. (d) Bad placement.



Fig. 7. Flow chart of the high-level planner.
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perception algorithm described above is run to match the point
cloud with the plane-fitted CAD model. The match is shown in
Fig. 12(b). Now, ( )d q ,i is computed as the minimum point-to-
plane distance and used to generate an ideal part match signature.

Fig. 13 shows an ideal signature and part match signature ob-
tained by placing a real part in the scene. Note from the figure that
the signature deviates as the part is modified (80% shrunk and 120%
elongated). Also, the part match signature changes significantly for
a different part. The dissimilarity of each part match signature from
the ideal signature can be obtained by computing the correspond-
ing difference in the area-under-the-curve of the two signatures.

Next, we must model the probability distribution of dissim-
ilarity for a given part. First, a reference signature for the part of
interest is obtained based on a synthetic point cloud that is re-
presentative of a real point cloud. This is generated by placing a
Fig. 8. Inputs to the pose estimation algorithm: (a) CAD model of the part to be singu
Ensenso 3D camera.
part CAD model at an appropriate relative distance from a virtual
camera in a simulated scene. There are mainly five sources of error
that deviate the synthetic signature from the reference signature
of the real part:

1. CAD model sampling error.
2. Algorithm moves in discrete steps.
3. The CAD model dimensions differ slightly from that of the real

part.
4. Gaussian sensor noise.
5. Some points (mainly near part boundaries) are not visible due

to sensor noise

The first two errors are taken care of by using the same CAD
model sampling and the same discretization steps of the matching
lated. (b, c) Raw image and the corresponding 3D point cloud obtained from the



Fig. 9. Example illustrating the various stages of the automated perception algorithm: (a) Gauss map used to detect planes. (b) Edge extracted from intersection of two
planes. (c) Initial docking of the CAD model along an oriented edge. (d) Final match obtained by translation of the CAD model along the oriented edge.

Fig. 10. Representative bin scenarios and corresponding matches: (a, b) Multiple parts of same type not touching with each other. (c, d) Multiple parts of same type
overlapping with each other. (e, f) Multiple parts of different type overlapping with each other.
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algorithm as used for the real part. The third source of error is
accounted for by measuring the dimensions of the real part
manually and using them to create a better approximation of the
real part. The fourth error is addressed by adding Gaussian noise
into the synthetic point cloud. The final source of error is ac-
counted for by randomly culling a few percent of points such that
points near boundaries have much higher probability of removal
than interior points. The signatures for the synthetic part and a
real part, each in five different postures are shown in Fig. 14. Note
from the figure that the synthetic signatures closely approximate
the signatures of the real part.

By using the above procedure, a set of 100 synthetic signatures
was obtained and a histogram of the corresponding dissimilarities,
along with dissimilarities for the real part in 10 different postures,



Fig. 11. Bin scenario that results in a part matching failure.

Fig. 12. (a) Object used for calibration. (b) Match obtained between the point cloud of the scene and the filtered CAD model.

Fig. 13. Different signature curves: ideal signature, signatures for original real part
and its modified versions, and signature for a different part.

Fig. 14. Signature for a synthetic part along with signatures for a real part in 10
different postures.

K.N. Kaipa et al. / Robotics and Computer-Integrated Manufacturing 42 (2016) 17–3826
was used to approximate the probability distribution of dissim-
ilarity between ideal and reference signatures (Fig. 15). The re-
sulting dissimilarity distribution can be approximated as a normal
distribution with a mean μ¼0.9751 and standard deviation
s¼0.0659. The standard deviation in position sp¼0.51 mm and
standard deviation in orientation so¼0.43°. Given an observation,
which is a point cloud of the bin and the filtered CAD model of the
desired part, the observed signature is obtained and its dissim-
ilarity with ideal is computed. This observed dissimilarity is used
in conjunction with the dissimilarity probability distribution for
the purpose of confidence estimation. If the measured dissim-
ilarity is not in the range μ σ μ σ[ − + ]3 , 3 (¼[0.77, 1.17]), then it
implies that the confidence in the part match is low, thereby de-
claring the part match as a failure.
Another parameter that influences matching performance, and
thereby the confidence measure, is the percentage of points in the
point cloud of the CAD model that are filtered either due to self
occlusions or occlusions due to other neighboring parts. Therefore,
whenever the filtered points are above a certain threshold (arbi-
trarily, we chose 70%), we declare the part match as a failure.
5. Singulation planning under perception uncertainty

Per Definition 5, singulation is the concatenation of the four
stages of positioning, approaching, grasping, and extracting. The
success of tangle-free singulation depends on postural uncertainty,
grasp-approach quality qa, grasp quality based on force-closure qg,



Fig. 15. Probability distribution of dissimilarity approximated as a normal dis-
tribution with mean μ¼0.9751 and standard deviation s¼0.0659 based on the
histogram of dissimilarities.
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and whether the part is tangle-free during singulation or not.
Accordingly, we present a method that incorporates all the above
factors to generate and evaluate singulation plans. In particular,
each singulation plan is evaluated by estimating the over all
probability of successful tangle-free singulation

σ ρ ε℘( | ℓ̂ )( ) ( ) ( ) ( )s p , , , ,i
j

i

j

i
j

i
j for each part instance ∈( )pi

j
v. Fig. 16 shows

the overall system architecture used for plan generation and
evaluation.
Fig. 16. Singulation pla
5.1. Plan generation

Each singulation plan is constructed by using four key postures:
initial approach posture, pre-grasp posture, grasp posture, and
extraction posture. Intermediate waypoints are generated through
linear interpolation between neighboring postures. Note that only
the position of the gripper changes during motion through the
waypoints, while its orientation remains the same. However, we
allow orientation changes at the transition between two postures.
Between pre-grasp and grasp, the location of the gripper remains
constant, and the separation between the fingers decreases until
the part is grasped. The orientation of the gripper depends on a
grasping strategy for the part which is computed offline.

5.1.1. Offline computation of grasp strategies
We use the popular force-closure quality metric [41] to evalu-

ate the grasp candidates. For each contact point, following
[42,68,69], we verify if it satisfies a force-closure constraint. Con-
sider two points a and b where the two fingers make contact with
the part's surface. The grasp at the contact pair is said to satisfy the
force-closure constraint if each point lies in the friction cone of the
other point (Fig. 17(a)). The friction cone at each point is oriented
about the inward normal making a semi-angle μ( )−tan 1 , where μ is
the coefficient of friction. Now, we compute the grasp quality as
the number of points that satisfy force-closure divided by the total
number of points that project onto the finger surface.

For a particular grasp configuration, the pair of points where
the center-axis of the gripper (along the pinching direction)
nning architecture.



Fig. 17. (a) Friction cone illustration. (b) A representative grasp configurationwhere points with black normals are not in contact with the gripper finger-pads, red ones make
contact but do not satisfy friction-cone property, and green ones are both in contact with gripper and stable grasps based on friction-cone concept described below. (c) Top
20 grasp postures displayed on the CAD model of a given part. Grasps are sampled randomly and those which have non-zero grasp quality are plotted by depicting the
corresponding contact pairs. Green grasps represent the top 20 grasp qualities. The rest are represented as red. The size of the line segment is proportional to the quality of
each grasp. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 18. Mixed-bins used in the experiments.
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intersects the part's surface is uniquely determined (Fig. 17(b)).
Therefore, we can represent each grasp candidate by such point
pairs. Fig. 17(c) shows the grasp quality of the best 20 grasp pairs
evaluated using the above method for an industrial part. Sampled
point clouds are generated for the CAD models of the part and the
gripper and used in the grasp quality computations. In the figure,
the length of each line segment at a grasp point is proportional to
the corresponding grasp quality of that grasp pair.

5.1.2. Sampling based planner
We use a sampling based planner that generates several ran-

dom plans. The initial approach posture is sampled at a safe height
from the bin and in a small region around a nominal posture that
corresponds to the grasp candidate that is ranked best by the
above grasp quality metric. The pre-grasp posture is sampled in a
small region around the estimated posture of the target part. The
extraction posture is uniformly sampled at a safe height from the
bin.

A Monte Carlo simulator evaluates each sampled plan by com-
puting its probability of failure. The point cloud obtained from the
3D sensor is split into two: one consisting of only the points in the
bin, excluding the part to be picked, and the other point cloud
consisting of those points of the part that were captured by the 3D
camera. The simulation scene involves the gripper, part CAD model,
point cloud of the bin excluding the part, and the point cloud of the
part. The CAD models of the part and gripper are also converted to
sampled point clouds before adding them to the scene.

Each simulation run works in the following way. Given that an
automated perception system provides an estimate of the pose of

target part ℓ̂
( )
i

j
with an error that follows a Gaussian distribution

σ( )( )0, i
j , this is simulated by placing a CAD model of the part at



Fig. 19. Snapshots from an animation of a successful singulation plan. (a–c) Approach. (d–f) Pre-grasp to grasp. (g–i) Extraction.

Fig. 20. Snapshots from an animation of a failed singulation plan.

K.N. Kaipa et al. / Robotics and Computer-Integrated Manufacturing 42 (2016) 17–38 29
the estimated posture and shifting it by a value drawn from the
above distribution of pose-error. Now, a candidate plan is evaluated
by moving the gripper through the way-points, while checking for a
collision at each way-point. The Point Cloud Library is used in Cþþ
to check for collisions. A collision is said to occur between two point
clouds when the minimum clearance between them falls below a
certain threshold. If the way-point belongs to approach phase, then
collision is checked between gripper and the entire scene. If the
way-point belongs to the grasping phase, then collision is checked
between gripper and the bin excluding part. If the way-point be-
longs to the extraction phase, then collision is checked between
gripper and the bin excluding part, as well as between part and the
rest of the bin. These collision check conditions ensure that we
achieve tangle-free singulation of the part. If a collision is returned
for at least one way-point during a trial, then that trial is classified as
a failure. If there are m such failure runs out of a total of n runs, then
the probability of failure for the specified plan is m

n
. The plan which

minimizes the probability of failure is chosen as the execution plan.



Fig. 21. Graph of average clearance as a function of step number for plans with
varying probabilities of failure.

Fig. 22. Graph of singulation success rate as a function of increasing perception
uncertainty.

Fig. 24. The two types of deviation considered in the initial grasped state.
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5.2. Characterization of influence of perception uncertainty on sin-
gulation plans

We first report results from illustrative experiments to show
the working of the sampling based plan generation and Monte
Carlo-based plan evaluation. Bin 3 in Fig. 18 is used in these ex-
periments. We use the same part (Fig. 8(a)) that was used in
Section 4. Simulations were performed to compute failure prob-
abilities Pf of different plans generated by the planner. Fig. 19
shows snapshots from an animation of a sample Monte Carlo trial
showing different stages of a successful singulation plan. Fig. 20
shows snapshots from an animation resulting in a failed singula-
tion plan where gripper collides with the part to be singulated
during approach.
Fig. 23. Robot using the pose estimated by the sys
It took 0.5 s to compute each trial. The computer running the
simulations consisted of Intel Core i7 2600 @ 3.4 GHz CPU and
8-GB Dual-Channel DDR3 RAM memory. For each plan, a set of 100
trials was simulated with a position uncertainty of 2 mm and or-
ientation uncertainty of 4° in each axis, added into the estimated
6D posture of the target part in each trial. Fig. 21 shows the graph
of average clearance as a function of step number (1–5 Approach,
6–10 Pre-grasp to Grasp, 11–15 Extraction) for five sampled plans
with varying probabilities of failure. When the extraction location
was directly above the estimated location of the target part, Pf¼1
(“□”-marked curve). This was due to collision with a neighboring
part in the bin during extraction in every trial. But as the extrac-
tion point was moved away from this location, Pf¼0 (“o”-marked
curve). Whenever the average minimum clearance dips below a
threshold of E3 mm, we flag the state as collision and the plan is
aborted. The clearance values after this point for each plan are only
averaged over the trials that have been reported as success by the
simulator. For another plan with Pf¼1 (“⋆”-marked curve), some of
the trials failed during approach and the remaining during ex-
traction at step 12. For the plan with Pf¼0.86 (“⋄”-marked curve,
most of the trials failed indicating that it was a bad plan for the
current uncertainty model. The plan with Pf¼0 is representative of
an ideal plan for this uncertainty model. At every step in the plan,
the average minimum clearance is safely above the threshold va-
lue. For the plan with Pf¼0.166 (“▵”-marked curve), some of the
tem to proceed with the part singulation task.



Fig. 25. Five sample cases illustrating different initial grasp states and corresponding postures of the part after dropped off by the robot.

Fig. 26. Average positional error after direct drop off with varying uncertainties in the initial grasped posture.
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trials failed due to collision during approach as a result of un-
certainty in pose estimation.

Next, we analyzed how the probability of success of a suc-
cessful plan degrades with increasing uncertainty introduced into
the estimated posture of the part. We considered standard de-
viation increments of 2 mm in position along each axis and a fixed
standard deviation of 4° about each orientation axis. Note that the
perception uncertainty levels (0.51 mm in position and 0.43° in
orientation) found in Section 4 are well within the uncertainty
values considered for analyzing the singulation plans. We con-
ducted this experiment for four bin samples and one plan with
success probability equal to one when uncertainty is zero. A set of
100 Monte Carlo runs was used to compute the probability for
each uncertainty level. To accommodate uncertainty in the esti-
mated part pose, maximum gripper pad separation was used
during the approach phase to guarantee the encompassing of the
part. But in doing so, the fingers might collide with neighboring
parts resulting in a singulation failure. Fig. 22 shows the graph of
success probability as a function of postural uncertainty for the
four bins shown in Fig. 18. The success probability of singulation
plans starts degrading from a standard deviation of 9 mm in po-
sitional error. Note that as the bin gets more cluttered in the
neighborhood of the part to be picked, the degradation will begin
at a smaller positional uncertainty.

The uncertainty information provided by the perception algo-
rithm (from Section 4) is integrated into the above analysis to
compute success probability, which is used as a decision variable
during the singulation-plan execution phase. That is, for a given
uncertainty found from the perception result, if the success
probability, computed based on the above evaluation, is above τs
(¼0.99), then robot proceeds with executing the singulation plan.
Otherwise, either human intervention or randomize-bin command
is invoked based on the uncertainty level. For example, if the
uncertainty is high, then human intervenes and adjusts the part



Fig. 27. Average orientation error after direct drop off with varying uncertainties in the initial grasped posture.

Fig. 28. Illustration of the fine-positioning subtask: (a,b) Moves for rotational error correction. (c) Moves for translational error correction.
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posture so that the robot can detect the part with higher con-
fidence. However, if the uncertainty is low and still the planner
does not find a successful plan, then the part could be in a diffi-
cult-to-reach posture. Hence, it is best to randomize the bin and
restart perception characterization. An example of a successful
singulation plan implementation is shown in Fig. 23.
6. Correcting destination posture errors using sensorless fine-
positioning

From the problem definition in Section 3, after each part
∈( )pi

j has been singulated from the bin, it must be placed at a

destination posture ℓ( )
i
j within an expected postural accuracy Δℓ.

Factors like initial grasped postural uncertainty induced by per-
ception uncertainty, positioning accuracy of the end-effector, and
momentum imparted to the part during drop-off degrade the
postural accuracy that can be achieved at the destination. Ac-
cording to the second step in the high-level decision making in the
hybrid cell (Section 3.3), a fine-positioning method is invoked to
correct these postural errors.

6.1. Characterization of destination postural error in terms of initial
grasped posture uncertainty

We considered varying uncertainty in the initial grasped state
and examined the error in the destination posture after drop-off.
To minimize the robot positional error, a sequence of two robot
moves, with coarse and fine motion-planning parameters, were
used before drop-off. (This corresponds to the second fine-posi-
tioning strategy that is considered in the next subsection.) Stan-
dard deviations of 5 mm, 8 mm, 10 mm, 12 mm, and 15 mm were
considered in the initial position along the vertical direction.
Standard deviations of 3°, 5°, 8°, and 10° were considered in the
orientation in the pinch axis. Deviations in position in the



Fig. 29. Snapshots from a video showing the execution of one sample plan that results in the positioning of the part within the accuracy limits: (a) Initial grasped state.
(b) Gripper at drop-off location. (c) Part dropped off at final location. (d) Rotational error correction in the clockwise direction. (e) Rotational error correction in the counter
clockwise direction. (f) Gripper moved to fine-positioning begin location. (g) Gripper rotated by 90°. (h) Gripper opened by fixed amount to correct translational error.
(i) Gripper moved to neutral location.

Fig. 30. T-shaped tool used to push a flat surface.
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horizontal plane and orientations in the approach and longitudinal
axes of the gripper were not considered, since any perception
uncertainty in these directions are disambiguated when the part is
grasped. The two deviations considered are shown in Fig. 24. Five
sample cases illustrating different randomly initialized grasped
states and corresponding postures of the part after drop off by the
robot are shown in Fig. 25. The average positional error and or-
ientation error after direct drop off, with varying uncertainties in
the initial grasped posture, for 30 trials are shown in Figs. 26 and
27, respectively.
6.2. Design of fine-positioning strategies

We describe an empirical methodology based on a re-
presentative part (Fig. 8(a)) to select from a suite of fine-posi-
tioning strategies that offer different tradeoffs between comple-
tion time and postural accuracy at the destination. Once the part is
dropped off at the destination, the basic fine-positioning task
consists of the gripper applying a finite set of sliding forces and
moments on the part until its posture is within the desired pos-
tural limits. We consider parts with the following properties:
(1) When the part is lying on a flat surface in one of its stable
postures, two of the three orientation parameters are frozen (or
become zero by using an appropriate coordinate frame assign-
ment), leaving only one rotation parameter about the vertical axis.
(2) When the part is in a stable posture, there exists at least one
vertical flat face to which sliding forces can be applied. Given the
above assumptions on the part, there are two translational errors
and one rotational error associated with the posture of the part at
the goal location. The fine-positioning steps that achieve rotational
and translational error correction are illustrated in Fig. 28.

The specific algorithmic steps to achieve transport and fine-
positioning are given below:

� Robot moves the grasped part from the singulation location to a
position vertically above the desired location. This is performed
in two steps. Initially a coarse motion plan is used that trans-
ports the part rapidly to the desired location, but with some



Fig. 31. Translation and orientation errors and execution times for five different regimes: (1) drop-off with coarse motion parameters, (2) drop-off with coarse and fine
motion parameters, (3) drop-off with coarse and fine motion parameters and rotational corrective fine positioning moves, (4) drop-off with coarse and fine motion para-
meters and translational corrective fine positioning moves, and (5) drop-off with coarse and fine motion parameters and both rotational and translational corrective fine
positioning moves.
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positional error. Next, a fine motion plan is generated that re-
duces the positional error at the drop-off location.

� Robot drops the part at the desired location. Considering the
uncertainty in the grasp location, the object drop-off location is
offset by the maximum uncertainty value in the negative Y di-
rection. This offset will ensure that the final location after drop-
off will always have an error in the positive Y direction and
hence the sliding would only be necessary in that direction.

� The grippers are closed with low gripping force to correct the
translational error in the positive and negative X directions.

� A rotational error correction is applied by rotating the gripper
by an appropriate amount about the vertical. Since the system is
sensor-less, the system is unaware if the error is in the clock-
wise or in the counter clockwise direction. Thus the rotational
error correction is performed in both directions. In all the cases,
only one of the moves would be contributing to the error cor-
rection. For example, assume that the robot's gripper first per-
forms a clock-wise rotation, which is followed by a counter-
clockwise rotation. Further assume that the angular offset of the
part is in the clock-wise direction. We can see that the part
remains at rest during the first move, while the part's angular
position gets adjusted during the second move as shown in
Fig. 28(a).

� The gripper is lifted off and positioned behind the vertical face
of the part. This position is chosen by considering the maximum
expected positional error. This thereby ensures that the gripper
is behind the part in all cases.

� The gripper moves a fixed distance in the positive Y direction
that is sufficient enough to nudge the part into its postural ac-
curacy limits.

Fig. 29 shows snapshots from a video showing the execution of
one sample plan that results in the positioning of the part within
the accuracy limits. Note from Fig. 29 that the sliding forces are
directly applied by the finger pads. A push tool with a matched
shape with respect to the part being pushed can be used to ensure
better sliding movements. For example, a T-shaped tool is used in
Fig. 30 to push a flat surface. Similarly a convex tool front can be
used for a part with a concave surface and so on.

Next, we characterized the performance of different fine-posi-
tioning strategies We considered five fine-motion strategies:

1. Drop-off with coarse motion parameters.
2. Drop-off with coarse and fine motion parameters.
3. Drop-off with coarse and fine motion parameters and rotational

corrective fine positioning moves.
4. Drop-off with coarse and fine motion parameters and transla-

tional corrective fine positioning moves.
5. Drop-off with coarse and fine motion parameters and both ro-

tational and translational corrective fine positioning moves.

Fig. 31 shows the average translation errors, orientation errors,
and execution times for each motion strategy across 10 trials. We
observe that as more corrective moves are added, the accuracy
improves both in position and orientation, while the completion
time increases.

Now, we use the above results to select a fine-positioning
strategy. For example, from Figs. 26 and 27, an initial grasping un-
certainty of 10 mm standard deviation in position and 10° standard
deviation in orientation leads to an average translation error of
about 5 mm and an average orientation error of 3°. Now, from
Fig. 31 if this meets the desired postural accuracy requirements, we
use the second fine-positioning strategy. Otherwise, if an accuracy
of (2 mm, 2°) is required, we use the fifth fine-positioning strategy.

It took about 20 min to conduct the fine positioning experi-
ments for this part. Whenever we have a new part, we use the
above experiments based methodology to select a fine-positioning
strategy based on the accuracy and completion time requirements.



Fig. 32. (a) Robot sending Skype call to a remotely operating human requesting for help. (b) 2D image of the bin and CAD model of the part to be identified. (c) User interface
used by the remote human to resolve part recognition and pose estimation failures.

Fig. 33. Illustration of human identifying correspondences between edges in the
image with those in a CAD model.
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7. Design of user interface to enable remote human
interventions

We have developed a new user interface (Fig. 32) that allows a
remote human to perform pose estimation in scenes with high
clutter where the automated perception system may fail. The
system makes a Skype call to the remote human when help is
needed and sends three pieces of information: the raw camera
image of the scene, the corresponding point cloud, and the CAD
model of the part to be picked.

The human operator selects features (edges) from the 2D image
and shows a correspondence in the CAD model (Fig. 33). The al-
gorithm uses these features to estimate the part location and or-
ientation in 3D and dock the CAD model at this pose. The human
can do minor adjustments to the pose using a joystick. The x and y
information in the image space is transformed to point cloud co-
ordinates using scaling and translation operations.

7.1. Accuracy/time tradeoff

There is a tradeoff between accuracy and time needed to ex-
tract the data. Orientation accuracy impacts grasping performance.
The accuracy needed to grasp a part successfully depends on its
shape complexity and its particular posture. This information is
pre-determined for each part and conveyed to the human op-
erator, who can stop the estimation process once a good enough
orientation accuracy is obtained. For this purpose, we placed a
single instance of the target part on a tripod and used a digital-
inclination meter to set the orientation of the part at a known
posture. In one sample experiment, we used a nominal orientation
of 30° about the longitudinal axis of the part and 35 degrees about
the lateral axis of the part. Next, we manually introduced 2-degree



Fig. 34. Average time taken (in seconds) by the human to complete the perception task for 10 trials in each regime across four different parts. Success rates of 100%, 80%, and
100% were achieved in the first, second, and third regimes, respectively, for all the four parts.

Fig. 35. Comparison of average time taken (in seconds) by two users to complete the perception task for 10 trials in each regime for the white part.
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increments of perception error about each axis and observed its
impact on grasping performance. For the part shown in Fig. 8(a),
we noticed that the robot was able to successfully grasp up to an
error of 78° about the longitudinal axis. We noticed a high
asymmetry about the lateral axis with successful grasping up to
8° in the clockwise direction and only 2° in the counter clockwise
direction. This accuracy characteristic is made available to the
human during training, which makes the human aware of how
closely to match, and hence decide how much time to spend on
the task.

7.2. Evaluation of the user interface

In these experiments, we considered complex bin examples
where the failure rate of the automated perception system was
more than 50%. Fig. 32 shows the user interface used by the hu-
man to perform part matching whenever the automated percep-
tion system failed (Fig. 11). Fig. 32(c) shows the CAD model
docking using the edge-selection method. The user interface pro-
vides different functions that allow the human operator to achieve
the part matching task. We conducted experiments to analyze the
influence of different combinations of these features on both the
time taken to solve the problem and the overall success rate of the
singulation task. Accordingly, the effectiveness of the user inter-
face was evaluated cross three experimental regimes:

1. Usage of only joystick to move the CAD model and dock it at an
appropriate posture in the point cloud.

2. Usage of only the edge selection method to directly dock the
CAD model.

3. Usage of the edge selection method to dock the CAD model, and
subsequently the joystick to do any fine adjustments if
necessary.

We conducted 120 experimental trials. Each trial consisted of
the human using one of the three methods to perform the part
matching task. Each trial was validated by sending the extracted
postural information to the robot and verifying whether or not the
robot could singulate the specified part by using this information.
We conducted ten trials for each regime and across four parts with
different geometries. We expect that this task will be performed
by experts in real industrial settings. Therefore, all trials were
carried out by a well-trained user. The singulation success rate was
80% in the second regime where only edge selection was used to
register the part. In the first and third regimes, the success rate
was 100%. Because of high success rates, 10 user trials per regime
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was sufficient to validate the effectiveness of the user interface.
The time taken (in seconds) by the human to complete the per-
ception task over ten trials in each regime for all the four parts is
shown in Fig. 34. Similar performance was observed across the
parts for all the regimes. The edge-selection only took the least
time for all the parts, but with some failure rate. Therefore, the
third regime that ranked second in terms of time, and with 100%
success rate was chosen as the best solution.

In the third regime, the user spends about 10 s in edge selection
and subsequently about 25 s using the joystick to improve the
estimated posture. Note that about 80% success rate can be ex-
pected with only edge selection (from second regime). This in-
formation can be exploited by the user to reduce the time spent in
using joystick to achieve a level of accuracy, which may be
redundant.

Next, we tested the trainability of the interface. For this pur-
pose, we trained a second user and conducted ten trials for the
white part to compare the user's performance with that of the first
user in all the three regimes. To have a common benchmark, the
same data used by the first user was presented to the second user.
The comparison was only limited to the part-matching task in
these experiments, since the same bin settings were no longer
available to proceed with the singulation task. Instead, difference
in transformations was computed and used as a comparison me-
tric. Fig. 35 shows the comparison of time taken by the two users
to complete the perception task. The second user took an average
of 36.7 s to complete the perception task for the white part, in the
third regime, which is very close to that of the first user. Similar
performance was observed in first and second regimes.
8. Conclusions

We presented an approach that treats coping with uncertainty
as a key step to handle failures and enhance performance in ro-
botic unstructured bin-picking. The principal contributions in the
paper include:

1. A method to characterize uncertainty in pose estimation of a
part match found by using an automated perception system.

2. A mechanism for the rationalized basis to detect failures and
invoke human interventions.

3. A new user interface that allows the remote human to provide
distinguishing cues to reduce uncertainty in part pose esti-
mates. This also enables part detection.

4. A singulation planner that incorporates uncertainty into plan
evaluation.

5. A fine positioning planner for correcting errors in destination
part posture.

In our previous work, we have developed other modules in-
cluding an ontology for task partitioning in human–robot colla-
boration for kitting operations [70], resolving occlusions in robotic
bin-picking [71], sequence planning for complex assemblies [72],
instruction generation for human operations [73], bimanual ro-
botic cleaning [74,75], and ensuring human safety [76]. Future
work consists of investigating how to integrate these modules to
develop hybrid work cells, where humans and robots collaborate
to carry out non-repetitive industrial tasks. Currently, we used a
single-human–single-robot model. We would like to extend this to
a single-human–multi-robot model, where a single human is re-
motely bailing out multiple robots that may be stationed either at
the same work cell or different work cells. An interesting future
research direction lies in exploring whether the robot can learn,
on-the-fly, as more information becomes available from the mis-
takes made and the corresponding human interventions. Other
future works include exploring alternative sensor modalities,
handling of heavy parts with more complex geometries, and
sensor-based fine-positioning strategies.
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