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Abstract 

Although simple shear connections are typically idealized as perfectly pinned, the actual resistance 

of the gravity framing system to flexural and axial loads can be critical in evaluating the robustness 

and stability of steel buildings subjected to extreme loads such as earthquakes, fire, and column 

loss. There are several key reasons for including more realistic connection behaviors in the design 

and analysis of steel buildings for extreme loads: (i) the gravity connections may develop large 

localized deformations under combined flexural and axial loading, potentially precipitating their 

failure (e.g. due to local buckling, fracture of the bolts, etc.), (ii) the gravity connections provide 

critical lateral bracing to the columns, and failure of connections could lead to global instability 

(potentially resulting in disproportionate collapse), and (iii) accurately accounting for 

contributions from the gravity system in design could effectively reduce the demands on the lateral 

load-resisting system, thus reducing costs. In order to include contributions from the steel gravity 

frames in structural analysis and design, validated and computationally efficient analysis tools are 

needed. This paper describes a component-based model for single-plate shear connections that 

includes the effects of pre-tension and accommodates both standard and slotted holes, accounting 

for deformations associated with bolt slip, bolt bearing, and bolt shear. The model also accounts 

for load reversals and pinching effects associated with hysteresis, thus providing the capability to 

model the connections under arbitrary in-plane load histories. Validation cases show that the model 

is capable of simulating connection response under both earthquake and column removal loading. 

 

1. Introduction 

Tests of steel gravity framing systems have shown that steel gravity connections contribute to the 

capacity and robustness of structural systems subjected to extreme loads such as earthquakes, fire, 

and column removal.  However, in the design of structures for seismic and/or wind loads, 

contributions from the gravity connections to the lateral-load resisting system are often ignored 

(with the gravity connections idealized as perfectly pinned), even though gravity connections may 

comprise the majority of the steel framing connections. Tests of bare-steel single-plate shear 

connections under earthquake loads have demonstrated that the connections provide moment 

capacities on the order of 15 % to 20 % of their beam plastic moment capacities, and when 

composite with a concrete slab on steel deck, they provide capacities on the order of 30 % to 60 % 
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of their beam plastic moment capacities (Liu and Astaneh-Asl 1999).   Including contributions 

from the steel gravity frames in capacity calculations of the lateral force resisting system during 

the design stage could be advantageous in the design and analysis of new structures, by reducing 

the cost of the overall structural system and making steel moment frame or braced frame buildings 

more competitive with concrete buildings.  Even if the gravity connections are not included in the 

design of the lateral load resisting system, including their contributions in building analyses under 

amplified design loads (i.e., the Federal Emergency Management Agency (FEMA) P-695 

methodology (FEMA 2009)) could provide a quantifiable measure of inherent robustness (or 

reserve capacity) in the structural system, a topic of widespread current interest in the structural 

engineering community.  A recent study on 1-, 2-, 4-, and 8-story non-ductile steel moment framed 

buildings subjected to the FEMA P-695 “Far-Field” ground motion set showed that including 

gravity frames in the building analyses reduced the probability of collapse by 45 % (on average), 

when compared with analyses of the moment frames only (Judd and Charney 2014). 

 

The role of the gravity connections in the system robustness is potentially even more critical when 

considering the response of steel buildings to column loss.  Large-scale tests of steel gravity 

framing systems under column removal (Johnson et al. 2014; Johnson and Meissner 2015) have 

shown that the system robustness is largely dependent on the capacity of the connections to remain 

intact after undergoing highly-localized rotation and axial displacement demands.  However, the 

results of full-scale tests of steel gravity connections under column removal demands available in 

the literature remain limited to just a handful of connection configurations and load histories.  To 

evaluate general structural robustness, researchers and engineers need accurate and validated 

analysis tools to simulate the connection behavior over a wide range of connection configurations 

and under more general load histories. 

 

Several researchers (e.g., Sadek et al. (2008), Wen et al. (2013b), Main and Sadek (2014), Weigand 

(2014)) have shown that detailed finite element models can accurately simulate the behavior of 

single-plate shear connections under earthquake loads and/or column removal scenarios, which 

are used to evaluate the potential for disproportionate collapse.  However, the need to model large 

structural systems in engineering design practice makes detailed modeling of complete structural 

systems infeasible.  Main and Sadek (2014) recognized these limitations, and used results from 

their detailed finite element models to calibrate a biaxial spring to represent each bolt row in a 

single-plate shear connection, with stiffness parameters estimated based on linear regression of 

rotational stiffness data from seismic testing.  They showed that a reduced-order modeling 

approach provided good agreement with push-down tests of two-span beam assemblies by 

Thompson (2009). 

 

Other researchers (e.g., Liu and Astaneh-Asl (2004), Foley et al. (2006), Wen et al. (2013a)) have 

used lumped plasticity springs as a simplified means to capture the connection moment-rotation 

and axial force-deformation behaviors.  While lumped plasticity models do provide a fairly 

complete description of the connection backbone response under pure rotation or pure axial 

deformation, they cannot account for interactions between the connection flexural and axial 

behaviors.  Thus, they may not be appropriate for design under extreme loads as: (i) during 

earthquakes, the gravity connections may be subjected to significant axial loads in addition to 

rotations (Astaneh-Asl 2005), and (ii) for column removal scenarios, the development of catenary 

action requires the connections to accommodate large axial deformations in combination with 
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large rotations (Sadek et al. (2008), Oosterhof and Driver (2012), Main and Sadek (2014), 

Weigand (2014)). 

 

Component-based models provide a natural framework for capturing the complex behaviors of 

steel gravity connections under extreme loads as they including both fastener and connected 

element deformations, and provide automatic coupling between the in-plane flexural and axial 

behaviors. A number of component-based models are already available in the literature for certain 

types of steel gravity connections (e.g., bolted end-plate, bolted angle connections), but models for 

single-plate shear connections are relatively few.  In addition to Main and Sadek (2014), described 

above, Elsati and Richard (1996) provided backbone response parameters for 76 mm (3.0 in) 

segments of single-plate shear connections and showed that component-based models could be 

used to model the connection pushover moment-rotation response.  Weigand and Berman (2008) 

also used component-based models to determine the moment-rotation response of single-plate 

shear connections, but with the backbone response curve parameters taken from a model developed 

by Rex and Easterling (1996), and including multilinear hysteretic rules for the component 

unload/reload behaviors.  Yu et al. (2009) likewise used the bolt-bearing curve developed by Rex 

and Easterling (1996) to model the backbone response of the connection segments, but with 

empirically modified stiffness values derived from finite element analysis results to model 

temperature dependence. Most recently, Koduru and Driver (2014) modified the empirical 

calibration factors determined by Yu et al. (2009), and also included shear yielding and shear 

fracture, to model the response of single-plate shear connections under column removal.  

 

This paper summarizes a new component-based connection model for single-plate shear 

connections that includes the effects of pre-tension in the bolts and provides the capability to model 

connections with standard and slotted holes.  The model is exercised under both cyclic rotations, 

representative of earthquakes, and combined rotations and axial deformations, representative of 

column removal scenarios.  Results from these representative cases show that the model can be 

used to predict connection force and rotation/deformation capacities under both seismic loads and 

column removal scenarios. 

 

2. Component-based Connection Model 

In component-based connection models, the connection is notionally discretized into 

characteristic-width segments with aggregate force-displacement behaviors represented by 

discrete connection springs (Fig. 1a).  Each characteristic-width segment captures contributions 

from the shear-plate, bolt, and beam-web, which are modeled as individual component springs in 

series as shown in Fig. 1(b) and Fig. 1(c)).  The formulations for the backbone and hysteretic 

responses of the component springs are discussed in detail in the sections below. 
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(a) 

 

 

(b) (c) 
Figure 1: (a) Discretization of single-plate shear connection into connection springs, (b) connection spring stiffness 

contributions in tension, and (c) connection spring stiffness contributions in compression 

 

2.1 Bolt Behavior 

The transverse force-deformation behavior of the bolt, including shear and flexural effects, is 

modeled using Eq. (1) as: 

 

 𝑅bolt = 𝑅unl +
(𝐾i,bolt−𝐾p,bolt)(∆bolt−∆unl)

(1+|
(𝐾i,bolt−𝐾p,bolt)(∆bolt−∆unl)

𝑅cyc,bolt
|

𝑛bolt

)

(1 𝑛bolt
⁄ )

+ 𝐾p,bolt(∆bolt − ∆unl)  , (1) 

 

where ∆bolt  is the bolt shear deformation, 𝑅bolt  is the bolt shear force, (∆unl, 𝑅unl)  are the 

coordinates of the last unload point, 𝑅cyc,bolt = sign(∆ − ∆unl)𝑅v,bolt − 𝑅unl + 𝐾p,bolt ∆unl is the 

cyclic reference load for the bolt shear force-deformation behavior where 𝑅v,bolt = 0.62𝐹u,bolt𝐴b  
(J3-1) is the shear capacity of the bolt, 𝑛bolt = 2,  𝐴b is the bolt cross-sectional area and 𝐹u,bolt is 

the tensile strength of the bolt material.  Fig. 2(a) shows a comparison of the bolt backbone force-

displacement response to data from three bolt-shear tests for 19 mm (3/4 in) diameter A325 bolts 

from Weigand (2014).  Fig. 2(b) shows the behavior of the bolt under increasing magnitude cyclic 

shear deformations. 
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(a) (b) 

Figure 2: (a) Comparison of bolt shear component spring backbone response with bolt shear data from Weigand 

(2014)2, and (b) bolt shear component spring cyclic response 

 

The initial stiffness of the bolt force-deformation response is calculated using the bolt bearing 

stiffness 𝐾br,bolt and the bolt shearing stiffness 𝐾v,bolt as  

 

 𝐾i,bolt =
1

1

𝐾br,bolt
+

1

𝐾v,bolt

   . (2) 

 

The bearing stiffness is calculated as 

 

 𝐾br,bolt =
1

1+3𝛽b
(
𝑡p𝑡w𝐸bolt

2(𝑡p+𝑡w)
)  , (3) 

 

based on the work by Nelson et al. (1983), where 𝛽b is a correction factor that accounts for the 

concentration of bearing forces at the interface between plates for bolt in single shear.  The value 

of 𝛽b can range from 1 for a simple shear pin to relatively small values (on the order of 0.15) for 

pre-tensioned bolts with large bolt heads, washers, and nuts.  For the analyses included in this 

paper, a value of  𝛽b = 0.7 was used.  The bolt shearing stiffness is determined by assuming that 

the bolt acts as a prismatic Timoshenko beam with circular cross-section and fixed ends, such that: 

 

 𝐾br,bolt =
12𝐸bolt𝐼bolt

𝐿bolt
3 (1+Φ)

  , (4) 

 

where 𝐸bolt is the modulus of elasticity of the bolt, 𝐼bolt = 𝜋𝑑𝑏
2 64⁄  is the moment of inertia of the 

bolt shaft cross-section, 𝐿bolt = 𝑡p + 𝑡w is the bolt length, and 

 

 Φ =
12𝐸bolt𝐼bolt

𝐿bolt
2 (

1

𝜅𝐺bolt𝐴b
)  (5) 

 

                                                 
2 Estimated uncertainty in measured experimental data less than 1 % 
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is a term in Timoshenko beam theory that characterizes the relative importance of the shear 

deformations to the bending deformations (Thomas et al. 1973).  In Eq. (5), 𝐺bolt = 𝐸 2(1 + 𝜐)⁄  

is the bolt shear modulus, and 𝜅 is the shear coefficient for a circular cross-section, defined as: 

 

 κ =
1

7

6
+
1

6
(
𝜈

1+𝜈
)
  . (6) 

 

The bolt plastic shear stiffness, 𝐾p,bolt, was assumed to be 2 % of the bolt initial shear stiffness, 

𝐾i,bolt. 
 

2.2 Shear Plate and Beam Web Behavior 

The shear-plate and beam-web component springs (i.e., plate springs) are modeled using a 

piecewise version the Richard Equation (see Richard and Abbott (1975)) such that: 

 

 𝑅(∆) =

{
 
 
 
 
 

 
 
 
 
 

(𝐾b
−−𝐾p

−)(∆−∆br
− )

(1+|
(𝐾b
−−𝐾p

−)(∆−∆br
− )

𝑅b
− |

𝑛b
−

)

(1 𝑛b
−⁄ )
+ 𝐾p

−(∆ − ∆br
− ),             ∆ ≤ ∆slipctr −

1

2
∆slip

(𝐾i−𝐾y)∆

(1+|
(𝐾i−𝐾y)∆

𝑅y
|
𝑛

)

(1 𝑛⁄ )
+𝐾y∆,                  ∆slipctr −

1

2
∆slip ≤ ∆ ≤∆slipctr +

1

2
∆slip

(𝐾b
+−𝐾p

+)(∆−∆br
+ )

(1+|
(𝐾b
+−𝐾p

+)(∆−∆br
+ )

𝑅b
+(𝑇)

|

𝑛b
+

)

(1
𝑛b
+⁄ )

+ 𝐾p
+(∆ − ∆br

+ ),             ∆ ≥ ∆slipctr +
1

2
∆slip

 (7) 

 

where the superscripts, (∙)+  and (∙)− , denote tensile and compressive deformations of the 

component spring, respectively, and the remaining parameters in Eq. (7) are defined below.  Fig. 

2(b) shows a schematic of the backbone response. 

 

 
Figure 3: Plate component spring backbone force-displacement response 
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Prior to bearing, the single-plate shear connection resists load via friction due to the clamping force 

supplied by the bolt pre-tension and the surface contact between the bolt and plates. For slip-

critical connections, the plates are assumed to behave elastically prior to slip, with initial 

stiffnesses determined from the gross areas of the plate characteristic-width segments as: 

 

 𝐾i =
𝑤𝑡p𝐸

𝑎
 (8) 

 

where 𝑤 is the width of the shear plate segment, 𝑡p is the plate thicknesses, 𝐸 is the modulus of 

elasticity of the plate steel, and 𝑎  is the distance between the column face to the bolt line.    

Connections that do not use pre-tensioned bolts may not develop the elastic plate stiffnesses, and 

thus may have significantly smaller initial stiffnesses.  For connections without pre-tensioned 

bolts, the initial stiffness of the friction-slip behavior can be assumed to equal the initial plate 

bearing stiffness for the relevant loading direction, 𝐾b
+ or 𝐾b

−, defined below. 

 

Slip occurs as the loading overcomes the resistance supplied by the bolt pre-tension and friction 

between the sliding surfaces.  After slip is initiated, the bolt continues to slip until the initiation of 

bearing contact between the bolt shaft and the bolt holes (at deformations of  ∆slipctr − (1 2⁄ )∆slip 

in compression or  ∆slipctr + (1 2⁄ )∆slip in tension, where ∆slip is the difference between the plate 

hole diameter (or slot width, when applicable) and the bolt diameter). 

 

The load at slip can be calculated as: 

 

 𝑅slip = 𝑛f𝜇𝛼𝐴𝑏𝐹u,bolt  , (9) 

 

Where 𝜇 is coefficient of friction between the steel surfaces in contact, 𝑛f is the number of faying 

surfaces (or slip planes), 𝐴b and 𝐹u,bolt were defined above, and 𝛼 is the ratio of the bolt pre-

tension load to the bolt tensile strength. For the modeling presented in this paper, 𝛼 = 0.75 was 

used and 𝜇 was taken as 0.338, corresponding to an average value calculated from a large set of 

data compiled by Grondin et al. (2007). 

 

It should be noted that when connections are loaded dynamically, the load in the connection spring 

may decrease as the coefficient of friction decreases from the static to the kinetic coefficient of 

friction.  However, most tests of single-plate shear connections, including those used for 

comparison with the model, have been conducted at sufficiently small loading rates that their 

behavior remained pseudo-static.  For pre-tensioned bolts in pseudo-static tests, the resistance of 

the connection tends to remain relatively constant or even increase slightly as the bolts slip (e.g., 

Liu and Astaneh-Asl (2004), Weigand (2014)).  While Eq. (7) allows for either positive or negative 

slip stiffnesses (designated as 𝐾y ), the comparison studies presented here found that a small 

positive value of 0.01 % of the initial stiffness was appropriate in all of the considered cases. 

 

The capacity and stiffness parameters of bearing portion of the shear-plate and beam-web 

component behavior were adapted from the work of Rex and Easterling (1996), who performed 

46 tests on a single bolt bearing against a single plate. The elastic and plastic bearing stiffnesses 

of the bearing force-deformation response can be determined from 𝐾b
+ = 𝛽s𝐾̅b𝛼𝐾b  and 𝐾p

+ =
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𝛽s𝐾̅b𝛼𝐾p , where 𝛽s = 1  for structural steel, 𝛼𝐾b = 1.731 , and 𝛼𝐾p = −0.009  (see Rex and 

Easterling (1996)), and 

 

 𝐾̅b =
1

1

𝐾̅b
br+

1

𝐾̅b
b+

1

𝐾̅b
v

  (10) 

 

with elastic stiffness contributions resulting from direct bearing (𝐾̅b
br = 120𝑡p𝐹y𝑑b

(4 5⁄ )
), bending 

(𝐾̅b
b = 32𝐸𝑡p(𝐿ehp − 𝑑b 2⁄ )

3
), and shearing (𝐾̅b

v = (20 3⁄ )𝐺𝑡p(𝐿ehp − 𝑑b 2⁄ )).  In the equations 

for the stiffness contributions, 𝑡p  is the plate thickness, 𝑑b is the bolt diameter, 𝐹y is the yield 

strength of the plate material, 𝐸 is the modulus of elasticity of the plate material, and 𝐺 is the shear 

modulus of the plate material. 

 

The bearing response of the plates in compression is more constrained than that in tension, due to 

the additional restraint against bending provided by the plate welds.  The additional constraint 

leads to a marginally stiffer force-deformation response in compression, relative to that in tension, 

an effect has also been noted experimentally for single-plate shear connections under increasing 

magnitude reversed cyclic loading (Crocker and Chambers 2004).  The component spring bearing 

force-deformation response in compression mirrors the response in tension, but with initial elastic 

and plastic bearing stiffnesses based only on the direct bearing stiffness such that 𝐾b
− = 𝛽s𝐾̅b

br𝛼𝐾b  

and 𝐾p
+ = 𝛽s𝐾̅b

br𝛼𝐾p.  In compression, 𝛼𝐾p = 0.001 is taken as a small positive value to avoid the 

potential for a negative tangent stiffness.  

 

Load Reversal Behavior 

The behavior of single-plate shear connections upon load reversal can be relatively complex, but 

adequately capturing those complexities is critical to modeling the load-history-dependent 

resistance and energy dissipation capacity of the connections.  Tests on single-plate shear 

connections under seismic loads have shown that the connection moment-rotation response 

becomes increasingly pinched and nonlinear at large rotations (e.g., Crocker and Chambers (2004), 

Liu and Astaneh-Asl (2004)).  At small rotations prior to bearing, friction supplied by pre-

tensioned bolts resists sliding in both directions, and the cyclic friction slip behavior at load 

reversal can be characterized by  

 

 𝑅 = 𝑅unl +
(𝐾i−𝐾y)(Δ−∆unl)

(1+|
(𝐾i−𝐾y)(Δ−∆unl)

𝑅cyc
|
𝑛y

)

(1 𝑛y⁄ )
+𝐾y(Δ − ∆unl)  , (11) 

 

where, similar to the bolt shearing response, (Δunl, 𝑅unl) are the coordinates of the last unload 

point and 𝑅cyc = sign(∆ − ∆unl)𝑅y − 𝑅unl + 𝐾y ∆unl is the current value of the cyclic reference 

load.  Eq. (11) represents a “full” (i.e., not pinched) cyclic hysteresis that is symmetric about the 

origin. 

 

After bearing has been initiated, the plate component spring model also tracks the coordinates of 

the minimum and maximum unload points, (Δunl,min, 𝑅unl,min)  and (Δunl,max, 𝑅unl,max) 
respectively.  The load reversal behavior is then defined between the values of the minimum and 
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maximum unload points within the current cycle, permitting the model to capture the evolution of 

the connection response with increased hole elongations due to bearing.  Pinching in the 

connection begins at the initiation of bearing deformations as a result of the loss of pre-tension in 

the bolts.  This phenomenon is captured within the shear-plate and beam-web component springs 

by allowing the pinching (the scalar parameter 𝛾  in Eq. (15) below) to vary as a function of 

accumulated bearing deformation.  The pinched hysteresis response is formed from a combination 

of two response curves. The first curve is the general form of the Richard Equation, which 

represents the response with no pinching, written in terms of the bearing curve parameters: 

 

 𝑅 = 𝑅unl +
(𝐾b

+−𝐾p
+)(Δ−∆unl)

(1+|
(𝐾b
+−𝐾p

+)(Δ−∆unl)

𝑅cyc
|

𝑛b
+

)

(1
𝑛b
+⁄ )

+ 𝐾p
+(Δ − ∆unl)  , (12) 

 

where 𝑅cyc = 𝑅b
+ + 𝑅y  for the initial unload cycle, and 𝑅cyc = 𝑅unl,max − 𝑅unl,min  for all 

subsequent cycles.  The second curve, which represents the fully pinched response, is defined 

using a Bézier curve (e.g., Farin (1993), Prautizsch et al. (2002)).  The Bézier curve was chosen 

because it provides an adaptable smoothly transitioning approximation to a piecewise-linear curve, 

that can be defined to traverse a path through zero load at zero displacement with a small residual 

stiffness 𝐾res, and to terminate at the appropriate minimum or maximum unload point, depending 

on loading direction.  The Bézier curve is calculated as 

 

 𝑩(𝑡) = ∑ 𝐵𝑖
𝑛(𝑡)

𝑛

𝑖=0
𝑷𝑖  , (13) 

 

where 𝑡 is a parametric variable ranging from 0 to 1 (i.e., 0 at the current unload point and 1 at the 

current reload point), 

 

 𝐵𝑖
𝑛(𝑡) = (

𝑛
𝑖
) (1 − 𝑡)𝑛−𝑖𝑡𝑖       𝑖 = 0, 1, … , 𝑛 (14) 

 

are Bernstein polynomials, (
𝑛
𝑖
) =

𝑛!

𝑖!(𝑛−𝑖)!
 are the binomial coefficients, and 𝑷𝑖 is the set of control 

points that define the curve trajectory (Fig. 4).  Tests of connections under cyclic rotation cycles 

have shown that 𝐾rel
− ≈ (1 2⁄ )𝐾b

− and 𝐾rel
+ ≈ (1 2⁄ )𝐾b

+. At a given value of 𝑡, the Bézier curve 

resulting from Eq. (14) has two components, where the second component corresponds to the 

component spring load (i.e, 𝑩2(𝑡) = 𝑅BZ).  𝑅BZ represents load reversal behavior that is fully 

pinched. 
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Figure 4: Schematic of Bézier curve with control points (unload from positive deformation) 

 

The actual load reversal path 𝑅p is calculated as a weighted summation between the full hysteretic 

behavior (i.e., Richard Equation) and fully pinched behavior (i.e., Bézier curve) as: 

 

 𝑅p = 𝛾𝑅 + (1 − 𝛾)𝑅BZ  , (15) 

 

where the amount that each curve contributes to the response defines the pinching ratio 𝛾, which 

can vary between 0 and 1.  Fig. 5(a) shows a schematic of the pinching behavior for the initial 

unload cycle and Fig. 5(b) shows a schematic of the pinching behavior for the subsequent cycles. 

 

   
(a) (b) 

Figure 5: Schematic showing plate component spring pinched hysteresis (Eq. (15)) for (a) initial unload cycle and 

(b) subsequent unload cycle 

 

Calibration of Pinched Hysteresis 

The evolution of the pinching parameter 𝛾 was determined by assuming that the bolt behaves 

elastically, and calibrating the shear-plate and beam-web component-spring pinching behavior 

against data from Liu and Astaneh-Asl (2004), for a four-bolt single-plate shear connection 
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subjected to increasing magnitude rotation cycles.  The results of the pinching calibration are 

shown in Fig. 6(a), and Fig. 6(b) shows a comparison of the model response using the calibrated 

pinching function to the data from Liu and Astaneh-Asl (2004).  More information on procedure 

used to calibrate the pinching parameter is available in Weigand (2016). 

 

   
(a) (b) 

Figure 6: (a) Pinching ratio data with fitted pinching curve, and (b) comparison of model response, using fitted 

pinching curve, to experimental data from Liu and Astaneh-Asl (2004)3 

 

3. Calculation of Connection Deformations 

The axial deformations of the connection springs, Δj, were calculated in terms of the connection 

rotation and axial deformation demands, 𝜃  and 𝛿 , respectively, using a rigid-body fiber-

displacement model derived by Weigand and Berman (2014): 

 

 Δj = 𝛿 + (1 − cos 𝜃)𝑋j1 − sin 𝜃𝑋j2  , (16) 

 

where 𝑿𝑗  denotes the location of the 𝑗th  connection spring with components 𝑿𝑗 = {𝑋j1, 𝑋j2 }
𝑇
 

relative to the center of rotation of the connection (Fig. 7).  For seismic tests, the connections are 

subjected only to rotation demands (i.e., 𝛿 = 0), and the connection spring deformations are 

essentially linear with increasing rotation. 

 

 
Figure 7: Coordinate system for calculation of spring displacements from rigid-body fiber displacement model 

(Source: Weigand and Berman (2014)) 

                                                 
3 Estimated uncertainty in measured experimental data less than 1 % 
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For the connections subjected to column loss, the connection demands can be calculated in terms 

of the vertical deflection of the simulated missing column, Δsyst,  (termed “simulated vertical 

displacement”) as 

 

 𝜃 = tan−1 (
Δsyst

𝐿r
)  , (17) 

 

and 

 

 𝛿 =
𝐿r

2
[√1 + (

Δsyst

𝐿r
)
2

− 1]  , (18) 

 

where 𝐿r is the distance between the centers of gravity of connection bolt groups on the ends of 

the framing members (in the undeformed configuration). 

 

4. Results and Discussion 

To examine the ability of the component-based model to adequately capture the connection 

response, the model was used to predict the responses of multiple tested connections for which 

data are available in the literature.  Fig. 8 shows a comparison of the predicted response from the 

model to the moments at the peak rotations from each cycle of data from Crocker and Chambers 

(2000), for a 4-bolt single-plate shear connection with 19 mm (3/4 in) diameter A325 bolts, a 9.5 

mm (3/8 in) thick A36 shear plate, and a W18×55 beam section.  It should be noted that, because 

Crocker and Chambers (2000) listed the material grades used in the connection tests, but did not 

include coupon data for the shear plate and beam web materials, this comparison assumed plate 

material yield and ultimate tensile strengths equal to the expected material strengths from 

ANSI/AISC 341-10 (AISC 2005).  Fig. 8 shows that the model underestimated the resistance of 

the connection at small rotations, relative to the connection data, but better approximated the peak 

moments of the connection at large rotations.  During the cycle prior to connection failure in the 

test, the model was within 5 % of the moments at the peak rotations (4 % at the cycle peak and 1 

% at the cycle valley). 

 
Figure 8: Comparison of moment-rotation response predicted by component-based model with connection data from 

Crocker and Chambers (2000)4 (connection data shown at cycle peaks) 

                                                 
4 Estimated uncertainty in measured experimental data less than 2 % 
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The component-based connection model was also compared to data from single-plate shear 

connection sub-assemblages tested by Weigand and Berman (2014) under simulated column 

removal.  The model was subjected to the same rotation and axial deformation demands as were 

used in the sub-assemblage tests.  The component spring displacements, due to the connection 

demands, were calculated from Eq. (16).  Fig. 9 shows a comparison of the connection response 

predicted by the model with the vertical (i.e., along 𝑋2) and horizontal (i.e., along 𝑋1) force-

displacement responses from Specimen sps4b|STD|34|38|48L from Weigand and Berman (2014), 

which corresponds to a 4-bolt single-plate shear connection with 19 mm (3/4 in) diameter bolts, a 

9.5 mm (3/8 in) thick shear plate, and a 14.6 m (48 ft) span.  The estimated uncertainty in the 

measured experimental data was less than ± 0.5 %, based on repeated calibrations of the 

instruments over the course of testing.  The model under-predicts the connection vertical resistance 

throughout most of the analysis, relative to the connection data.  This discrepancy occurs as a result 

of excess shear force in the tested connections, an effect which is described in detail in Weigand 

(2016).  The model does not account for this excess shear force; however, as the excess shear force 

dissipates at large simulated vertical displacements (i.e., when the shear resistance of the 

connection is due primarily to tension resistance in the rotated configuration), the vertical force-

displacement response of the model approaches that of the tested connection.  The model predicted 

the peak vertical connection resistance within 4 % and the peak horizontal connection resistance 

within 1 %. 

 

   
(a) (b) 

Figure 9: Comparison of predicted (a) vertical force-displacement response and (b) horizontal force-displacement 

response from component-based model with connection data 

 

5. Summary 

This paper summarized the development of a component-based model for single-plate shear 

connections.  The model was compared against the moment-rotation response of a single-plate 

shear connection tested under increasing magnitude rotation cycles (i.e., seismic loads), as well as 

against the vertical and horizontal force-displacement responses of a connections tested under 

combined rotation and axial deformation demands (i.e., column removal loads).  The close 

agreement between the model and the connection experiments, as well as additional comparisons 

between the model predictions and connection test data presented in Weigand (2016), serve as 

validation of the proposed modeling approach. 
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Beyond predicting the responses of the single-plate shear connection tests considered in this paper 

for validation, the component-based model provides other key capabilities, such as the capacity to 

capture load reversals and energy dissipation, that are critical to modeling the responses of 

connections subjected to extreme loads.  The model also accounts for the pinching effects 

associated with hysteresis, which are critical to modeling the history-dependent resistance of 

connections under seismic loads, and which also play a role in the behavior of connections 

subjected to column removal. 
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