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Abstract—The Total variance approach has been developed for in-
creasing the confidence of the estimation of the classical Allan variance
(AVAR), particularly for large integration time values. This method is
based on a procedure of extension of the original data sequence called
the mirror-reflection which increases the equivalent degrees of freedom
of each Allan variance estimate. Recently, we applied this approach to
the Modified Allan variance (MVAR) and proved that, in this case, an-
other procedure of extension of the data sequence should be used: the
reflection-only extension.

In this paper, we propose a criterion to select the most appropriate
extension procedure for a given structure function (i.e. variance). This
criterion is based on the sensitivity of a structure function to the linear
and quadratic drifts, or, and this is equivalent, on the convergence of
this structure function for the different types of noise.

This method and this criterion will be illustrated by its application to
the “pulsar variance”, which is insensitive to the quadratic and linear
phase drifts, and converges fromf�4 FM to f+2 FM.

1. INTRODUCTION

The estimation of the long term stability of oscillators
(particularly very long term) is more difficult than the es-
timation of the short term stability. As a consequence, the
random walk and flicker FM noise levels, which are likely
to dominate at long term, are always less precisely estimated
than the other noise levels. Nevertheless, the low frequency
noise levels contain the statistical information of the future
behavior of an oscillator, which is essential for extrapolating
its performances [1].

Obviously, this lack of knowledge is due to the length of
the time sequence which is often insufficient for insuring the
preeminence of the low frequency noises. For ultra stable
quartz oscillators, a data sequence of at least one day length
must be used to distinguish the flicker FM from the white
FM, and 5 to 10 days may be necessary for detecting the
random walk FM. Moreover, the uncertainty of the estimates
increases with the integration time. For example, with the
Allan variance (AVAR) and considering aT -length time se-
quence, the longest integration time is� = T=2. Its cor-
responding estimate is chi-square distributed with only one
degree of freedom. This means that the standard deviation
of such an estimate is

p
2 times greater than its expectation.

Furthermore, the distribution is negatively skewed with val-
ues twice as likely to be below the actual noise level than
above. AVAR is also sensitive to linear frequency drift which
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must be removed, thus additionally suppressing the actual
low frequency random noise levels. To be safe, theT=2 es-
timate is ignored, and the longest integration time is limited
in practice toT=4 or less. Therefore, a data run of length
20 to 40 days must be used to provide sufficient confidence
for detecting the presence of, say, random walk FM, let alone
estimating its level. When long enough data runs become im-
practical to obtain, Total variance (Totvar, or its usually re-
ported square-root Totdev) is recommended as an improved
estimator of long term stability [2].

The goal of the concepts in this paper is to increase the
confidence of long term frequency stability estimates with-
out increasing the length of a data run for other classes of
variances. Additionally, it is often important to distinguish
white PM from flicker PM, unlike the Allan variance. To ac-
complish this, we apply the Total variance approach [3] to
structure functions [4]. This is motivated by two issues.

The first issue involves defining a suitable variance from a
combination of order and family of structure functions such
that the variance is sensitive to all expected types of noises
while it is insensitive to particular types of drift. This avoids
the complication of removing drifts before applying the vari-
ance and consequently avoids suppression and underestima-
tion of actual random noise level at long term.

The second issue involves retrieving the maximum infor-
mation from the data run itself by using the Total variance
approach. This approach is based upon a periodic exten-
sion of data sequences [5]. Obviously, this doesn’t permit an
increase of the integration time beyond a variance’s normal
upper limit, but the uncertainty interval of the correspond-
ing long term estimates is significantly reduced by using the
Total approach.

From our experience in constructing an improved estima-
tor of the modified Allan variance (called Mod-Totvar), sev-
eral types of data extensions can be considered [6]. This pa-
per gives criteria for the extension type selection according to
the variance which is obtained from the order and family of
structure functions. Section 2 illustrates how the Total vari-
ance model is implemented on the modified Allan variance
to obtain the best “Modified Total” variance. Section 3 de-
fines relevant structure functions. Section 4 gives criteria for
selecting a data extension type for these structure functions
and ends with an example of the Total approach applied to
the pulsar variance.



Fig. 1. The four types of data extensions.

2. THE TOTAL VARIANCE APPROACH

2.1 Bias and equivalent degrees of freedom

The Total variance approach involves periodically extend-
ing a data sequence beyond its normal measurement dura-
tion and in such a way that a particular time statistic is ex-
pected to have the same value with extended data as without.
For those statistics which estimate components of broadband
noise processes, the approach can significantly reduce the
spread or uncertainty in the result.

We use two quantities to check the efficiency of the
method:
� the bias defined as the percentage of error between the

classical variance estimate and the Total variance esti-
mate;

� the equivalent degrees of freedom (edf)defined, assum-
ing a�2 distribution of the estimates, as

edf=
2 [Mean(estimates)]2

Variance(estimates)
: (1)

2.2 Types of data extension

DenotingT as the length of the calculation sequence (for
example,T = 2� for AVAR, T = 3� for MVAR, . . . ), four
types of extension have been used (see figure 1):

1. 2T -periodic uninverted or even mirror-reflection,
2. 2T -periodic sign-inverted or odd mirror-reflection,
3. T -periodic straight duplication,
4. T -periodic duplication with end-to-beginning connec-

tions.
Obviously, other extension types could be used, but these
types summarize essential properties of interest.

Sequence extensions were originally tested with the Allan
variance. The type 2 extension was found to be optimum and
is used in defining Totvar [5],[7]. Since Totvar, like AVAR,
doesn’t distinguish white PM and flicker PM noises, the ap-
proach was generalized to the time variance (and time de-
viation) [8] and to the modified Allan variance [6]. These
variances are specially designed for estimating the level of
the phase modulation noise types (white PM, flicker PM, and
random walk PM) as well as the frequency modulation noise
types (flicker FM and random walk FM). In this case, the
type 1 extension should be used in order to avoid a huge bias
in the presence of high frequency (or PM) noises. This is be-
cause the type 2 extension modifies the mean of a sequence

Sy(f) b c edf(�max) bias%
h+2f

+2 1.9 2.1 3.6 -6%
h+1f

+1 1.2 1.4 2.2 -17%
h0f

0 1.1 1.2 2.1 -27%
h�1f

�1 0.85 0.50 2.05 -30%
h�2f

�2 0.75 0.31 1.94 -31%

TABLE I

EDF MODEL DEFINED IN (2) AND BIAS FOR M OD-TOTVAR.

at each end-to-beginning connection, inducing a step in the
subestimates and causing the overall mean of the Total ap-
proach to be biased very high (see figure 2 and ref. [6]).

2.3 Modeling edf and bias

Howe and Greenhall defined an empirical model for edf of
Totvar [5]:

edf[Totvar(�; T )] = b
T

�
� c: (2)

where the coefficientsb andc were estimated for each type
of noise from a Monte-Carlo method.

Using the same model (2) for Mod-Totvar, we obtained
the coefficientsb andc given in Table I, which also lists per-
centage bias of Mod-Totvar relative to classical MVAR for
its range of noise types.

2.4 Practical implementation of Mod-Totvar

Let us consider a sequence ofN time error datafx(ti)g,
with a sampling rate�0. Let us denoteT the length of the
total sequence:T = N�0.

The integration time� may be defined as� =m�0 where
m is an integer andm �N . The length of the calculation se-
quence of MVAR is3� , which will be called asubsequence,
one of all possible consecutive sequences of3� length.
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Fig. 2. Bias of the subestimates for a type 2 extension applied to a white
PM noise and using MVAR. Shown are MVAR mean values and associated
standard deviations (by the error bars) computed at� time-shifts of10�0,
that is, shifts in the extended sequence of0;�10;�20; :::� 384. Each
mean value is an average of 1000 estimates. The middle mean value is at a
null-shift (0) which corresponds to the classical MVAR result.



In order to calculate the Mod-Totvar for one given value
� =m�0, one would:

1. extract all3m data subsequences from the whole se-
quencefx(ti)g;

2. remove their linear phase drift;
3. extend them at both ends by the type 1 even mirror-

reflection to form9m data subsequences;
4. calculate MVAR for each of these9m subsequences;
5. average all these MVAR results.

2.4.1 2-� and 3-� extension

There are two cases for which MVAR can be computed. In
case 1, MVAR subsequences can have a span of2� if three
successivefx(ti)g values form a second-difference and con-
secutive second-differences spaced by�0 are subsequently
averaged for integration time� = m�0. Resulting values
are then squared and averaged to compute MVAR. In case
2, MVAR subsequences can have a span of3� if three suc-
cessive� -averagedfx(ti)g values form a second-difference
whose squared value is then averaged with all other possi-
ble squared second difference values. Since case 1 yields
the same answer as case 2, the question arises, “Should we
extend2� (case 1) or3� (case 2) subsequences?” Using sim-
ulation studies, we compared both cases, extending each sub-
sequence to form a2� version and a3� version of Modified
Total variance. The2� version had significantly more neg-
ative bias than the modest bias of the3� version shown in
Table I. Moreover, the edf showed a reduction by 20% to
35% corresponding tof+2 FM to f�2 FM. These results
show conclusively that the3� version is superior to the2�
version, hence3� subsequences are used in all formulations
of Modified Total variance.

2.4.2 Taking advantage of symmetries

Figure 3 shows an example of time-shifted MVAR means
(and standard deviations of 1000 simulation trials) and ex-
hibits 2 axes of symmetry located at time-shift�384�0 and
+384�0 for a� value equal to256�0. This means that redun-
dancies allow us to only calculate the subestimates for time-
shifts contained between�384�0 and+384�0. The average
of these subestimates is thus exactly the same as a complete
calculation of Mod-Totvar, i.e. averaged from time-shifts
�768�0 to+768�0.

Denotingsk as the subestimate obtained for a time-shift
equal tok�0, it can be demonstrated thats�3m+k = s�k and
s3m+k = s3m�k.

Consequently,

� if m is even, we just have to calculate the subestimates
from s

�3m+3m=2 to s3m+3m=2 (6m subestimates) ;
� if m is odd, we just have to calculate the subestimates

from s
�3m+(3m+1)=2 to s3m+(3m�1)=2 (6m� 1 subes-

timates).

The periodicity of the subsequence is equal to9m�0 (i.e. 9� )
but, thanks to the symmetries, we only have to consider6m
subestimates.
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Fig. 3. Time-shifted MVAR mean and corresponding1� standard deviation
of the mean (by the error bars) after extending a simulated subsequence by
even reflection (type 1) for subsequence noise types white PM. The axis of
symmetry are located at -384 and +384 for a� value equal to256�0.

3. THE STRUCTURE FUNCTIONS

The concept of structure functions is an extension of the
variance approach tonth difference operators [4].

The structure function�2n;m(� ) is characterized by its or-
der of differencen and its familym, expressing the “smooth-
ness” (rectangular, linear, quadratic,. . . shapes) of its se-
quence calculation (see figure 4).

The properties of a structure function�2n;m(� ) may be
summarized by:
� �2n;m(� ) is insensitive to phase drifts up totn;
� �2n;m(� ) converges for low frequency noises fromf�2n

FM;
� �2n;m(� ) converges for high frequency noises up to
f+2m�2 FM.

It may be noticed that the convergence for low frequency
noises and the insensitivity to phase drifts are linked. This
property is known as themoment condition[9], [10]: it may
be demonstrated that the insensitivity to atn frequency drift
(tn+1 phase drift) yields the convergence up tof�2n�2 FM.

For example, we may choose the structure function
�22;2(� ), called the pulsar variance [11], [12], because it
converges for all types of noise and it is insensitive to the
quadratic phase drifts.

4. CRITERIA FOR THE EXTENSION TYPE SELECTION

We checked
� 4 structure functions: the Allan variance (�21;1(� )), the

modified Allan variance (�22;1(� )), the Picinbono vari-
ance (�21;2(� )), the Pulsar variance (�22;2(� )),

� with the 4 extension types described above,
� with or without removal of the linear or the quadratic

phase drift (3 cases),
i.e. 48 different estimators.

We applied all these estimators to 100 simulated realiza-
tions (16384 data) ofeach of the 5 noise types(from f�2

FM to f+2 FM), i.e. 500 noise sequences.
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Fig. 4. The different classes of structure functions. The left figures in each box represent the calculation sequences for time error data and the right

figures represent the calculation sequences for frequency deviation data. From top to bottom, the order of difference increases, yielding convergence for

lower frequency noises and insensitivity to higher order polynomial drifts. From left to right, the different families yield convergence for increasingly

higher frequency noises.

4.1 Results:

� extension types 1 and 2 are better than 3 and 4 (bias
smaller and edf higher);

� extension type 1 is better than 2 fromf�2 PM to white
PM;

� as mentioned above, extension type 2 must be avoided
for f+1 PM andf+2 PM;

� removing the quadratic phase drift decreases the edf.

4.2 Criteria:

1. since 1st family structure functions don’t converge for
f+1 PM andf+2 PM, the type 2 extension should be
used;

2. the type 1 extension must be used for the structure func-
tions of the 2nd family and higher;

3. since the 1st order difference (and higher) structure
functions are insensitive to linear phase drift, this drift
must be removed over each subsequence of length2�
(lower bias);

4. since the 2nd order difference (and higher) structure
functions are insensitive to quadratic phase drift, this
drift must be removed over the whole sequence (lower
bias) but not over each subsequence of length2� since
this would decrease the edf (see last result above).

4.3 Examples:

Total variance (Totvar): extension type 2, no removal of
drift;

Modified Total variance (Mod-Totvar):extension type 1,
removal of the linear drift over each subsequence;

Total Picinbono variance: extension type 1, removal of
the linear drift over each subsequence, removal of the
quadratic drift over the whole sequence;

Total Pulsar variance: extension type 2, removal of the
linear drift over each subsequence, removal of the
quadratic drift over the whole sequence.
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Fig. 5. Comparison of the classical Allan variance and the Total Pulsar
variance. These curves were obtained from 400 frequency measurements of
a quartz oscillator, with a sampling rate equal to 1s.

5. EXAMPLE

Figure 5 shows the results obtained with the classical Al-
lan variance compared to the results obtained by the Total
Pulsar variance applied to the same real sequence. Despite
its lower integration time limit (�max = T=4 for PVAR and
�max = T=2 for AVAR), only the Total Pulsar variance is
able to show the positive slope for large� values, correspond-
ing to the detection of the random walk frequency noise. It
may also be noticed that for� = T=2, AVAR gives a result
5000 times too low.

6. CONCLUSION

By using the Total approach on different variances, the
equivalent degrees of freedom of the estimates at and near
the longest averaging time� = T=2 (T is the total duration
of the data sequence) increases by a factor of between 2 and
4 relative to the corresponding classical variance. The con-
fidence interval over each variance estimate using the Total
approach is then reduced from 70% to 50% relative to the
classical variance estimate. Thus, the noise levels are more
precisely determined (and this could be crucial, see for exam-
ple ref. [1]) and the use of a Total variance over a sequence of
durationT may be equivalent to the use of the corresponding
classical variance over a sequence of duration2T .
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