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Total Variance, an Estimator of Long-Term 
Frequency Stability 

Charles A. Greenhall, Member, IEEE, Dave A. Howe, and Donald B. Percival 

Abstract-Total variance is a statistical tool developed 
for improved estimates of frequency stability at averaging 
times up to one-half the test duration. As a descriptive 
statistic, total variance performs an exact decomposition of 
the sample variance of the frequency residuals into compo­
nents associated with increasing averaging times. As an es­
timator of Allan variance, total variance has greater equiv­
alent degrees of freedom and lesser mean square error than 
the standard unbiased estimator has. 

l. INTRODUCTION 

A
LMOST by definition, there can never be enough data
when making long-term stability measurements of 

clocks and frequency standards. Having collected data dur ­
ing a time period T, we have to accept a tradeoff between 
averaging time T and confidence in the estimate &

y 
( T, T) 

of Allan deviation u y ( T). To improve this tradeoff, Howe 
et al. [l] introduced the practice of incorporating all of 
the available overlapping samples of the increment of T­

average frequency into the estimate. Of course, for the 
largest averaging time (T = T/2), there is only one such 
sample, the change in average frequency from the first half 
of the run to the second. The resulting estimate &

y (T /2, T)
often appears to be unrealistically low; an example can be 
seen in Fig. 1, the results of a test run of a pair of hydrogen 
masers. 

Two reasons for the droop at the right end can be given. 
First, if the differences of the frequency residuals are mod­
eled as Gaussian random variables with mean zero, im­
plying no overall linear frequency drift, then &� (T /2, T) 
is proportional to a chi-squared random variable xl with 
one degree of freedom. The distribution of such a random 
variable is heavily skewed toward values lower than its 
mean value a� (T/2). Fig. 2 shows the probability density 
of the random variable Q = log10 [&

y 
(T/2, T) /u

y 
(T/2)]. 

The probability that Q < 0 is 0.68, more than twice the 
probability that Q > 0, and the left tail is much heavier 
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Fig. 1. Sigma-tau plot of &y (standard estimate of Allan devia­
tion), total deviation ) and remainder deviation for a pair of hydrogen 
masers. The error bars ( offset vertical lines) are 90% confidence in­
tervals for Allan deviation ba..'3ed upon total deviation. 

than the right tail. Second, to prevent frequency drift from 
masking the long-term fluctuations, it is common practice 
to remove an estimate of overall linear drift from the data; 
in this case, ai (T /2, T) is likely to be reduced because 
drift removal tends to match the earlier and later frequen­
cies. After drift removal, &� (T /2, T) still has one degree 
of freedom; so it is subject to both effects. 

In an effort to reduce these effects on the measurement 
of ai ( T) for large T, the notion of total variance was de­
veloped over the last few years in a sequence of papers 
[2]-[5]. Fig. 3 illustrates how the idea of total variance was 
initially conceived. The top plot shows the frequency sam­
pling function for the estimated Allan variance at T = T /2. 
By sampling function we mean a function h (t) by which 
the frequency residuals y (t) are to be multiplied; then, 
J: h (t) y (t) dt is called the functional associated with the 
sampling function. (For sampled data, we mean an analo­
gous summation.) Except for a scale factor, the absolute 
value of the functional associated with the top sampling 
function is just &

y 
(T/2, T). Because this sampling func­

tion is odd about T /2, its functional rejects the even part 
of y ( t). If by chance or design ( from the two effects dis­
cussed previously) it should happen that y (t) tends to be 
even about T /2, then the functional could produce a value 
much smaller than a practical notion of the size of the 
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