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Abstract— A simplified framework is introduced for automat-
ically and quickly registering the Cartesian coordinate systems
of industrial robots to any other arbitrary coordinate system.
This framework includes both explicit and implicit (sensor-
based) registration techniques using as few as three reference
poses per robot, and presents different methods for measuring
registration uncertainty. Driven by the guiding principles of
simplifying the registration process to enable rapid installation
by non-expert users, a mathematical basis for fast system reg-
istration is presented. We also present methods for quickly and
inexpensively approximating the registration errors, and outline
mechanisms for improving registration performance. Several
case study examples are provided in which the registration per-
formance is captured across four different registration methods,
and two different robots. A reference motion capture system
is used to capture post-registration positioning accuracy of the
robots, a sampling-based registration estimation technique is
assessed, and results are systematically quantified.

Keywords: robot registration, robot performance, multi-
robot coordination

I. INTRODUCTION

Flexible robot automation encapsulates the idea that a
single robot can be quickly and repeatedly reconfigured and
retasked to accommodate multiple applications. With the
current trends in lightweight and mobile robotic systems, the
versatility of such robotic platforms is increased further with
their ability to be rapidly relocated to new workstations for
new applications. Moreover, with the advent of collaborative
robot technologies, the historical need for hard mounts and
safeguards is relaxed. However, such flexibility introduces
new performance challenges for manufacturing applications.

Relocating or re-tasking robots requires the reprogram-
ming of hard-coded, application-dependent robot positions in
their respective coordinate systems. This brittle programming
approach impacts the productivity of the manufacturing
line by undermining software reusability. This inflexibility
makes robot adoption by small- and medium-sized enter-
prises (SMEs) both needlessly complicated and prohibitively
expensive. Two different schools of thought seek to minimize
this impact. The first seeks to reduce the barrier to pro-
gramming, effectively making the robots easier to program
for targeted applications (e.g., [1]). The second removes the
need to re-program robot positions by programming robot
positions in the workspace or world coordinate frame (to
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which the robot registers itself), e.g., [2]. The first method
pushes the process intelligence onto the robot’s controller,
and limits the functionality of robots to specific applications
for which software has already been written. The second
method requires quality registration to the world coordinate
frame, which can be a burdensome process to ensure the
minimization of registration errors.

The registration process and associated errors have been
identified as one particular pain point for SMEs [3]. Coor-
dinate system registration refers to the mapping of measure-
ments in one system’s frame of reference to the frame of
reference of another. This process corrects for differences in
coordinate system placement and orientation. In this paper, a
framework is presented that reduces this burden by providing
a mechanism for easy and automatic coordinate system
registration with an equally easy method for estimating regis-
tration uncertainty. This framework automatically computes
the homogeneous transformation from one coordinate system
of any robot to any other arbitrary coordinate system and
then measures the registration uncertainty using simple math
and fast pose sampling. This work is inspired by the desire
to make robotic solutions for smart manufacturing more
accessible. It aims to do so by enabling multiple robots
to be more flexible and adaptive, such that robot systems
can be installed, configured, and programmed to operate
quickly and with minimal negative impact on productivity.
Further, this work provides a necessary precursor to enabling
heterogeneous configurations of multiple robots (i.e., robots
from different manufacturers with incompatible controllers)
to work collaboratively on a single task.

This paper is split into the following sections: Section II
provides a brief account of existing, commercial solutions
for robot coordinate frame registration; Section III gives an
outline of the registration process; Section IV enumerates
various methods for acquiring the necessary input data for
coordinate frame registration; Section V presents experimen-
tal results of four different registration methods across two
different robotic platforms that demonstrate functionality,
feasibility, and validity of the framework; and Section VI
gives a discussion of results and future work.

II. ROBOT COORDINATE SYSTEMS AND REGISTRATION

In robotic applications, registration transforms poses from
one coordinate system to poses in the robot’s coordinate
system. This transformation facilitates the hand-off of parts
from one robot to another, and converts measurements from
external camera systems to guide path planning for part
acquisition and collision avoidance. For many industrial
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Fig. 1: Typical coordinate systems for industrial robots in-
clude the base (B) and tool (T) frames, and may also include
external definitions (W) for world or workpiece frames.

robot systems, 6 degree-of-freedom (6DoF) poses (transla-
tions and rotations in Cartesian space) are typically defined
in either the base frame or the tool frame (Fig. 1). The
base frame, B, is usually located with its origin inside the
base at or near the mounting flange. The tool frame, T, is
located with its origin at the tool center point (TCP). Some
robot vendors provide mechanisms for defining additional
coordinate systems to enable a unifying world frame, W,
for multiple robots or sensors. Furthermore, functionality
may allow for the creation of a work frame (a task-relevant
coordinate system) to which the robot is registered such
that a robot or workpiece may be moved without requiring
retraining of all hard-coded robot positions. Unfortunately,
these capabilities are not universally available.

The process of registering between sensor systems is
required for measuring more complex information about the
world than is possible with a single sensor (e.g., measur-
ing 3D point clouds using multiple 2D cameras [4]). The
registration between a sensor system and a robot similarly
enables more complex control capabilities. Depending on the
level of integration, registering sensors to a robot coordinate
system requires significant effort on the part of the system
programmer. Sensor systems specifically designed for use
with automation may provide the capability to define their
own coordinate systems relative to the robot to minimize the
effort needed for registration (e.g., [5]). Additionally, there
exist some approaches in the literature to automatically regis-
ter robot systems with external and robot-mounted (e.g., [6])
camera systems, though their use in general manufacturing
applications is limited.

Registering multiple robots to accept command coordi-
nates in a common coordinate system requires either a central
point of control (e.g., [7]) or the provision of external world
or work frames (e.g., [8]). Some multi-robot systems in
the literature build internal representations of maps, and
registration takes the form of aligning these maps using
techniques common to machine vision [9]–[11].

III. 3-POINT REGISTRATION PROCESS

At the heart of our registration framework is a basic proce-
dure for calculating a homogeneous transformation from one
coordinate system (N) to another (R) by means of a third,
intermediate coordinate system (O, Fig. 2). Such transforma-
tions may be used to register one robot’s coordinate system to

Fig. 2: The transformation from one arbitrary coordinate
system, R, to another, N, relies on defining an intermediate
coordinate system, O, with a known transformation to and
from R and N.

the coordinate system of another, or to register both robots’
coordinate systems to a third coordinate system. This process
consists of capturing 3D coincidental Cartesian points (X, Y,
and Z coordinates) in both the N and R coordinate systems,
and then constructing an arbitrary coordinate system, O,
such that known homogeneous transformations exists from
O to N, and from O to R. To accomplish this, the following
assumptions must be satisfied:

• N and R are static (or have known transformations
to static reference frames) for the collection of the
registration data,

• The systems operating within N and R are calibrated
to be within the users specifications for accuracy and
repeatability, and

• All systems follow a right-handed orientation.
The process begins with the selection of at least three non-

collinear points, p1, p2, p3, that can be measured in both the
robot and world coordinate systems (Fig. 3a). Specifically,
for each pi = [pi,x, pi,y, pi,z]

T, 1 ≤ i ≤ 3, in the R
coordinate system, there is a corresponding, co-located pi

in the N coordinate system. From these two sets of points,
corresponding vectors, v1 and v2, linking p1 to p2 and p1

to p3 (Fig. 3b), respectively, are defined in both coordinate
systems by:

v1 = p2 − p1, (1)

v2 = p3 − p1, (2)

Definitions for v1 and v2 are given in terms of the both
the R and N coordinate systems (i.e., Rv1 and Nv1). These
two vectors provide the bases for defining the intermediate
right-hand coordinate system, O. The unit vector x̂ defines
the X axis of O, and is aligned with v1 in both N and R (Fig.
3c).

x̂ =
v1

‖v1‖
→ N x̂,Rx̂ (3)

The unit vector ŷ defines the Y axis of O, and is orthogonal
to both v2 and x̂ (Fig 3d).

ŷ =
x̂× v2

‖x̂× v2‖
→ N ŷ,Rŷ (4)

And the unit vector ẑ defines the Z axis of O, and is
orthogonal to both x̂ and ŷ (Fig 3e).

ẑ = x̂× ŷ→ N ẑ,Rẑ (5)
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(a) (b) (c)

(d) (e)

Fig. 3: The registration process is centered around the establishment of an intermediate coordinate system, O, using three,
non-collinear sets of points (a). These three point clusters, and the vectors defining the edges connecting them (b), are then
used to generate unit vectors (c-e) that establish the coordinate system O.

Given that x̂, ŷ, and ẑ are orthonormal, they define the
orientation of O in both N and R:

N
OR =

[
N x̂ N ŷ N ẑ

]
=

 N x̂x
N ŷx

N ẑx
N x̂y

N ŷy
N ẑy

N x̂z
N ŷz

N ẑz

 ,
(6)

R
OR =

[
Rx̂ Rŷ Rẑ

]
=

 Rx̂x
Rŷx

Rẑx
Rx̂y

Rŷy
Rẑy

Rx̂z
Rŷz

Rẑz

 . (7)

And because the origin of O is centered on p1, the
homogeneous transformations from the origins of O to the
origins of N and R, respectively, are defined as

N
OH =

[
N
OR Np1

0 0 0 1

]
, (8)

R
OH =

[
R
OR

Rp1

0 0 0 1

]
, (9)

Conversely, the homogeneous transformation from R to O is
defined simply as the inverse of Eq. 9:

O
RH =

(
R
OH
)−1

(10)

The homogeneous transformation matrix, N
RH, takes a Carte-

sian point in the R coordinate system and transforms it
into the N coordinate system, effectively registering the two
coordinate systems together.

N
RH = N

OHO
RH (11)

Any arbitrary 6DoF pose, expressed as a homogeneous
matrix, RHj , in R is thus transformed to N by multiplying
it by N

RH:
NHj =

N
RHRHj (12)

Similarly, any arbitrary 6D pose in N can be transformed
back to R by multiplying it by the inverse:

RHj =
(
N
RH

)−1 NHj (13)

IV. POSE MEASUREMENTS

All registration information is derived from the ability to
measure poses in Cartesian space. A software package can
be written to take only the initial set of pose data, P ={
Rp1,

Np1,
Rp2,

Np2,
Rp3,

Np3

}
, and automatically output

N
RH or provide a mechanism to convert any arbitrary pose
in N or R to its respective counterpart. The requirements of
the user are thus reduced to simply generating the pose data.
In this section, a number of mechanisms for retrieving this
data are outlined briefly, and many sources of measurement
uncertainty associated with each mechanism are enumerated.

A. Manual Entry

The most direct (and potentially the least accurate and pre-
cise) mechanism for providing pose information is manually
entering X, Y, and Z values. These measurements may be
directly measured using external tools such as 1) digital or
analog distance and angle indicators (e.g., measuring tape,
calipers, and protractors), 2) manual transference of infor-
mation acquired directly from the systems (e.g., transcribing
pose measurements as displayed on a teach pendant or other
human-computer interface (HCI) devices), or 3) through the
design of the working environment (e.g., placing fiducials
at positions known a priori, or using design features of
environment components as measurement cues).

As the robot is moved throughout the work volume, the
TCP poses are manually recorded. This process may be
overly tedious and time consuming, particularly if multiple
coordinate systems must be registered together. Moreover,
manually measuring positions is prone to precision and
measurement errors, which impacts the performance of the
registration as a whole. Similarly, maneuvering through the
design of the working environment may result in unexpected
registration errors due to the unverified assumptions of
product quality control. Specifically, extrusions, cuts, and
connections may not be perfect, thus the assumptions of
flatness, orientation, position, and distribution of components
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need to be independently measured to compensate for small
construction defects. Accuracy and precision may be im-
proved by means of precision metrology equipment, but at
the expense of increased cost and complexity.

B. Direct Kinematic Interfacing

Many robot systems allow for direct feedback access
via remote connection to pose and state information. This
information may be provided with higher precision than the
readouts on HCI devices, and enables near instantaneous in-
formation regarding the robot’s Cartesian pose, joint configu-
ration, and input/output states. For multi-robot configurations
in which the robots must register themselves automatically
to one another, such functionality is required such that the
robots can convey pose information directly.

It has been empirically observed with some robot systems
that the robot state reported via the remote interfaces is not
necessarily identical to the information displayed on the HCI.
In some cases it was observed that this discrepancy was
due to approximation errors of the HCI. In other instances,
however, it was discovered that the errors originated from the
discrepancies in reporting mechanisms. In general, measure-
ment errors arise if the remotely accessed robot state is not
provided in real time, if the information reported is stale,
or if the pose data is not reported at a reliable frequency.
Moreover, there may exist errors in the robot’s kinematic
model, which directly impacts positioning accuracy. Some
compensation for such errors may be provided through
externally tracking the robot, or correcting for uncertainty
using noise models.

C. Force-based Center of Pressure (CoP)

Perhaps a more flexible method for collecting points
required for spatial registration is through the use of a 6DoF
force/torque transducer (load cell). When interacting with
a load cell at a single point of application, the center of
pressure may be estimated using the load cell’s sensory data.
For a rigid body, the well-known relationship between an
extrinsically acting force F = [Fx, Fy, Fz]

T , at a single
point p = [px, py, pz]

T , and the induced moment M =
[Mx,My,Mz]

T is defined as,

M = p× F. (14)

Performing the cross product, a system of three scalar
equations is established in matrix form,

 Mx

My

Mz

 =

 0 −Fz Fy

Fz 0 −Fx

−Fy Fx 0

 Px

Py

Pz

 , (15)

where M and F are known via the load cell. This system
of linear equations has infinitely many solutions since the
matrix of forces is rank deficient. Therefore, at least one
element of p must be known or one element can be expressed
in terms of the remaining two elements using geometric
information of the rigid body attached to the load cell. In the

simplest case, a rigid plate of known, uniform thickness can
be attached to the load cell to render one of the elements of p
as known. Consequently, only two of the previous equations
need to be solved to obtain the remaining elements of p. A
robot needs to interact with the load cell to yield at least
three, noncollinear points, which is the minimum number
necessary for spatial registration.

Given that there is more freedom in readily generating
points for registration, one should avoid the following pit-
falls: 1) do not generate all the contact points in a line, and 2)
do not cluster contact points extremely close to one another
as that makes the registration process more susceptible to
sensory noise in the load cell. Ultimately, the accuracy of
center of pressure estimation is dictated by the load cell’s
calibration, resolution, and noise level.

D. Camera-Based Localization

Camera-based observer systems are common within man-
ufacturing for localizing parts and workpieces for processing.
In some cases, similar systems can be used for monitoring the
positions of robot systems for performance validation, colli-
sion avoidance, and coordinate system registration. In both
instances, the camera systems and robots must be registered
such that one can operate within the coordinate system of the
other. In this subsection, a number of camera-based solutions
for measuring the 6DoF pose of robot systems are described.

1) Fiducial-Based Localization: Rather than directly mea-
suring the 6DoF pose of a robot, its pose may be inferred by
measuring the locations of multiple target fiducials affixed
to the robot, the robot’s tooling, or a held workpiece. Such
fiducials include 2D barcodes [12], passive retroreflective or
active infrared emitter markers for motion capture systems,
or artifacts that look different based on viewing angle [13].

Such mechanisms and artifacts are widely available and
have documented performance benefits and limitations. For
instance, 2D barcodes are cheaper and easier to distinguish
than retroreflective markers due to their unique designs, but
are subject to lighting and perspective issues. Similarly, com-
mercial off-the-shelf motion capture systems are inherently
easier to configure, calibrate, and integrate, but are negatively
impacted by sources of light interference and marker size
(smaller markers are harder to see, but the available density
of larger markers within a given region is reduced). In all
cases, the performance of the fiducial-based tracking system
is subject to errors in the intrinsic and extrinsic camera
calibrations, visual occlusions in the sensing volume, and
decreased accuracy and precision as a function of fiducial
size and distance from the cameras.

2) Shape-Based Localization: Markerless robot tracking
methods include fitting robot models to 3D point cloud
data [14], [15], evaluation of depth-space data to measure
distance [16], and shape-based estimation of robot pose [17].
Some low-cost sensor solutions intended as input devices for
HCI have been used as measurement systems (e.g., [18]),
but are not intended for the context of robot registration.
Subsequently, they are subject to errors from manufacturing
quality, low sensor resolution, and shortcuts made both to
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Fig. 4: Some search-based localization routines may halt as
soon as a target is “found,” which may occur at the periphery
of the target. Initiating the search at different initial poses
may have different localization results.

approximate measurements in the absence of full data and
to keep costs low. In some cases, even when used for their
intended purposes, such systems may still perform worse
than more readily available and cheaper alternatives (e.g.,
using a computer mouse for system inputs [19]).

E. Laser-Based Localization
Similar to camera-based metrology solutions, laser-based

systems may be used to localize the position of the robot
by tracking fiducials located on or around the robot. Laser-
based systems are generally more accurate than camera-
based systems, but, whereas camera-based solutions can
track multiple fiducials simultaneously, a given laser system
is typically limited to tracking a solitary marker.

The use of extrinsic laser metrology systems (i.e., a
laser tracking a fiducial mounted on the robot) is common,
and is frequently used to track the tool flange of robot
systems for basic robot performance evaluations (e.g., [20]).
A single laser tracker will provide the 3D translation from
the tracker’s base to the retroreflective target. For full 6DoF
solutions, however, an active target must be affixed to the
robot’s tool flange.

A different approach uses an intrinsic laser configuration
in which the robot itself becomes the laser base. A laser
emitter/detector is attached to the tool flange, and the robot
servos either to maintain its bearing on a retroreflective
target, or to find a target at some nominally defined location
relative to the robot base. In cases where direct dynamic
control of the robot is not possible, the latter of these two
options would be used to register a robot to the world based
on assumptions of the location of the retroreflective target
plus an initial, rough approximation of the robot’s base. The
robot searches for the target based on where it expects to find
it, and moves in a regular pattern until the target is located.
Such searches are ultimately subject to the resolution of the
search parameters, the size of target, and the initial search
location. Simple implementations may stop the robot’s search
as soon as the laser detects the target (e.g., when performing
a spiral search, Fig. 4), which is most likely to be on the
target’s periphery.

V. REGISTRATION PERFORMANCE

As described in Section IV, there are a myriad of sources
of measurement error. Depending on where the registration

(a) (b)

Fig. 5: The locations and orientations of robots R1 and R2
relative to the world center, W. R1 has a lateral shift on both
the X and Y axes, but its orientation is aligned with W (a).
R2 has the same lateral shifts, but is rotated 45o on the Z
axis (b).

points are taken and the nature of the working environment,
the errors may grow as a function of distance from the initial
registration region. As such, it is important to understand
how the selection of training points impacts registration
performance. Here, the performance of the 3-point registra-
tion process using different pose measurement techniques
on different robot platforms is evaluated and the results
summarized.

A. Test methodology

The registration methodology was validated in a heteroge-
neous robot configuration featuring two different robots with
different capabilities, kinematics, and controllers. The first
robot, R1, was a 7DoF, collaborative open-chain manipulator
with sub-millimeter repeatability. It was rigidly mounted in
an upright configuration, with its base frame oriented inline
relative to the world center (Fig. 5a). The second robot,
R2, was a 6DoF, collaborative open-chain manipulator with
sub-millimeter repeatability. It was also rigidly mounted,
but had its base frame oriented at a 45o angle relative
to the world origin (Fig. 5b). The motions of both robots
were commanded via Ethernet from a central computer, but
the robots and their controllers were kept in their stock
configurations to handle kinematics and dynamics.

Performance testing started with randomly selecting 32
unique Cartesian poses expressed in the world coordinate
system that were reachable by both robotic arms. Each of
these poses were between 264 mm and 1223 mm (median
774 mm) from the world origin. These poses served as mea-
surement sites for quantifying the error in TCP commands
expressed in the world coordinate system (registration error)
for either robot.

Three-point registration was performed for four different
test cases in this paper. The first test case (“Short Hand”)
used a hand-guiding methodology in which the robot’s TCP
was physically moved to poses predefined in the world frame.
These poses were defined by rigidly-mounted, 3D printed
seats, distributed in an isosceles right triangle pattern with
150 mm leg lengths, with which the robots’ tools docked
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Fig. 6: Hand-guiding target seats (lower three red arrows)
were rigidly mounted to the workspace, and had known trans-
lations to the world origin. A 6-axis load cell with an attached
strike plate (center green arrow) was used for measuring the
CoP, while tool-mounted retroreflective markers (top blue
arrow) enabled a motion capture system to track the robot’s
TCP.

(Fig. 6). Hand-guiding the end effector enabled the robot
to be coupled with the seats faster than if the robots had
been jogged using the teach pendant. The second test case
(“Long Hand”) used the same hand-guiding methodology
as the first, but with a larger registration pattern (300 mm
leg lengths). The third test case (“CoP”) used the CoP
methodology described in Section IV-C. The fourth test case
(“Average”) used an element-wise average of the prior three
homogeneous transformation matrices obtained from their
respective registration methods.

Both R1 and R2 were used to evaluate the performance
of each test case. For each method, the positions of the
robots’ TCPs were self-reported as described in Section IV-
B, but were externally verified using an 8-camera motion
capture system monitoring the 2m× 2m× 2m work volume.
The motion capture system was calibrated such that the
tracking of rigid objects (defined by a series of retroreflective
targets mounted to the tool flange, Fig. 6) was accurate and
repeatable to within 0.5 mm and 0.5o. The origin of the
motion capture system was set to coincide with the origin of
the world coordinate system.

B. Experimental Results

The results of the four previously mentioned test cases are
presented in Table I. There are four key performance metrics
for all test cases. These metrics capture the differences
between the desired and actual poses of the robot in the world
coordinate system, as measured by the reference system.
At each of the 32 measurement sites, the L2 norm was
calculated between the desired and measured translations of
the robot end-effector as expressed in the world coordinate
system. Separately, the L2 norm was calculated between the
desired and measured rotations of the robot end-effector as
expressed in the world coordinate system. Next, the mean
and standard deviation were calculated across the 32 trials
for the translations and rotations, separately.

TABLE I: Translation and orientation errors of the four test
cases: Short hand-guiding pattern (“Short Hand”), long hand-
guiding pattern (“Long Hand”), center-of-pressure (“CoP”),
and averaging the registrations of Short Hand, Long Hand,
and CoP (“Average”).

Test Case Translation Error
(Avg., Stdv.), mm

Orientation Error
(Avg., Stdv.), deg

ShortHand(R1) (8.824, 4.851) (1.566, 0.797)
ShortHand(R2) (4.639, 1.226) (0.893, 0.585)
LongHand(R1) (11.478, 6.242) (1.684, 0.992)
LongHand(R2) (2.711, 0.943) (0.744, 0.443)

CoP (R1) (9.771, 5.274) (1.568, 0.878)
CoP (R2) (3.011, 1.105) (0.773, 0.448)

Average(R1) (10.000, 4.822) (1.515, 0.895)
Average(R2) (3.198, 1.064) (0.786, 0.492)

A statistical analysis was performed on the experimental
data to determine any significant differences in the results. In
particular, the data sets were passed through the two sample
Kolmogorov-Smirnov test at a confidence level of α = 0.05.
At this confidence level, there existed no statistical difference
between any of the test cases for R1. Specifically, the average
performances for each of the evaluated registration methods
for R1 are subsumed by the standard deviations of per-
formance. However, there does exist a statistical difference
between all of the test cases for R2, except when comparing
the CoP and Average registrations. This result suggests that
the Long Hand registration yielded the smallest registration
errors (of statistical significance) followed by the CoP and
Short Hand registration methods. These results imply that
larger spreads of registration points yield more accurate and
more precise performance across the work volume of the
robot.

Another perspective of the data is presented in Fig. 7
and Fig. 8. In these figures, the robot TCP translation and
rotation errors are plotted against the translation and rotation
distances (L2 norm) from the world coordinate system. This
depiction of the data was used to unveil any trends in
world-based positioning errors. When looking at Fig. 7, R1
experienced a positive correlation between translation error
and translation distance for all test cases. In contrast, this
positive trend does not appear to exist for R2. However,
there does exist an increasing disparity between test cases
for either robot with increasing translation distances from
the world coordinate system. When looking at Fig. 8, trends
do not appear as clearly. The only perceptible trend is that
there is a slight positive correlation between rotation error
and rotation distance for R1.

C. Alternative Verification Methodology

Recognizing that specialized tracking and metrology sen-
sor systems are atypical for most SME environments, an
alternative, low-cost methodology for registration verification
was also evaluated. This methodology focuses on placing
single collared seats throughout the work volume to test and
correct minor translation errors. Moving under force control,
the robot inserts the tool tip into the seats. The seat collars
force translation and rotation adjustments of the TCP. The
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Fig. 7: Translation error as a function of the L2 norm of
translation from World.

Fig. 8: Rotation error as a function of the L2 norm of rotation
from World.

nominal pose at the final insertion depth is known a priori,
and provides a localized correction for the registration errors
at that location. Six such seats were placed throughout the
work volume, and the results of R1 and R2 docking with
them using the Long Hand registration are reported in Table
II and Table III, respectively.

The translation and rotation errors (“Trans. Error” and
“Rot. Error,” respectively) are reported as the L2 norm sep-
arating the self-reported, seated poses of the robots and the
nominal poses of the seats. As was observed using the motion
capture reference system, the distance from world (“World
Dist.”) and the magnitudes of translation and rotation error
are positively correlated. Moreover, the results of this self-
reporting of errors are roughly equivalent with the results
described in Section V-B. The difference between the self-
reported and measured translations and rotations (“Trans.
Delta.” and “Rot. Delta.” respectively) are proportional to

TABLE II: Reduced point-based verification results for R1
using the Long Hand registration based on a series of known
poses throughout the work volume.

Nominal Seat
Pose

World
Dist.
(mm)

Trans.
Error
(mm)

Rot.
Error
(deg)

Trans.
Delta
(mm)

Rot.
Delta
(deg)

(50, -400, 10,
180, 0, 0) 403.24 2.27 0.82 1.01 0.64

(575, -525, 10,
180, 0, 0) 778.68 4.56 0.86 1.48 0.65

(1175, -400, 10,
180, 0, 0) 1241.26 15.89 0.61 14.57 0.46

(1175, 425, 10,
180, 0, 0) 1249.54 24.11 0.39 17.46 0.93

(575, 550, 10,
180, 0, 0) 795.75 16.30 0.55 10.50 1.64

(50, 425, 10,
180, 0, 0) 428.05 9.09 0.87 5.25 1.27

TABLE III: Reduced point-based verification results for R2
using the Long Hand registration based on a series of known
poses throughout the work volume.

Nominal Seat
Pose

World
Dist.
(mm)

Trans.
Error
(mm)

Rot.
Error
(deg)

Trans.
Delta
(mm)

Rot.
Delta
(deg)

(50, -400, 10,
180, 0, 0) 403.24 0.57 0.25 0.24 0.25

(575, -525, 10,
180, 0, 0) 778.68 1.40 0.97 0.74 1.72

(1175, -400, 10,
180, 0, 0) 1241.26 3.13 0.48 1.28 1.03

(1175, 425, 10,
180, 0, 0) 1249.54 2.83 0.37 0.10 0.47

(575, 550, 10,
180, 0, 0) 795.75 1.40 0.90 0.89 0.08

(50, 425, 10,
180, 0, 0) 428.05 1.03 0.91 0.90 0.50

the registration errors as a function of distance. This method
may thus be used to quickly and inexpensively self-report
rough approximations of registration errors without requiring
external measurement systems for verification.

This process has the added benefit of producing even
more input data that may be subsequently and automati-
cally used to improve overall registration performance. A
new coordinate system origin may be placed at any of
these verification sample locations when combined with the
original registration data set. Registration performance may
thus be improved by utilizing multiple associated coordinate
systems, where the coordinate system origin is chosen as that
which has the shortest distance to the target robot pose.

VI. DISCUSSION

In this paper, a simplified framework was presented that
registers robots to any arbitrary coordinate systems. The per-
formances of several registration mechanisms were compared
through a systematic evaluation test method that measured
translation and rotation error. In general, the performance
of these different registration mechanisms was found to be
largely comparable, though a clear indicator of registration
performance is the spread magnitude of the sampling pattern
P. Moreover, several sources of registration uncertainty were
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identified, including measurement error, robot kinematic un-
certainty, and manufacturing irregularities.

Furthermore, the performance metrics described in this
paper provide a clear, general indication of position errors
associated with spatial registration. Since robot system inte-
gration will likely require a specific positioning tolerance to
yield successful applications, the described test method and
performance metrics can be used to quantify post-registration
position performance. The test method may also be used for
benchmarking registration techniques.

A. Planned Improvements to the System

From the results discussed earlier, it is clear that the
accumulation of errors in the system impairs the performance
of a global registration as a function of translation and
orientation magnitude. If one were to notice a trend of
worsening performance as a function of distance, as was
seen in Section V-B, one may resort to providing multiple
local (e.g., quadrant-based) registrations to “re-center” the
robot depending on where it is operating (e.g., the alternative
verification seats used in Section V-C).

Likewise, it is believed that both the precision and ac-
curacy can be improved by applying machine learning to
automatically correct for registration errors. For example,
statistical analysis (e.g., k-means clustering [21]) and data
mining (e.g., bagging [22]) may be used to automatically
generate multiple local registrations throughout the work
volume. Alternatively, neural networks may be used to ap-
proximate and correct for the nonlinear shifts in registration
performance throughout the work volume.

B. Ongoing Work

Based on the experience gained from this exercise, ongo-
ing efforts are focused on further developing and simplifying
the interface to improve the user experience. For example,
based on the system inputs described in Section IV, a sim-
plified interface with more functionality is being developed.
Planned improvements include the ability to dynamically
switch between registrations, and the development of a more
robust mechanism for combining multiple registrations than
the simple averaging described in V-B.

Similarly, an automatic registration correction mechanism
is being developed that automatically “re-centers” the global
registration for localized regions. This process moves the
robot to a priori defined test poses, measuring the pose error,
and creating homogeneous transformations that correct for
the error.

Finally, a more comprehensive suite of registration eval-
uation test methods is being developed that uses both sys-
tematic and application-based performance metrics. This test
suite will include specifications for inexpensive verification
and validation mechanisms (e.g., on-arm sensing such as
cameras for fine-tuning registration performance at a local
level). In contrast, the methodology used during the initial
registration evaluations was dependent on an expensive mo-
tion capture system, the calibration of which required an
extensive front-loaded effort.

DISCLAIMER

Certain commercial equipment, instruments, or materials
are identified in this paper to foster understanding. Such iden-
tification does not imply recommendation or endorsement
by the National Institute of Standards and Technology, nor
does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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