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Performance-based building requirements have become more prevalent because it 

gives freedom in building design while still maintaining or exceeding the energy 

performance required by prescriptive-based requirements. In order to determine if 

building designs reach target energy efficiency improvements, it is necessary to 

estimate the energy performance of a building using predictive models and 

different weather conditions. Physics-based whole building energy simulation 

modeling is the most common approach. However, these physics-based models 

include underlying assumptions and require significant amounts of information in 

order to specify the input parameter values. An alternative approach to test the 

performance of a building is to develop a statistically derived predictive regression 

model using post-occupancy data that can accurately predict energy consumption 

and production based on a few common weather-based factors, thus requiring less 

information than simulation models. A regression model based on measured data 

should be able to predict energy performance of a building for a given day as long 

as the weather conditions are similar to those during the data collection time frame. 

This article uses data from the National Institute of Standards and Technology 

(NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and 

validate a regression model to predict the energy performance of the NZERTF 

using two weather variables aggregated to the daily level, applies the model to 

estimate the energy performance of hypothetical NZERTFs located in different 

cities in the Mixed-Humid climate zone, and compares these estimates to the 

results from already existing EnergyPlus whole building energy simulations. This 

regression model exhibits agreement with EnergyPlus predictive trends in energy 



production and net consumption, but differs greatly in energy consumption. The 

model can be used as a framework for alternative and more complex models based 

on the experimental data collected from the NZERTF. 
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1. Introduction 

 

In 2014, roughly 41 % of total U.S. energy consumption came from commercial and residential buildings 

[1].  The growing concerns about energy consumption in buildings – in particular, residential buildings – 

have driven an interest in low- and net-zero energy buildings and legislation to increase building energy 

efficiency. States’ building energy codes continue to increase the energy efficiency requirements across 

the US, with greater emphasis on performance-based over prescriptive-based requirements. Performance-

based building requirements give more freedom to builders while still maintaining energy performance 

that meets or exceeds the resulting energy performance from prescriptive-based requirements.  

In order to determine if building designs reach the target level of energy-efficiency, it is necessary to 

estimate the energy performance of a building using predictive models and regional weather conditions. 

Physics-based whole building energy simulation models (e.g., DOE-2, EnergyPlus, or TRNSYS) using 

one or more years’ worth of weather data are the most common approach to estimate this energy 

performance.1 However, these models include underlying assumptions and require significant amounts of 

information in order to specify the input parameter values, including equipment performance 

specifications across a variety of conditions. The performance specifications supplied by manufacturers 

are based on standard test procedures (specific temperatures, loads, etc.) that rarely represent the 

conditions under which the equipment operates once installed. The combination of varying weather 

conditions and integrated design considerations may be difficult to model using simulation models. Even 

when detailed information is available to a simulation modeler to define these inputs using post-

occupancy equipment performance and occupant activity, the modeling software may not be able to 

accurately predict energy performance as a result of capabilities, or lack thereof, built into the software. 

Issues due to capability limits in these simulation models are more prominent when modeling low- and 

                                                            
1 Certain trade names and company products are mentioned in the text in order to adequately specify the 
technical procedures and equipment used.  In no case does such identification imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor does it imply that the products 
are necessarily the best available for the purpose. 



net-zero energy building designs, which often incorporate emerging technologies, new processes and 

techniques, and renewable-based energy production systems. 

An alternative approach to test the performance of a building is to develop a predictive regression model 

using post-occupancy data that can accurately predict energy consumption and production based on a few 

common weather-based factors. A specific building design should perform similarly for two days that 

have the same weather conditions and similar occupant activity. Assuming that occupant activity is 

relatively stable, a regression model based on measured data should be able to predict energy performance 

of this building design for a given day as long as the weather conditions are similar to those during the 

data collection timeframe (i.e., locations within the same climate zone). The statistics-based model 

estimates can be compared to validated energy models of the same building to determine similarities in 

the results. If the regression estimates match the simulation model results, then the regression model 

could be used in lieu of the simulation software to estimate performance for different weather conditions, 

either due to seasonal variations at the building’s location or for different locations across the same 

climate zone while potentially requiring less information. 

Completing such a model and comparing its performance to that of a simulation both require detailed 

specifications for a building’s design combined with post-occupancy energy performance data and 

simulation models developed to predict that building’s design. The National Institute of Standards and 

Technology (NIST) constructed a Net-Zero Energy Residential Test Facility (NZERTF) in order to 

demonstrate that a net-zero (NZ) energy residential design can “look and feel” like a typical home in the 

Gaithersburg area while creating a test facility for building technology research.  This facility includes 

extensive collection of data on the building’s energy use and on-site renewable energy production. The 

NZERTF design includes a 10.2 kW solar photovoltaic array mounted on the roof, a solar water heating 

system, energy efficient wall and roof designs, energy efficient appliances, as well as a heat recovery 

ventilation system [2].  Data collection and simulation of occupants is automated and includes  a weekly 



schedule of routines based on a family of four [3]. Table 1 provides the full specifications for the 

NZERTF design. 

Table 1. Specifications of NZERTF 

Building Category Specifications Details 

Windows U-Factor 
SHGC 

VT 

1.14 W/(m2K) (0.20 (Btu/h)/(ft2F)) 
0.25 
0.40 

Framing and 
Insulation 

Framing 
Exterior Wall 

Basement Wall 
Basement Floor 

Roof 

5.1 cm X 10.2 cm – 40.6 cm OC (2 in X 6 in – 24 in OC) 
RSI-3.5 + 4.2 (R-20+24*)† 

RSI-3.9 (R-22*)† 
RSI-1.76 (R-10)† 

RSI-7.9 + 5.3 (R-45+30*)† 
Infiltration Air Change Rate 

Effective 
Leakage Area 

 0.61 ACH50  

1st Floor = 98.8 cm2 (15.3 in2) 
2nd Floor = 90.2 cm2 (14.0 in2) 

Lighting  % of Efficient 
Lighting 

100 % efficient built-in fixtures 

HVAC Heating/Cooling 
Outdoor Air** 

Air-to-air heat pump (SEER 15.8/HSPF 9.05) 
Separate HRV system (0.04 m3/s) 

Domestic Hot Water Water Heater 
Solar Thermal 

189 L (50 gallon) heat pump water heater (COP 2.33) 
2 panel, 303 L (80 gallon) solar thermal storage tank 

Solar PV System System size 10.2 kW 
Thermostat Set Points Temperature 

Range 
21.11oC (70oF) for heating 
23.89oC (75oF) for cooling 

* Interior + Exterior R-Value 
** Minimum outdoor air requirements are based on ASHRAE 62.2-2010 

† Units: m2K/W (ft2F/(Btu/h) 
 

The initial year of demonstration for the NZERTF (referred to moving forward as “Round 1”) has been 

completed and successfully met its net-zero goal of producing as much or more energy as it consumed 

over the entire year (July 1, 2013 through June 30, 2014). The data collected during Round 1 was used to 

adjust and validate both an EnergyPlus (E+) and TRNSYS whole building energy simulation developed 

for the NZERTF [4, 5]. The plethora of information on the NZERTF makes it an ideal case for generating 

a predictive regression model that can then be compared to an existing simulation model. A brief 

overview of E+ can be found in Crawly et al. [6]. 



This article uses the NZERTF database for Round 1 to develop and validate a parsimonious regression 

model that can accurately predict the energy performance of the NZERTF using only the most important 

daily weather conditions, applies the model to estimate the energy performance of the NZERTF as though 

it were located in different locations throughout the Mixed-Humid climate zone2, and compares these 

estimates to the results from comparable E+ whole building energy simulations. The regression model 

will serve as a framework for alternative and more complex models based on the experimental data 

collected from the NZERTF. As more data are collected from the operation of the NZERTF with varying 

building systems (e.g., heating and cooling system configurations) and operation approaches (e.g., set 

points and occupancy) or from similar test facilities, the model can be generalized and expanded to 

account for these additional parameters. 

2. Literature Review 

 

The validated E+ model has been used in sensitivity analysis related to a number of parameters, including 

weather conditions. Kneifel, et al. [8] noted that changing the location of the NZERTF over a relatively 

small geographic space resulted in large differences in energy predictions. Larger heating and cooling 

loads due to a more northern or southern latitudinal positioning quickly drove up consumption, while 

areas with similar weather bands had different net productions due to variations in solar radiation [8]. The 

impact of weather on simulation results is further illustrated through an analysis of the use of Typical 

Meteorological Year 3 (TMY3) data [9]. A typical meteorological year is determined using a statistical 

approach to create the most representative weather year from a collection of actual weather data. For 

TMY3, the most recent TMY data, 34 years of weather were used. Their research, focused on TMY3 data 

and actual meteorological year (AMY) data from Gaithersburg Maryland, found that the use of TMY3 

data can lead to misleading results in estimating building energy performance when comparing long-run 

                                                            
2 The Mixed-humid zone is defined according to the U.S. Department of Energy’s Building America 
Program Classification. These climate zones are meant to guide builders in identifying best practices for 
construction to improve energy performance, and various other aspects of residential buildings [7]. 



average estimates of the 34 years of AMY data with TMY3 data. The consumption determined through 

the use of TMY3 data in simulations underestimated consumption 76 % when compared to the use of 

AMY data. On the solar PV production side, the model consistently overestimated energy production. 

The combined effect can possibly lead to overly optimistic net consumption predictions [9]. 

The use of statistical models in predicting building energy use is common. Several methods were 

developed as part of the first and second “Energy Predictor Shootout” through ASHRAE [10]. In both 

cases the goal was to make hour by hour energy use predictions for large buildings using historical data. 

A common theme among those who placed highest in the contests was the use of artificial neural 

networks (ANN). Artificial neural networks are a form of machine learning meant to mimic how the 

human brain perceives patterns and makes predictions from them. They can be extremely complex in 

nature, involving large numbers of nodes and multiple layers. A sufficiently defined ANN can 

approximate any continuous function provided it is defined on a closed and bounded set. Both MacKay 

[11] and Dodier and Henze [12] implemented ANNs in winning the second and first Energy Predictor 

Shootouts respectively. In general, most attempts at energy modeling using ANN have been at the hourly 

level [11-13]. Kalogirou and Bojic [14] applied an ANN to a solar passive building, achieving a 

coefficient of determination of 0.9991 when completely unknown data were fed into the network. The use 

of ANN in modeling solar photovoltaic (PV) applications is also common [14-20].  

Yang, et al. [16] notes that standard regression techniques are beneficial for predicting energy uses for 

longer periods of time, e.g., days or months, but fail when applied to hourly measurements. For example 

[21] applied a multivariate regression model to building energy consumption at the daily level. Problems 

with multicollinearity and autocorrelation complicate regression at the hourly level where more 

explanatory variables warrant consideration. Time series forecasts, such as autoregressive (AR) models or 

autoregressive integrated moving average (ARIMA) models are commonly employed to handle 

autocorrelation and, in the case of ARIMA, seasonality [16]. 



Others have used regression models in the realms of energy consumption as well as solar PV generation 

and energy demand modeling [16, 21-31]. The most recent research in residential applications is the work 

of Fumo and Biswas [32], which reviewed the use of regression analysis for building energy consumption 

in current literature. While regression analysis on datasets is by no means a new concept, Fumo and 

Biswas [32] provides a comprehensive overview of the general theory and practical application of it in 

residential energy consumption. Their work does not consider the production side of residential energy 

use, however, assuming no on-site generation. Of particular interest is the assertion that future residential 

energy modeling could be done on an individual building basis as a result of the proliferation of smart 

meters [32].  

Most energy consumption models, statistical or otherwise, focus on weather variables. Amiri, et al. [33] 

however utilized a regression approach to predict energy consumption indicators for commercial 

buildings based on construction materials, design features, and occupant schedule. The use of “dummy” 

variables to facilitate the use of non-numeric inputs into the regression model indicates that regression is 

flexible enough to handle level based inputs. This finding is further illustrated through the level of 

accuracy achieved by their model [33]. Various other papers have shown that regression-based 

approaches provide an accurate modeling technique for building energy related applications [29, 34, 35]. 

An example of how a simplified model can prove to be extremely powerful is the “Simple” model 

developed by Blasnik [36]. Blasnik’s model reduces the number of inputs for its energy consumption 

model to 32 and relies on less operator knowledge than simulation models like E+ that require an 

extensive number of inputs and an in depth knowledge of home construction. In general, the simple model 

outperformed the Home Energy Saver model, both full and mid versions, and the REM/rate model in 

predicting energy for an existing home. Blasnik cites the use of too many inputs, focus on the wrong 

building aspects, and poor assumptions as some of the deficiencies in the more complex models. When 

the more complex models were applied to newer homes they exhibited an improvement in predictive 

accuracy, mainly due to higher R-values and lower rates of air leakage [36]. 



3. Methodology 

 

The model developed for the NZERTF was chosen to be the simplest possible model that had some 

accuracy in predicting its net energy consumption. A model of the daily net consumption was the primary 

goal, ideally with one variable modelling the energy produced and one variable modeling the energy 

consumption.  

It must be stated that the developed model was intended to be predictive, not explanatory, in nature. 

While some explanatory results were identified the model is not meant to describe the underlying physics 

of the NZERTF, nor could it be expected to, given the explicit effort to reduce the model’s complexity 

based solely on computational convenience. Development and verification of such a predictive model 

produces two primary benefits: 1) It establishes that a regression model could serve as a viable alternative 

to a physics-based model provided the necessary weather and performance data are collected and 2) It 

establishes a baseline for comparing the NZERTF performance under different conditions, such as year-

to-year weather variability, different operational profiles, or alternative heating and cooling equipment. 

Daily averages or sums, whichever was more appropriate for the variable in question, were used for 

modeling purposes. Daily values negated most of the autocorrelation that exists at the hourly level, 

removing the need for auto-regressive modeling techniques. As noted in the literature review, artificial 

neural networks (ANN) are commonplace in building energy prediction, however the goal herein is to use 

the simplest justifiable model. If an ANN model can be avoided while still achieving accuracy there is no 

reason to add the associated complexity.  

3.1. Data Collection from the NZERTF 

Operation of the NZERTF is controlled and monitored by a team of researchers at NIST through a data 

acquisition and control system. Based on the narrative of occupant activity, devices are remotely 

energized each day of the week at specific times to emulate occupant heat and moisture loads as well as 

appliance, water, lighting, and plug load use.  The instrumentation installed in and around the NZERTF 



measures weather conditions and the building’s energy and thermal comfort performance. Data are 

collected at intervals of 3 seconds or 60 seconds depending on the specific measurement. The authors 

manipulated data on hourly weather conditions (solar insolation, outdoor dry bulb (ODB) temperature, 

and relative humidity), electricity consumption (building-wide as well as system-specific values), and 

electricity production into daily average values (or total values when appropriate) for use in this analysis. 

Only one year of data was available for the analysis. The NZERTF operates and collects measurements in 

real time, meaning a full year of data requires a full year of measurements under identical operation. In 

order to make the most efficient use of the facility, operating conditions were changed from year one to 

year two, making year two’s data representative of a fundamentally different process. In future analysis, 

systems are going to be tested in smaller time frames to obtain more system specific data. The nature of 

the operation of the facility meant that the year one data was the only set that existed for the specified 

operating conditions. Thus, using only one year of data was a requirement imposed by the NZERTF 

operation. This did present issues in the analysis. First, having full data from more years would provide a 

better validation set than the partitioning that was done to create the validation set described later in the 

analysis. Second, it was unlikely that the single year used provided a full development of the extreme 

weather conditions for the area. 

3.2. Initial Data Analysis 

Prior to model development, the NZERTF Round 1 data were analyzed to identify any apparent trends 

that could determine explanatory variables and correlations that need to be addressed. Part of this 

procedure involved identifying any data points within the set that needed to be censored. The censoring of 

data points was based on three conditions; (1) missing hourly data, (2) instrumentation or equipment 

errors, or (3) snow cover on the solar PV array. The first two points are self-explanatory however the 

snow cover requires clarification. The solar insolation measurements related to the solar PV system are 

collected by a reference cell located on the roof next to the PV array. After snowfall, the reference cell 

has a tendency to clear before the solar PV array, causing measurements of solar irradiance to be higher 



than the amount of sunlight actually reaching the PV array. By removing days with snow cover the model 

is implicitly conditioned on snow cover as a variable. In total 313 days out of the 365-day test period were 

available for modeling after censoring, which will be referred to moving forward as the “dataset.” The 

NZERTF Round 1 data contain a large number of variables related to power and energy use, weather 

conditions, solar PV output, and thermal energy loads for the NZERTF. Pruning the data required first 

identifying the most important variables in modeling energy performance of the structure. Based on 

knowledge of the building’s operation, it was determined that the weather variables would have the 

greatest impact on the overall energy use, and would be the most commonly available data for other years 

and locations. Specifically, the temperature and plane of array (POA) solar irradiance were selected as 

they drive the HVAC system and solar PV production, respectively. Another identified factor was the 

“Day of Week.” Each day of the week has a unique schedule that is followed by the simulated occupants 

and, therefore, impacts energy consumption.  

Table 2 lists all potential explanatory variables considered for initial modeling purposes: outdoor dry bulb 

temperature (ODB), relative humidity (RH), POA solar insolation (INS) calculated from POA solar 

irradiance, and day of the week (DoW). All NZERTF database variables are reported at the hourly level. 

 

Table 2. Potential explanatory variables aggregated to daily values 

Variable Daily value representation Abbreviation Units 
Outdoor Dry Bulb Temperature Average ODB oC 
Relative Humidity Average RH % 
(POA) Insolation* Sum INS Wh/m2*** 
Day of Week** N/A DoW unitless 
* POA insolation is calculated using the POA irradiance from the NZERTF database  
** Day of week treated as an index variable, not included in initial model 
*** Units: Watt-hours per meter squared 
 

However, detailed information on daily occupant activity variation is rarely readily available in practice, 

and is thus excluded from the model in this paper. Proxy data for this factor may become available as 

smart meters proliferate and databases of energy usage for specific houses can be built up. Future work 



will determine whether occupant behavior variation during the week has a meaningful impact on the 

predictive power of the model. 

The formula for net energy consumption in Watt-hours (Wh) is given in Eq. 1. 

  (1)

 

	 	 	 	  

	 	 	 	 	 

	 	 	 	 	 	 	  

Total energy consumption is not explicitly measured in the NZERTF, though it can be calculated using 

Eq. 2 and its specified inputs. As before all variables are converted Wh. 

  (2)

 

	 	 	 	 	  

	 	 	 	  

A visual inspection of the variables served as an initial analysis. All plotting was done at the daily level 

for the dataset. Figure 1 contains plots from the visual analysis including Production versus INS, 

Consumption versus ODB, and Net Consumption versus both INS and ODB. Due to the large number of 

plots in the analysis those exhibiting weak or no trends are omitted.  



 

Figure 1. Scatter plots of key NZERTF database explanatory variables with predictor variables 

 

The plots in Figure 1 provided insight on which variables are worth considering in developing the model. 

Insolation has a strong linear correlation with production and a noticeable linear trend with net 

consumption. Outdoor dry bulb temperature exhibits a non-linear trend with consumption. ODB’s 

relationship with net consumption is less clear, however, there appears to be a central band within the data 

that follows a nonlinear trend. Relative humidity (not pictured) had the weakest relationship with net 

consumption. There is positive dependence between RH and net consumption but the form is difficult to 

discern.  

Figure 2 plots insolation versus ODB as a check for correlation. There is a very weak trend in the plot and 

the linear correlation is only 0.163. The clear non-linear trend in the Consumption versus ODB plot 

implied a polynomial fit would be more appropriate, requiring higher orders of the ODB variable be used.  



 

Figure 2. Scatterplot of insolation versus outdoor dry bulb temperature 

 

Based on its weak correlation, RH was excluded from the analysis. The omission of relative humidity 

from initial consideration does not imply it has no impact on net consumption. Higher RH will lead to 

additional operation of the dehumidifier in the NZERTF, which will contribute to total energy 

consumption. The applicability is limited though, as the dehumidifier only operates when the RH level on 

the 1st floor of the NZERTF exceeds the maximum allowed relative humidity level of 50 % at the same 

time the heat pump is not operating in cooling mode. A cursory analysis of how inclusion of relative 

humidity affects the regression model was performed, and it was found to have little impact in the 

parsimonious context of the current model. A more in depth investigation of the effects of relative 

humidity and whether or not the addition of relative humidity to the model is statistically significant (s-

significant) or warrants any increased complexity is left to future research.  

Thermal mass can impact both the magnitude and timing of heating and cooling energy consumption. The 

thermal mass of a structure leads to autocorrelation between certain environmental variables and building 

energy consumption. The autocorrelations related to thermal mass tend to be most prevalent over a time 

frame of hours rather than days. As such, autocorrelation at the daily level should be less prominent. 
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Therefore, the parsimonious model herein will exclude autocorrelation effects – however, future models 

will examine if lagged variables improve the model. 

3.3. Model Development and Diagnosis 

Before fitting a model of any type, the dataset is partitioned into a training set and test set. Overfitting was 

not an immediate concern, but the lack of an available test data set posed a challenge.  There is only a 

single year’s worth of data under the given operating conditions used in the dataset so fitting to all Round 

1 data would leave no means to determine predictive power. The training set was chosen to be the first 

two weeks of each month, leaving the test set as all remaining days. By using data for the first two weeks 

of each month for the training set, conditions from every month, and therefore every season, were 

represented in the model. Any censored data in the training set was not replaced with another data point 

from the month. In total the training set consisted of 140 data points out of the 313 available.  

Using the plots in Figure 1, the relationships of insolation and ODB temperature with net consumption 

could be estimated. Insolation has a strong linear relationship with production that should dictate its 

relationship with net consumption. Likewise, a polynomial relationship can be inferred from ODB 

temperature’s relationship with consumption.  

Models were regressed to the training set using multivariate linear regression and the least-squared error 

principle and the standard assumption of a normally distributed error term with a mean of zero. Although 

powerful, regression does have limitations. Most notable is the regression model can only be used with 

confidence in the range of the data to which it is fit. It is possible to apply the model beyond the training 

set, however the confidence and prediction intervals inflate rapidly beyond that point. Worse, while the 

model fit to the data may be accurate in the data range there is the possibility it changes outside of the 

range, be it a change in model form, or a limiting value being reached. Thus once beyond the data range 

to which the model is fit, there is no statistical basis for asserting that the regression is valid or that the 

predictions from it are significant [37]. For brevity not all of the results from statistical tests performed on 



the net consumption model are reported. Any instance where a test indicated a possible violation of the 

assumptions of multivariate linear regression are noted herein. 

Regression models were initially fit to the production and consumption data. Fitting to the production and 

consumption components separately helped guide the form of the regression model for net consumption 

and identified areas where the model may be lacking in explanatory power. The resulting models, their 

root mean-squared error (RMSE) and their corresponding correlation coefficient (R2) values are reported 

in Table 3. The equations in Table 3 represent the final form of the model chosen. This form was arrived 

at by adding variables incrementally to determine whether or not a variable, and any additional explained 

variation a variable produced, were s-significant. Multiple combinations ODB powers were analyzed 

using sum of squares techniques before deciding on the final model. 

Table 3. Summary of models for net consumption components  

Variable Model R2 (adjusted R2) RMSE (Wh) 
PROD 520.68 ∗  0.997 (0.997) 2462.8 
CONS 46666 3250.8 ∗ 116.97 ∗  0.753 (0.749) 6726.7 
 

The production model has an extremely strong linear correlation, while the consumption model has 

considerably more unexplained variation. Considering the larger scatter in the consumption data it was 

expected to have higher uncertainty. An analysis of variance (ANOVA) was performed on both 

regressions and found them to be s-significant (p<0.001). All regression coefficients were found to be s-

significant as well (p<0.001). 

It is possible to infer a physical reasoning for the forms of the models. For instance, the solar PV system 

of the NZERTF operates at a roughly constant conversion rate of insolation to electricity even under 

different conditions. This constant conversion rate can be viewed as the slope of the line, meaning one 

additional Wh/m2 in the average insolation for a day produces and additional 520.68 Watts of electrical 

power. The consumption model is primarily driven by the HVAC system. As the temperature deviates 

from the balance point, the HVAC equipment will operate more often and at a higher capacity, which also 



correlates with lower performance efficiency. However, the complex physics associated with a system of 

integrated systems, such as a house, cannot be easily articulated in a condensed explanation. A full 

investigation of the physical factors driving the form of the regressed equations, while interesting, was 

beyond the scope of the analysis. Instead the focus was on whether the simplified empirically derived 

model had predictive power comparable to commercially available software. It is therefore acknowledged 

that it the model is not intended to be, nor likely to be, a true model of the physical relationships 

governing the NZERTF. Instead it is a statistically defined predictive relationship between the net 

consumption data from the NZERTF to the weather data from the NZERTF. 

Care needed to be taken in use of the production model. The solar PV system does have a maximum 

output it can produce based on a multitude of factors including the inverter, solar module type, system 

size, and how the system is wired. Although that maximum is not reached for the NZERTF, or any of the 

applications of the model later in this paper, it is vital that the production model be applied, and corrected 

when necessary, with knowledge of its maximum output. There is also a theoretical maximum 

consumption based on how much power the NZERTF can draw before the circuit breaker trips. The 

controlled operation of the NZERTF and energy efficiency measures it uses ensured that limit was never 

reached for the dataset. 

A rigorous analysis on the production and consumption models was foregone, as their development was 

meant to guide the variables to include in the net consumption model, and identify where major sources of 

uncertainty exist. 

The basic form of the net consumption model is given in Eq. 3. Performing a least squares regression 

yielded the fitted model in Eq. 4. The R2 value for the regression is 0.895 (adjusted R2 = 0.893) and the 

root mean square error is 7284.1 Wh. 

  (3)

 45	486 547.48 ∗ 3085.1 ∗ 116.22 ∗  (4)



 

It must be noted that the standard limitations of regression apply to Eq. 4, most notably that the model is 

only valid for the specific process it was fit to, and only in the range of the data that was used to calibrate 

it. As a result, Eq. 4 can only be considered valid for a structure operating identically to the NZERTF in 

the range of ODB and INS found in its associated weather data.  

ANOVA results, see Table 4 and Table 5, indicates the regression and all coefficients were s-significant 

at a 5 % level of significance. Examining the confidence bounds in Table 5 reveals that the coefficients 

for the separate production and consumption models are all within the confidence interval of the 

coefficients of Eq. 4. This suggests that the difference between Eq. 4 and the models in Table 3 is not s-

significant. Thus simply adding the individual production and consumption models could produce a 

model that would be statistically indistinguishable from the net consumption model. An F-test indicates 

the hypothesis that the coefficients of Eq. 4 are not equal, simultaneously, to the coefficients of the 

models in Table 3 is statistically insignificant (p = 0.146). Such a finding illustrates the independence of 

the production and consumption sides of the model. This independence is beneficial in that, when 

determining the range of data over which the regression model is valid, the ODB and INS ranges can be 

established independent of each other, instead of being based on their combination.  

Table 4. ANOVA table and regression statistics for net consumption regression model 

  
Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Square 

Estimated 
F-statistic p-value 

Regression 3 6.14 X 1010 2.05 X 1010 385.59 2.78 X 1010 

Residual 136 7.22X 109 53058011     

Total 139 6.86 X 1010       
 

Table 5. Regression statistics for net consumption least squares regression 

Variable Coefficient 
Values 

Standard 
Error 

t-statistic p-value 95 % Lower 
Confidence 
Interval 

95 % Upper 
Confidence 
Interval 

INS -547.48 20.27 -27.02 <0.001 -587.55 -507.40 
ODB -3085.09 172.55 -17.88 <0.001 -3426.31 -2743.86 



ODB2 116.22 6.66 17.44 <0.001 103.04 129.4 
Constant 45 486 1652.41 27.53 <0.001 42 218.27 48753.73 
 

Residuals plots are given in Figure 3. These plots are generated by first determining the errors between 

the individual model-predicted net consumption versus the actual net consumption for the training set, 

referred to as the residuals. Residuals are plotted against the predictor variables used to generate them one 

at a time. A proper least-squares model should show no trend in the residuals and a constant variance over 

the range of the predictor variables. 

 

Figure 3. Residual plots for net consumption model 

 

All assumptions required for least-squares regression are met, however the current training set 

corresponds to only one possible partition of the dataset. Changing the training set has the potential to 
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alter the regression results, as well as the results of any hypothesis tests. These concerns are addressed 

later in the analysis. 

3.4. Model Validation  

Testing of the net consumption model was completed by predicting the test data set using the fitted model 

and comparing the results to the actual net consumption. Figure 4 plots the reported daily net 

consumption against the model predicted net consumption for the test set. The black line represents 

perfect agreement between the model-predicted net consumption and the actual net consumption. In 

examining the plot, the key observations are: (1) the data tends to follow the line of perfect agreement; (2) 

the scatter around the line of perfect agreement tends to be within a well-defined range; (3) there are 

clusters of data indicating the model may be consistently under-predicting net consumption in some 

ranges; and (4) there may be a tendency to over-predict net consumption at larger values, though there are 

less data in that region to substantiate the claim. It was decided to continue the validation of the model, 

acknowledging observations 3 and 4 suggest a potential issue with the model. As the model was meant to 

be parsimonious in nature, some loss of predictive power was to be expected. 



 

 

Figure 4. Plot of predicted net consumption versus actual net consumption 

 

Another check of the model was to determine how accurately it predicts a net-zero day. Probit or logistic 

regression is generally used for binary outcomes. However, if the net consumption model is accurate it 

should be able to predict the sign of daily net consumption correctly for the test set on a consistent basis. 

Out of the 173 days used in the test set the model accurately predicts whether or not the day will be net-

zero (negative net consumption) 159 times. This result corresponds to a 92 % accuracy in predicting the 

test set. The accuracy on the training data is 125 correct net-zero predictions out of 140 days (89 %). 

Figure 5 plots the net-zero boundary along with the actual data points from the NZERTF test set, which 

shows that a greater level of solar insolation is required for more extreme ODB conditions (hot or cold). 



The boundary was created by selecting a value of ODB and determining the minimum insolation required 

to achieve net-zero according to the model.  

 

Figure 5. Plot of net-zero (NZ) boundary as predicted by the model 

 

Figure 5 indicates that the model does a fairly good job at defining the net-zero envelope for the house. 

The non-net-zero days above the envelope in the higher ODB range may be due to relative humidity 

effects not accounted for in the model. In the lower ODB range it appears that the envelope is too “steep” 

to account for colder temperatures. Issues with limited data at the extremes of the temperature ranges 

makes predicting behavior in said regions difficult. The heating and cooling cycles also do not operate at 

the same rated efficiencies. Therefore, a segmented regression model may be better suited to account for 

the apparent deviation in lower temperature ranges. 

A measure of uncertainty in the model is achieved through calculation of the prediction and confidence 

intervals on the regression. The confidence interval for a regression line is the likely range of the mean 

response given specific predictor variables. The prediction interval on the other hand is the likely range of 

a new observation given specific predictor variables. Prediction intervals include uncertainty from 
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estimating the population mean and uncertainty due to scatter in the data, whereas confidence intervals 

are only concerned with the former. As such prediction intervals are always wider than confidence 

intervals for the same set of predictor variables. 

Due to the three dimensional nature of the model, confidence intervals become hard to visualize for all 

scenarios. As net-zero performance is the primary goal, the confidence interval on the net consumption 

regression when the net consumption is zero is more meaningful. Figure 6 plots the confidence and 

prediction intervals for daily net-zero conditions, where the daily average insolation is set to whatever 

value is required to achieve net-zero for the ODB on the x-axis, in the same way the envelope in Figure 5 

was determined. 

The prediction interval is wide due to the large amount of uncertainty on the consumption side of the 

model. The confidence interval however is relatively tight, indicating a large difference in the uncertainty 

of the mean response compared to that of a forecasted value. 

 

Figure 6. Confidence and prediction intervals on net-zero conditions 
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It is important to note the model up to this point is based only on 140 points out of the data set. Changing 

the training set could potentially produce different results, especially considering that the initial training 

set was chosen arbitrarily. To get an understanding of how changing the training set affects model 

parameters, a bootstrap method was implemented. The bootstrap used here was designed to help alleviate 

the issue of the arbitrary definition of the training set. To do so 5000 random training sets were generated 

from the dataset by pulling 40 % of the usable days from each month. A regression model was fit to each 

random training set with the form in Eq. 3. The 95 % parameter confidence intervals were obtained as 

shown in Table 6. Note that confidence bounds are sensitive to the size of the training set as well as the 

individual data points it contains 

Table 6. Bootstrapped 95 % confidence bounds for model parameters, based on percentile rank, 
from pulling 5000 random training sets of 40 % of the usable data points in the dataset 

Variable 
95 % 
Lower 

95 % 
Upper 

INS -608.17 -546.59 

ODB -3506.1 -2840.9 

ODB2 107.23 131.89 

Constant 44 863 50 572 
 

The parameters for the initial model all fall within the bootstrapped confidence intervals, though the INS 

coefficient is at the very edge of the upper bound. Equation 5 provides the model fit to the entire dataset 

using multivariate least-squares regression. Equation 5 has little utility by itself, since it is impossible to 

validate it against a test set. It is useful in understanding how the 40 % validation set bootstrapped 

regressions compare with a model that uses all available data in determining the regression. 

 47	526 577.30 ∗ 3119.8 ∗ 117.92 ∗  (5)

 

It should be noted that the Shapiro-Wilks test for most of the bootstrapped samples and the full fit to the 

dataset violate the assumption of normality of residuals. Linear regression is somewhat robust against 

such violations; however, it still calls into question the validity of any ANOVA tests on regressed models. 



Since the original training set did not violate the normality assumption its results are still valid. The 

bootstrapped confidence intervals in Table 6 are based on percentile rank, and therefore are valid 

regardless of the underlying distribution. The bootstrapped regression parameters do not differ from those 

of a robust least-squares regression, indicating the violation of non-normality is likely not a major issue. 

The coefficients of Eq. 5 are all within the 95 % confidence bounds of the bootstrap intervals, indicating 

that partitioning the data set did not have a significant impact on the nature of the predicted trend. 

Therefore, the partitioned data models can be used to predict daily net consumption with confidence, 

enabling the use of bootstrapping with the 5000 regression models that generated Table 6. After 

considering all of the evidence acquired through the validation process it was decided to continue with the 

model while remaining aware of its potential faults.  

An investigation of the model’s predictive capabilities outside the training data set to which it was fitted 

and the validation set it was tested against was also vital. In order to have any use as a comparison tool, 

the model needs to exhibit some forecasting utility to be compared with more complex models. Otherwise 

it becomes difficult to examine the tradeoffs between model complexity and predictive accuracy. 

Ideally it would have been possible to prove the form of Eq. 4 using a physics-based approach. 

Unfortunately, the complex interactions of systems, interfaces, and occupancy behavior meant 

simplifying the physical equations down to a single equation with the same limitations on variables was 

unrealistic. Utilizing physics-based models from available software to prove the model form was also 

infeasible, as they are either given as a “black-box” where the underlying equations and assumptions are 

unknown, or do not simplify down to a single simple equation. Instead, in order to show compatibility 

with physics-based predictions, the regression model was compared to the results of a well calibrated 

physics-based model. As previously noted there is only one year of data under the operation conditions 

that generated the data used in the regression, so comparing prediction from the model to a second year of 

output from the NZERTF was also impossible. 



4. Model Based Predictions 

 

Using the fitted model to predict net consumption for varying weather conditions and comparing them to 

simulation results for those conditions helps identify the level of predictive power in the model. At issue 

is the model is fitted to data specific to the NZERTF and its location in Gaithersburg, Maryland. In order 

to achieve a basic estimate, the model was used to predict net consumption using TMY3 data from 

Gaithersburg, MD and other locations with a similar climate and comparing those results to simulated 

values from E+. EnergyPlus is chosen over other energy models in order to leverage previous work on the 

NZERTF. 

The analysis consisted of: (1) comparing the net consumption regression model, defined by the 5000 

bootstrapped regressions previously developed for Table 6, applied to the NZERTF using actual weather 

data for the year that the Round 1 consumption data were collected; and (2) using TMY3 data for 42 

locations in the Mixed-Humid climate zone to obtain the E+ and regression model estimates of net 

consumption, total consumption, and total production for each location and develop Kriging maps for 

comparison. Kriging is a method of interpolation where values are interpolated via a Gaussian process 

directed by prior covariance values. The purpose of each analysis is to apply the regression model to some 

reference to understand the predictive power of the parsimonious model.  

4.1. Assumptions 

Table 7 lists all assumptions for the model based predictions. 



Table 7. Summary of assumptions for using the model to predict net consumption for a year 

Assumption Notes 

1. The fitted model sufficiently predicts mean 
response. 

The potential biases noted in Figure 4 and loss of 
normality in the residuals could weaken this 
assumption. If there are a large number of days in 
regions where the potential prediction biases exists the 
results could be skewed. 

2. A calendar year contains a sufficient number of days 
for mean response to overcome prediction variability. 

Aggregating a daily model over a year’s worth of 
predictions inherently increases uncertainty in the 
summed value. Confidence intervals on the sum can 
easily inflate to absurd widths. If assumption 1 and 2 
hold, the resulting sum should be somewhat 
representative of the mean yearly total. 

3. The E+ results are sufficiently accurate to serve as a 
basis for comparison. 

EnergyPlus is a simulation model with its own implicit 
uncertainty and assumptions. Its results cannot be 
considered a perfect predictor, however its overall 
acceptance in practice and vetted physics-based models 
provide some confidence in its accuracy. 

4. TMY3 data is used for all locations. Issues with TMY3 data are noted in the literature 
review. However they are currently the best source of 
estimated weather data. 

5. The Perez model was used in converting TMY3 
irradiance data to plane of array insolation data. 

Albedo was not used in determining insolation, as 
some weather files did not contain albedo 
measurements. 

6. The NZERTF house operates identically regardless 
of location. 

Occupant behavior, appliance usage, and thermostat set 
points are unchanged. 

7. The NZERTF construction is identical regardless of 
location 

Building orientation, envelope, materials, and plane of 
array for the solar PV system are unchanged. 

8. All locations are within the Mixed-Humid climate 
zone, the region the NZERTF is located in and 
designed for. 

This assumption reduces the chance of applying the 
regression model to conditions outside those it was fit 
to. It is still possible certain the chosen locations may 
produce ODB or INS values outside the range of the 
validation set, increasing uncertainty in their reported 
net consumptions. 

9. Reported values are the result of a bootstrap 
procedure. The 5000 regressions performed to produce 
Table 5 were used to predict the yearly net 
consumption, producing 5000 yearly net consumption 
values.  

This assumption simplified the calculation of 
confidence bounds on the yearly total of net 
consumption. As noted the partitioned data sets showed 
strong agreement with the trend in the full data, lending 
credence to the reduced data set having roughly 
equivalent predictive power. 

10. Snow cover in the TMY3 files is properly 
accounted for in determining the irradiance values used 
in calculations. 

Irradiance was calculated through NREL’s System 
Advisory Model with the option of including effects 
due to snow cover selected [38]. Doing so should 
provide appropriate irradiances for the calculation of 
solar PV generation. 

 

4.2. Model Comparison for Round 1 

The ability of the regression model to predict the actual performance of the NZERTF can be compared to 

the simulation models (E+ and TRNSYS) developed for the NZERTF by analyzing the estimated and 



measured production and consumption using the weather data for Round 1. For this comparison, the “un-

tuned” TRNSYS model is based solely on equipment rated specifications and data derived performance 

measurements while the “tuned” model reverse engineers some system specifications to lead to the 

measured consumption [39].  

The E+ model was calibrated using the collected data from the NZERTF where available. This is different 

from the reverse engineering in the TRANSYS model, in that the E+ calibration was not done to achieve 

a specific net-consumption result. Instead it used the measured data of each subsystem to determine the 

actual operating conditions of the equipment and implemented those values as inputs into the E+ model 

without foreknowledge of what the resulting net-consumption. Thus the “tuned” TRANSYS model 

explicitly altered performance inputs without concern for the actual performance or rating to achieve a 

desired result, while the E+ and “un-tuned” TRANSYS models used data-derived performance inputs to 

determine the result, meaning their results could be compared to the actual NZERTF results as a 

verification of their physical models. A full discussion on how the E+ model was built and validated can 

be found in Kneifel [4] and Kneifel et al. [40]. 

In the case of a hypothetical building, a simulation modeler will not have the measured data available for 

such adjustments to equipment performance. In such cases the only option would be to use the rated 

capacities of the equipment. While that was a possible comparison to include for the regression model, it 

would have been an equal one. The regression model is implicitly based on the actual performance of the 

equipment and systems, as they define the energy output. For a meaningful comparison between the 

regression model and the physics-based model it is required they be evaluated on equal terms. As such, 

the E+ model with performance inputs adjusted based on measured performance data serves as the 

primary comparison. 

The simulation models use the AMY weather file for Round 1 (July 2013 through June 2014) from the 

KGAI weather station, the closest weather station to the NZERTF (within 4 miles), because simulations 

require data for many weather variables to complete the estimation [41]. The regression model uses both 



the KGAI weather data and weather data collected at the NZERTF (referred to as “Site weather data” in 

Table 8). The KGAI weather data were used to supplement any missing weather data in the site weather 

data. The close proximity of the KGAI weather station means its weather data should be roughly similar 

to that measured at the NZERTF. 

For missing actual consumption values of the NZERTF in the NZERTF data base, a five nearest-neighbor 

search was implemented to populate missing days. The impact on production resulting from snow cover 

is also accounted for in the model. To achieve the best accuracy, the log on snow cover kept for the 

NZERTF was examined. The irradiance used in calculations for each day was determined by the 

percentage of hours the PV system was clear of snow, with linear interpolation over the hours capable of 

generating electricity used to determine the percentage output in the event the system was gaining or 

losing snow over time. Light snow or “dustings” of snow had little to no impact on the output, thus the 

PV system was assumed to have full output on such days. If snow started in the evening or the panels 

were cleared of snow by morning it was assumed that the time the solar panels were covered was prior to 

times when they were capable of generating electricity and therefore produced full output. The value used 

was dependent on what information was available in the log. Any snow cover days where no percentage 

value was given were treated as having the solar array covered for the full day. 

Table 8 summarizes the various Round 1 results. The results for the regression model in the table are the 

result of a bootstrap procedure. Using the 5000 regression models that determined the values in Table 6, 

5000 predictions of annual net consumption were determined. The mean of all of these predictions was 

taken as the predicted value for each variable of interest. Using all 5000 regressions reduced the reliance 

of the prediction on a single, arbitrarily chosen training set which may not be the most representative 

model. Doing so also allowed for the calculation of the annual net consumption confidence intervals 

without making any assumptions on the underlying distribution of residuals. 

Based on Round 1 AMY conditions from the KGAI weather station, including system failures and snow 

cover, the E+ and TRNSYS simulation models under-predict total annual consumption and over-predict 



production, leading to greater net production (additional 910 kWh and 323 kWh, respectively) than was 

measured during Round 1. The regression model leads to estimated consumption and production that is 

closer (underestimate in net consumption of 31 kWh) to the measured annual performance than the 

simulation models.  These results suggest that the regression model is more accurate at predicting the 

energy performance of the NZERTF for Gaithersburg, MD when using the KGAI AMY data.  

Table 8. Measured and predicted performance for Round 1 

 Actual net 
consumption

Regression Model* E+ Model TRNSYS 
Model** 

Site weather 
data 

KGAI 
AMY data 

KGAI 
AMY data 

KGAI AMY data 

Total Consumption 
(kWh) 

12 927 13 216 13 317 12 383 12 246

Total Production (kWh) 13 523 13 735 13 548 13 889 13 937
Net Consumption (kWh) -596 -565*** -353**** -1506 -1691
* Mean of bootstrapped net consumption results 
** “Un-tuned” Model from Balke [39] 
*** 95 % bootstrapped confidence bound for 40 % of usable days training set – [-935 kWh, -193 kWh] (based on 
percentile rank). 
**** 95 % bootstrapped confidence bound for 40 % of usable days training set – [-734 kWh, 30 kWh] (based on 
percentile rank). 
 

The results in Table 8 are not surprising nor are they a significant indicator of model accuracy or 

superiority in a global sense. When using least-squares regression, the model biases the mean of the 

residuals in the training set towards zero, thus the repeated application of the model on the training set 

should produce a result with a residual value close to zero, with any extreme variation coming only from 

the test set. While only 40 % of the data were used in the training set, if it is fairly representative of the 

entire data set then the same bias should exist in the test set as well. The KGAI data is not used to fit the 

model, however it is also not independent of the data used to fit the model due to their geographic 

proximity and their variable collection occurred over the same time span. This dependence means that, 

while the KGAI data is better than the AMY data taken at the NZERTF in terms of comparing for 

accuracy, the conclusions regarding accuracy that can be drawn from it are limited. 



The true takeaway from Table 8 is that the regression model behaves as it should regarding the first two 

assumptions of Table 7, namely the model appears to be capturing the mean response well, and mean 

response appears to dominate over the prediction variability for the year. Ideally a second year of data or 

more statistical output from E+ would have been available to facilitate a more meaningful comparison; 

lacking them, such an effort was infeasible. Still, given that the E+ model was physically verified using 

the actual NZERTF in-situ performance data, any similarities between the regression model and the E+ 

model give reason to believe the regression model is representing the physical realities of the structure 

well [40]. More evidence would have been beneficial but the noted limitations on the NZERTF output 

data and the E+ output made that impossible. 

While Table 8 does not prove that the regression model is any more accurate than the other models, it 

should be remembered that the goal was to show that the model had predicative capability similar to that 

of a physics-based model and was sufficient to serve as a comparison baseline for future NZERTF data. If 

so, then it would serve as a viable alternative to a physics-based approach while using significantly less 

input information. While some divergence between the two models exists, Table 8 lends credence to the 

idea that the regression model may be a viable alternative to a physics-based model when data are 

available. It must be acknowledged however that the analysis herein shows at most proof of concept, 

falling short of absolute proof. 

4.3. Comparison for Mixed-Humid Climate Zone 

This section will analyze the predicted performance of the NZERTF using the regression model across the 

Mixed-Humid Climate Zone and compare those results to those using the E+ simulation model. As noted 

in Table 7, Assumption 8 is made to keep the ODB and INS ranges of locations used in the comparison 

within a relatively similar range. So long as the temperature and insolation values are within the range of 

the validation set there will be more confidence, however the extremes of the climate zone could 

potentially see conditions that exceed the validation data, increasing their uncertainty. Results for the 

climate zone comparison therefore only focus on mean response over a full year, which has less 



associated uncertainty, per Assumptions 1 and 2. Still it is acknowledged that the climate zone 

comparison is less certain than the Gaithersburg only comparison, however there is little other alternative 

to get a broad view for how the regression model results compare to the E+ results. Considering most of 

the locations within that geographical range have similar ODB and INS ranges to the Gaithersburg 

analysis most of the interior locations produce results with similar uncertainty to those in Gaithersburg. 

There are several results that would be expected when expanding the use of the regression model to 

predict the performance of the NZERTF in different locations. First, given the results for Gaithersburg, 

MD, it would be expected that the estimated performance of the NZERTF by the regression model will 

consistently be higher for total consumption and lower for total production than the simulation model 

results. Second, the results will vary across the climate zone because, even though the locations are in the 

same “zone,” the weather conditions will vary significantly from south to north (e.g., Georgia to Ohio) 

and west to east (e.g., Oklahoma to New Jersey). Third, given that the regression model is based on 

performance in Gaithersburg, MD, the accuracy of the model to predict performance in other locations 

would be expected to decrease as the location is geographically and climactically different from 

Gaithersburg, MD.  

The regression model values that were used in the kriging process were the average of the predicted 

yearly results from the 5000 bootstrapped regressions. Any results from them will have associated 

confidence bounds on the sum. EnergyPlus does not produce a confidence bound on its results though, so 

a comparison of model uncertainties was not possible. 

The kriging analysis for the consumption, generation, and net consumption results was done in two 

phases. The first phase involved kriging to the results of the regression model and E+ model separately 

and comparing the two maps. When comparing the two maps the closeness of their agreement was not 

considered, instead what was of interest was whether or not any patterns, referred to as “trends” from here 

on, existed over geographic space. While trends do not indicate the numerical accuracy of prediction or 

whether or not the models agree in magnitude, they do display whether or not the models agree in how 



predicted values change over geographic space. In light of this limitation, the kriging bands were 

determined based on percentile, resulting in intervals with unequal widths and differing bounds between 

the two maps. Doing so allowed for a comparison of how the largest and smallest values were distributed 

without losing resolution in the maps due to forcing identical band widths and limits. 

Phase two of the analysis is where the agreement of the models was examined. In this phase, and all cases 

involving the difference between the E+ results and the regression model, the value from the former is 

subtracted from the value of the latter. By analyzing the maps of the differences the closeness of the 

estimation can be examined as well as how those differences vary across geographic space.  

Figures 7 and 8 show that the regression model and E+ model lead to nearly identical trends. Predicted 

energy production ranges from 14 023 kWh to 17 644 kWh for the regression model and 14 587 kWh to 

18 339 kWh for the E+ model with the lowest production occurring in the northern portion of the climate 

zone, particularly Indiana, Ohio, and northern Kentucky and the most northeastern states. The greatest 

production occurs in the western portion of the climate zone (Texas, Oklahoma, and Kansas) followed by 

the southern ring in the Deep South. 

 

Figure 7. EnergyPlus predicted energy production over the mixed-humid climate zone 



 

Figure 8. Regression model predicted energy production over the mixed-humid climate region 

 

Figure 9 plots the difference between the two predictions, with an under-prediction by the regression 

model resulting in a negative difference and an over-prediction by the regression model resulting in a 

positive difference. The regression model consistently predicts lower production values than the E+ 

model, which is in line with the expected result. Differences are greatest in the northern portions of the 

climate region, becoming smallest in the southern states. The consistency of the difference exhibited in 

Figure 9, and the similarity of the general pattern in Figures 7 and 8 indicate that the disagreement 

between models is due to a systemic difference in the calculation, and not the general form of the model 

used for prediction of energy production from the solar PV system. In this case the regression model does 

not produce the best agreement around the Gaithersburg, MD region. This result is likely caused by the 

TMY3 data in the Gaithersburg region being different than the AMY data to which the model was fit.  

 

Figure 9. Difference between E+ and regression model energy production over the mixed-humid 
climate region 

 



Figure 10 and Figure 11 show that the regression model predicts that energy consumption ranges from 11 

638 kWh to 14 160 kWh for the regression model and 11 457 kWh to 13 011 kWh for the E+ model. The 

regression model predicts that consumption tends to increase the further north and west the NZERTF is 

located. The lowest consumption is in the Southeastern states. The trends in the E+ model predictions 

differ significantly. The lowest consumption is predicted for the southern Appalachians, western North 

Carolina and Virginia and adjacent portions of the surrounding states. Consumption generally increases 

the further west the NZERTF is located until it peaks in Arkansas and Missouri, and then decreases for 

locations further west. Here the differences in the models are evident. The driving force is likely to be the 

E+ model considering more variables and utilizing more complex physics-based models. Given the trend 

in Figure 10; wind velocity, relative humidity, or precipitation effects could possibly be the cause of the 

deviations. 

 

Figure 10. EnergyPlus predicted energy consumption over the mixed-humid climate region 

 

Figure 11. Regression model predicted energy consumption over the mixed-humid climate 
region 

 



The difference between the predicted consumption based on the regression model and E+ model, see 

Figure 12, is lowest throughout the white band through the southern states. Relative to this range, the 

most southern locations result in the regression model predicting lower consumption than the E+ model 

(up to 856 kWh in the Deep South). Locations in the north and west result in predictions of consumption 

that are greater than the E+ model (up to 2090 kWh). As expected the regression model consistently over-

predicts consumption when compared to the E+ model except for two bands in the Deep South. 

 

Figure 12. Difference between E+ and regression model energy consumption over the mixed-
humid climate region 

 

Figure 13 and Figure 14 display the predicted net consumptions for both models. The net consumption 

predictions for both the regression model and E+ model are negative for all locations, which means the 

NZERTF would produce excess electricity and reach net-zero throughout the Mixed-Humid Climate 

Zone. Similar to total production, the regression model consistently under-predicts the magnitude of net 

consumption across locations in the climate zone when compared to the E+ results. The regression model 

net consumption ranges from -740 kWh to -4816 kWh while the E+ model ranges from -2699 kWh 

to -5831 kWh. Additionally, the trends across the climate zone differ between the two modeling 

approaches. For the regression model, net consumption is smallest in the southwest and southeast portions 

of the climate zone while the largest net consumption occurs throughout the northern portions in the 

central and Midwestern U.S. There appears to be a geographical impact along the Appalachian 

Mountains. For the E+ model, the smaller net production also occurs in the western portion of the climate 



zone, but the impact of the Appalachian Mountains is not as apparent. The largest net consumption occurs 

in northern locations, particularly in the Midwestern and Northeastern States. 

While the trends do not match as well as production, a few key features of the net consumption trend are 

displayed by both models. The bulge of higher net consumption in the Midwest, as well as a band of 

higher net consumption along the Mississippi river are found in both models. A bulge of higher net 

consumption in the Eastern Great Plains is also picked up, though is more pronounced in the regression 

model. The Mid-Atlantic States appear to have a similar trend between models as well. The greatest 

difference occurs in the Southern States. Here an inconsistent distribution of net consumption is 

identifiable in the regression model, while the E+ model shows a consistent increase in net consumption 

radiating out from the Carolinas. 

 

Figure 13. EnergyPlus predicted net energy consumption over the mixed-humid climate region 

 

Figure 14. Regression model predicted net energy consumption over the mixed-humid climate 
region 

 



Figure 15 presents the difference between the two models. It is evident that the difference in the net 

consumption follows the same general band pattern as the difference in consumption plot in Figure 12. 

This result is not surprising given that production follows the same general trend for both models, leaving 

any differences in trend to be driven by the consumption side. Differences are most pronounced in the 

north, with little to no difference in predicted net consumption evident in the Deep South. 

 

Figure 15. Difference between E+ and regression model net energy consumption over the mixed-
humid climate region 

 

In general, the Kriging maps show that the regression model does extremely well at predicting production 

trends when compared with E+, reasonably well at predicting trends in net consumption, and produces 

large disagreement in prediction of consumption. Differences are most likely driven by variables 

considered in the E+ model being omitted in the regression model, as well as differences in the structures 

of the models themselves. It is impossible to say which method is objectively correct in terms of value or 

trend however, since no field data exists for the NZERTF design in any other locations.  

4.4. Results Summary 

The regression model performs well considering its parsimonious nature. Using the data from the KGAI 

AMY weather file, the regression model predicts consumption and production within 3.0 % and 0.2 % 

respectively, and net consumption within 243 kWh of net consumption. In comparison, the E+ simulation 

model deviates from the measured consumption and production by greater than 4.0 % and 2.7 % 

respectively, and over 900 kWh in net consumption. 



Considering the model is fit to the NZERTF data the accuracy of the net consumption prediction in Table 

7 is unsurprising. What is of more interest are the kriging map results. Although consistently under-

predicting as compared to the E+ model, the production kriging maps are near identical in terms of trend. 

This suggests that the production model is a good representation of the actual relationship between 

production and plane of array insolation for the conditions under which the NZERTF data were collected. 

The consumption side is where future modeling efforts need to improve. There is a pattern in the 

difference between the two results, indicating that the difference is driven by one or more missing factors. 

If that is the case, the inclusion of more explanatory variables in the model may improve the model’s 

predictive performance. Overall the net consumption model developed here offers a good baseline for 

evaluating future statistics based models of the NZERTF data. 

5. Conclusion and Future Work 

 

In conclusion, the regression model herein, based solely on daily total consumption and production and 

daily average solar insolation and ODB temperature values, can predict the energy performance of the 

NZERTF with accuracy relative to the E+ model. The regression model is more accurate at estimating 

actual yearly performance in Gaithersburg, MD than the E+ and TRNSYS models while requiring less 

system performance information, although basic post-occupancy data are necessary to develop the 

regression model. The regression model is within 243 kWh of measured net consumption while the 

simulation models are off by 1095 kWh (TRNSYS) and 910 kWh (E+) using the KGAI AMY data. This 

increased accuracy is due in large part to the regression model being calibrated with in-situ energy outputs 

from the NZERTF, while the physics-based models were calibrated using in-situ performance of 

individual subsystems of the NZERTF. A regression model that considers individual NZERTF 

subsystems, though more complicated, may improve agreement of the models and would be the next step 

in using regression modeling on the NZERTF data. 



Similar to the E+ model, the regression model predicts that the NZERTF design would reach or exceed 

net-zero energy performance throughout the Mixed-Humid Climate Zone, which includes areas of the 

country from southern New Jersey to western Kansas to central Georgia. Similar trends in energy 

production performance are seen between the regression model and the E+ model across the climate zone, 

with the greatest production in the west followed by the southeast. However, the regression model 

consistently predicts lower production of approximately 500 kWh to 700 kWh. Trends in energy 

consumption predictions across the climate zone vary significantly between the regression model and E+ 

model. The regression model predicts the greatest consumption in the northwestern portion and the 

smallest in the southeastern portion of the climate zone. The E+ model predicts the greatest consumption 

in Missouri, Arkansas, and Mississippi; with consumption decreasing with distance from those states. 

Two factors could be driving these results. First, the differences in the E+ model results for the NZERTF 

in Gaithersburg, MD may carry through to other locations. Second, the regression model will become less 

accurate as the weather conditions (e.g., cloud cover, heating degree days, and cooling degree days) under 

which the prediction occurs become significantly different than those in the underlying data used to 

develop the model. The combination of these production and consumption prediction differences leads to 

net consumption predictions to be lower for nearly the entire mixed-humid climate zone, with the 

variation growing from the Southeast and the most western locations in the climate zone and up into the 

Appalachian Mountains in West Virginia. 

The results for Gaithersburg, MD indicate that even when given detailed performance data, physics based 

simulation models still may have issues accurately predicting energy usage. Since physics models are 

often based on assumptions and simplifications for calculation purposes the simulations themselves 

introduce model uncertainty. Data-based models, like the one presented here, may offer more accuracy 

for a specific building because the model derives relationships based on actual output that are not affected 

by simplifications and assumptions at lower levels. However, post-occupancy data are often not available, 



and when they are available, models derived from it are limited in scope to the specific building and 

variable range from which the data was collected. 

What the regression model illustrates most of all is the importance of collecting post-occupancy data. 

Without collecting and analyzing data after occupancy, the validity of the assumptions and energy usage 

predictions from simulations are left unchecked. A regression model fit to actual energy use data after 

“move in” is a viable way to confirm that the building exhibits the energy characteristics it was predicted 

to display, and can be implemented in predicting how the performance would change under similar but 

different annual weather conditions, such as historical weather data or projected weather conditions based 

on current weather trends. 

The current model predicts performance using daily average weather data. Future work should determine 

if more aggregated weather conditions (i.e., weekly, monthly, and annual) can be used to accurately 

predict annual performance, which would further decrease the level of detailed information required to 

predict performance. Alternative training data (random) and statistical approaches (e.g., jackknife, neural 

network) should be considered in order to try to improve the accuracy of the predictions. 

The use of statistical analysis and modeling also serve as a framework to analyze the impact of different 

energy efficiency features and operating conditions while accounting for variations in weather. NIST 

plans to continue operating the NZERTF while running trials of different energy systems (e.g., HVAC 

and DHW system configurations) while keeping other systems and building operations (e.g., set point and 

occupancy) constant. The resulting database will have an identical form to the one used to generate the 

model herein. Having a baseline relationship means the energy impacts of each new system can be 

compared to a like value. Differences can then be quantitatively examined for significance even if the 

weather conditions of the baseline and trial are not necessarily identical. Without knowing the baseline 

statistics or model, differences become harder to justify as meaningful. The second phase of the 

demonstration phase for the NZERTF (“Round 2”) included changes to the configuration and operation of 

the HVAC system (changes in thermostat and humidity controls), a similar model should be developed to 



compare the performance Round 1 and Round 2 data, which will assist in identifying under which 

weather conditions the operational changes have the most significant energy performance impacts. The 

same regression models should be used to predict performance across historical annual data (AMY) for 

Gaithersburg, MD and compare to the results from the E+ energy simulations using the same AMY data. 

A similar model can be developed to estimate the weather conditions under which the NZERTF will reach 

net-zero for a given day. 

The model also sets up possibilities of generalization as well as increased complexity. The parsimonious 

model herein is meant to serve as the baseline for comparison to additional models derived from the 

NZERTF data. By comparing the results of the model outlined in this paper to more complicated models, 

it will be possible to determine what benefit any alternative models may have over the simplified model, 

and if those benefits warrant any additional complexity required by the alternative models. The current 

model does not consider occupancy and additional weather factors that would be expected to impact 

energy performance, such as occupant activity variations across days of the week, differences in HVAC 

efficiency between heating and cooling, and relative humidity during the cooling season. A future study 

should develop a more complex regression model that controls for factors currently excluded to increase 

the model accuracy and determine if the improved accuracy is worth the additional complexity and data 

requirements. If occupancy-based energy activities can be effectively isolated, then the model can be 

separated into occupancy-based energy and building systems-based energy usage. Such a decoupling 

would allow the non-occupied house model to serve as a template, allowing predictions to be made on 

how changes in occupancy behavior impact overall energy usage. A deeper statistical analysis on the 

NZERTF database is required for such a relationship to be established but, given the depth of information 

in the database, is not unrealistic. 
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