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ABSTRACT
In 1946, Magnus presented an addition theorem for the conflu-
ent hypergeometric function of the second kind U with argument
x+y expressed as an integral of a product of two U’s, one with
argument x and another with argument y. We take advantage of
recently obtained asymptotics forUwith large complex first parame-
ter to determine a domain of convergence for Magnus’ result. Using
well-known specializations of U, we obtain corresponding integral
addition theorems with precise domains of convergence for modi-
fied parabolic cylinder functions, and Hankel, Macdonald, and Bessel
functions of the first and second kind with order zero and one.
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1. Introduction

In 1941, Magnus [1, (11)] derived an integral addition theorem for the order zero Hankel
function of the second kind. In 1946,[2] he generalized his addition theorem toWhittaker
W-functions. In terms of the confluent hypergeometric function of the second kind U :
C × C × (C \ (−∞, 0]) → C, [[3, (13.2.6)], [4]] this result takes the form

�(c)U(c, 2c, x + y) = 1
4π

∫ ∞

−∞
�

(
c − it
2

)
�

(
c + it
2

)

× U
(
c − it
2

, c, x
)
U

(
c + it
2

, c, y
)

dt, (1.1)

where�c > 0, x,y>0, and � : C \ {0,−1,−2, . . .} → C denotes Euler’s gamma function.
Magnus’ earlier addition theorem [1] is obtained from (1.1) by setting c = 1/2. In this
special case the confluent hypergeometric functions appearing under the integral in (1.1)
reduce to modified parabolic cylinder functions.[5, (27–28)] Following [5], we refer to
modified parabolic cylinder functions as those with arguments on complex straight lines
π/4 radians off the real and imaginary axes. In [1, p. 355], it is stated that in the special case
c = 1/2 , (1.1) remains valid for certain complex values of x,y. Buchholz [6, (10b), p. 163]
also proved (1.1) using the notation of Whittaker functions with the constraints x,y>0. It
is also given in [7, (6.15.2.15)], but there the equation is written incorrectly.
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The goal of this paper is to determine the maximal domain for (x, y) on which (1.1) is
valid. In addition, we also discuss the special cases for order zero and oneHankel functions
of the first and second kind, Bessel functions of the first and second kind and modified
Bessel functions of the second kind.[3, Section 10.2(ii), (10.25.3)]

In order to find themaximal domain onwhich (1.1) is valid, we need to find the values of
(x, y) for which the integral in (1.1) converges. This requires knowledge of the asymptotic
behaviour of the function �(a)U(a, b, z) when |a| → ∞ while b,z are fixed.

2. Confluent hypergeometric functions

The confluent hypergeometric function of the second kind U is defined and analytic for
a, b ∈ C and z on the Riemann surface of the logarithm. If �a > 0, | arg z| < π/2, then it
is given by a Laplace transform [3, (13.4.4)]

�(a)U(a, b, z) =
∫ ∞

0
e−ztta−1(1 + t)b−a−1 dt. (2.1)

The asymptotic behaviour of U for large values of a can be expressed in terms of the
modified Bessel function of the second kind Kν . This function can be defined in terms of
U as [7, (6.9.1.13)]

Kν(z) :=
√

πe−z (2z)ν U
(
1
2

+ ν, 1 + 2ν, 2z
)
. (2.2)

If b ∈ C and z>0, it is known [8] that

2b−2u1−be−(1/2)z2zb�(a)U(a, b, z2)

= zKb−1(uz)
(
1 + O

(
1
u2

))
− z

u
Kb(uz)

(
1
6
z3 + O

(
1
u2

))
, (2.3)

where a = (1/4)u2 + (1/2)b and 0 < u → ∞. However, we need (2.3) for u → ∞ along
the rays arg u = ±(π/4), andwehave to allow complex z. In [9] (see also [10]) the following
result is proved.

Lemma 2.1: Let b ∈ C, θ ∈ (−π/2,π/2), R > 0, and set a = (1/4)u2 + (1/2)b, u =
|u|eiθ . Then, as |u| → ∞, (2.3) holds uniformly for 0 < |z| ≤ R, −∞ < arg z < ∞.

Whenwe combine Lemma 2.1 with the well-known asymptotic expansion [3, (10.40.2)]

Kν(w) =
( π

2w

)1/2
e−w

(
1 + O

(
1
w

))
as |w| → ∞, | argw| ≤ 3

2
π − δ, δ > 0,

we obtain the following lemma.

Lemma 2.2: Let b ∈ C, θ ∈ (−π/2,π/2), 0 < r < R, and set a = (1/4)u2 + (1/2)b, u =
|u|eiθ . Then, as |u| → ∞,

�(a)U(a, b, z2) = √
π

(u
2

)b−(3/2)
z1/2−b e(1/2)z

2−uz
(
1 + O

(
1
u

))
(2.4)

holds uniformly for r ≤ |z| ≤ R and | arg z| ≤ π .
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Theorem 2.3: Let c ∈ C with �c > 0. Suppose that x, y ∈ C \ {0}, | arg x| ≤ 2π , | arg y| ≤
2π satisfy

�((1 − i)
√
x + (1 + i)

√
y) > 0 and �((1 + i)

√
x + (1 − i)

√
y) > 0. (2.5)

Let σ ∈ C be such that |�σ | < 1
2�c. Then,

�(c)U(c, 2c, x + y) = 1
2π i

∫ σ+i∞

σ−i∞
�

( c
2

− s
)

�
( c
2

+ s
)
U

( c
2

− s, c, x
)

× U
( c
2

+ s, c, y
)
ds. (2.6)

Remark 2.4: Since

((1 − i)
√
x + (1 + i)

√
y)((1 + i)

√
x + (1 − i)

√
y) = 2(x + y),

(2.5) implies that x+y lies in the cut planeC \ (−∞, 0]. The functionU(a, b, z) on the left-
hand side of (2.6) is evaluated in the sector −π < arg z < π (principal values). However,
the functions U under the integral sign may attain non-principal values.

Proof: We consider first the case σ = 0, and set s = (1/2)it . When ±t > 0 we use
Lemma 2.2 with b= c and u = √

2|t|e±(1/4)π i . Then we obtain, as t → ±∞,

�

(
c + it
2

)
U

(
c + it
2

, c, z
)

= √
π

( |t|
2
e±(1/2)iπ

)(1/2)c−3/4

× z1/4−(1/2)c e(1/2)z−(1±i)
√|t|z(1 + O(|t|−1/2)), (2.7)

which when applied to the integrand of (2.6) gives

1
4π

�

(
c − it
2

)
�

(
c + it
2

)
U

(
c − it
2

, c, x
)
U

(
c + it
2

, c, y
)

= e(1/2)(x+y)(xy)1/4−(1/2)c2−1/2−c|t|c−3/2e−
√|t|[(1∓i)

√
x+(1±i)√y](1 + O(|t|−1/2)).

(2.8)

This shows that the integral on the right-hand side of (2.6) converges provided that x,y
satisfy (2.5). Since (2.8) holds locally uniformly, by Weierstrass’ theorem, the right-hand
side of (2.6) (with σ = 0) is an analytic function of (x, y) on the connected domain D
consisting of all (x, y) satisfying (2.5). By the known result (1.1), (2.6) is true for σ = 0
and x,y>0. Hence, by the identity theorem for analytic functions, (2.6) with σ = 0 holds
for all (x, y) ∈ D.

If�σ 	= 0 we apply the Cauchy integral theorem to the rectangle |�s| ≤ |�σ |, |
s| ≤ τ

and let τ → ±∞. To justify the procedure we establish the estimate

|�(a)U(a, c, z2)u(3/2)−ceuz| ≤ L, (2.9)

where a = (1/2)c + (1/4)u2 , |u| ≥ u0 > 0, | arg u| ≤ (1/2)π − δ , δ > 0, and c, z 	= 0
are fixed. The constant L is independent of u. We know (2.9) on the boundary of the
sectors |u| ≥ u0, 0 ≤ arg u ≤ (1/2)π − δ and |u| ≥ u0, −(1/2)π + δ ≤ arg u ≤ 0 from
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Lemma 2.2. Thenwe extend it to the full sectors by using the Phragmen–Lindelöf theorem.
In order to apply this theorem we need the rough estimate (whose proof we omit)

|�(a)U(a, c, z)| ≤ C1eC2|a| (2.10)

for |a| ≥ a0 > 0, | arg a| ≤ π − δ, δ > 0, and c, z 	= 0 fixed. This completes the proof. �

The parabolic cylinder function Dν(z) defined in [7, (6.9.2.31)] as

Dν(z) := 2ν/2e−z2/4 U
(

−ν

2
,
1
2
,
1
2
z2

)
(2.11)

is analytic for ν, z ∈ C. By setting c = 1/2 in Theorem 2.3 we obtain the following result.

Corollary 2.5: Suppose that x, y ∈ C, | arg x| ≤ 2π , | arg y| ≤ 2π satisfy (2.5). Let σ ∈ C

be such that |�σ | < (1/4) . Then,

U
(
1
2
, 1, x + y

)
= e(x+y)/2

21/2π3/2i

∫ σ+i∞

σ−i∞
�

(
1
4

− s
)

�

(
1
4

+ s
)

× D2s−1/2(
√
2x)D−2s−1/2(

√
2y) ds. (2.12)

If c = 3/2 we may use

Dν(z) = 2(ν−1)/2e−z2/4 z U
(
1 − ν

2
,
3
2
,
1
2
z2

)
, (2.13)

to derive the following corollary, which follows from substituting (2.11) into [3, (13.2.40)].

Corollary 2.6: Suppose that x, y ∈ C, | arg x| ≤ 2π , | arg y| ≤ 2π satisfy (2.5). Let σ ∈ C

be such that |�σ | < 3/4 . Then,

√
xyU

(
3
2
, 3, x + y

)
= 21/2e(x+y)/2

π3/2i

∫ σ+i∞

σ−i∞
�

(
3
4

− s
)

�

(
3
4

+ s
)

× D2s−(1/2)(
√
2x)D−2s−(1/2)(

√
2y) ds. (2.14)

3. Bessel functions

We next derive integral addition theorems for Hankel functions which are defined by
Erdélyi et al. [7, (6.9.1.12)], namely

H(1)
ν (z) := −2i√

π
ei(z−νπ) (2z)ν U

(
1
2

+ ν, 1 + 2ν,−2iz
)
, (3.1)

H(2)
ν (z) := 2i√

π
e−i(z−νπ) (2z)ν U

(
1
2

+ ν, 1 + 2ν, 2iz
)
. (3.2)

In Magnus,[1, (11)] an integral addition theorem for the Hankel function of the second
kind H(2)

0 is given as follows, where we have extended the domain of convergence.
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Corollary 3.1: Suppose that ξ , η ∈ C satisfy

�(η + iξ) > 0 and �(ξ + iη) > 0. (3.3)

Let σ ∈ C be such that |�σ | < 1
4 . Then,

H(2)
0

(
1
2
(ξ 2 + η2)

)
= 21/2

π2

∫ σ+i∞

σ−i∞
�

(
1
4

− s
)

�

(
1
4

+ s
)

× D2s−1/2((1 + i)ξ)D−2s−(1/2)((1 + i)η) ds. (3.4)

Remark 3.2: Since

i(ξ 2 + η2) = (ξ + iη)(η + iξ),

(3.3) implies that i(ξ 2 + η2) ∈ C \ (−∞, 0]. TheHankel functionH(2)
0 (z) on the left-hand

side of (3.4) is evaluated in the sector − 3
2π < arg z < 1

2π .

Proof: We use (3.2) with ν = 0 and Corollary 2.1 with x = iξ 2 and y = iη2. We choose
arg ξ , arg η ∈ (− 5

4π ,
3
4π]. Then arg x, arg y ∈ (−2π , 2π] and

√
2x = (1 + i)ξ ,

√
2y =

(1 + i)η. �

In a similar way we obtain an integral addition theorem for the Hankel function of the
first kind.

Corollary 3.3: Suppose that ξ , η ∈ C satisfy

�(η − iξ) > 0 and �(ξ − iη) > 0. (3.5)

Let σ ∈ C be such that |�σ | < 1
4 . Then,

H(1)
0

(
1
2
(ξ 2 + η2)

)
= −21/2

π2

∫ σ+i∞

σ−i∞
�

(
1
4

− s
)

�

(
1
4

+ s
)

× D2s−1/2((1 − i)ξ)D−2s−(1/2)((1 − i)η) ds. (3.6)

Remark 3.4: Since

−i(ξ 2 + η2) = (ξ − iη)(η − iξ),

(3.5) implies that −i(ξ 2 + η2) ∈ C \ (−∞, 0]. The Hankel function H(1)
0 (z) on the left-

hand side of (3.6) is evaluated in the sector − 1
2π < arg z < 3

2π .

Using (3.1) and (3.2) with ν = 1, we derive respective integral addition theorems from
Corollary 2.6 as follows.
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Corollary 3.5: Suppose that ξ , η ∈ C satisfy (3.5). Let σ ∈ C be such that |�σ | < 3/4 .
Then,

ξηH(1)
1

(
1
2
(ξ 2 + η2)

)
= −23/2(ξ 2 + η2)

π2i

∫ σ+i∞

σ−i∞
�

(
3
4

− s
)

�

(
3
4

+ s
)

× D2s−1/2((1 − i)ξ)D−2s−1/2((1 − i)η) ds. (3.7)

Corollary 3.6: Suppose that ξ , η ∈ C satisfy (3.3). Let σ ∈ C be such that |�σ | < 3/4 .
Then,

ξηH(2)
1

(
1
2
(ξ 2 + η2)

)
= −23/2(ξ 2 + η2)

π2i

∫ σ+i∞

σ−i∞
�

(
3
4

− s
)

�

(
3
4

+ s
)

× D2s−1/2((1 + i)ξ)D−2s−1/2((1 + i)η) ds. (3.8)

We can now derive integral addition theorems for Bessel functions of the first and
second kind Jν and Yν , respectively, by Olver et al. [3, (10.4.4)]

Jν(z) := 1
2
(H(1)

ν (z) + H(2)
ν (z)), (3.9)

Yν(z) := − i
2
(H(1)

ν (z) − H(2)
ν (z)). (3.10)

Corollary 3.7: Suppose that ξ , η ∈ C satisfy |
η| < �ξ and |
ξ | < �η. Let σ ∈ C be such
that |�σ | < 1/4 . Then,

J0
(
1
2
(ξ 2 + η2)

)
= 1

21/2π2

∫ σ+i∞

σ−i∞
�

(
1
4

− s
)

�

(
1
4

+ s
)

× [D2s−1/2((1 + i)ξ)D−2s−1/2((1 + i)η)

− D2s−1/2((1 − i)ξ)D−2s−1/2((1 − i)η)] ds. (3.11)

Remark 3.8: The assumptions on ξ , η imply that �(ξ 2 + η2) > 0. The Bessel function
J0(z) on the left-hand side of (3.11) is evaluated in the sector −π/2 < arg z < π/2.

Proof: This follows by substituting (3.6) and (3.4) into (3.9) with ν = 0. The stated
conditions on ξ , η are equivalent to (3.3) and (3.5). �

Similarly, we obtain integral addition theorems for the Bessel functions Y0, J1 and Y1.

Corollary 3.9: Suppose that ξ , η ∈ C satisfy |
η| < �ξ and |
ξ | < �η. Let σ ∈ C be such
that |�σ | < 1/4 . Then,

Y0

(
1
2
(ξ 2 + η2)

)
= i

21/2π2

∫ σ+i∞

σ−i∞
�

(
1
4

− s
)

�

(
1
4

+ s
)

× [D2s−1/2((1 − i)ξ)D−2s−1/2((1 − i)η)

+ D2s−1/2((1 + i)ξ)D−2s−1/2((1 + i)η)] ds.
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Corollary 3.10: Suppose that ξ , η ∈ C satisfy |
η| < �ξ and |
ξ | < �η. Let σ ∈ C be
such that |�σ | < 3/4 . Then,

J1
(
1
2
(ξ 2 + η2)

)
= i21/2(ξ 2 + η2)

π2ξη

∫ σ+i∞

σ−i∞
�

(
3
4

− s
)

�

(
3
4

+ s
)

× [D2s−1/2((1 − i)ξ)D−2s−1/2((1 − i)η)

+ D2s−1/2((1 + i)ξ)D−2s−1/2((1 + i)η)] ds.

Corollary 3.11: Suppose ξ , η ∈ C satisfy |
η| < �ξ and |
ξ | < �η. Let σ ∈ C be such
that |�σ | < 3/4 . Then,

Y1

(
1
2
(ξ 2 + η2

)
= 21/2(ξ 2 + η2)

π2ξη

∫ σ+i∞

σ−i∞
�

(
3
4

− s
)

�

(
3
4

+ s
)

× [D2s−1/2((1 − i)ξ)D−2s−1/2((1 − i)η)

− D2s−1/2((1 + i)ξ)D−2s−1/2((1 + i)η)] ds.

One can additionally verify (3.11) through analysis found in [5]. By using [5,
Theorem 3.2, 5, (14) and 5, (40)], with (ξ0, η0) = (0, 0) and noting that u2(t, 0) =
0, u1(t, 0) = 1. From this, one obtains an expansion for J0, although it is qualitatively dif-
ferent from the expansions derived in this paper. The expansion for J0 derived in [5] holds
for all (ξ , η) ∈ C2, whereas the corresponding formula (3.11) converges in the set

T = {(ξ , η) ∈ C
2 : |
η| < �ξ , |
ξ | < �η},

but it does not converge for all (ξ , η) ∈ C2. For example, if ξ = η = i then it follows
from the asymptotics that the integral in (3.11) does not exist. Note that (3.11) is actu-
ally wrong when ξ = η = 0. This shows a fundamental difference between (3.11) and its
corresponding expansion in [5].

The Bessel function J0(z) is characterized as the solution of Bessel’s equation which is
analytic on C. If one gives a formula for J0((1/2)(ξ 2 + η2)) one would hope the formula
to hold for all (ξ , η) ∈ C2. Thus, we believe that the previously derived expansion (found
in [5]) is superior.

Finally, using Corollaries 2.5, 2.6 and noting (2.2), we obtain integral addition theorems
for K0 and K1.

Corollary 3.12: Let ξ , η ∈ C satisfy

�((1 − i)ξ + (1 + i)η) > 0 and �((1 + i)ξ + (1 − i)η) > 0. (3.12)

Let σ ∈ C be such that |�σ | < 1/4 . Then,

K0

(
1
4
(ξ 2 + η2)

)
= 1

21/2π i

∫ σ+i∞

σ−i∞
�

(
1
4

− s
)

�

(
1
4

+ s
)
D2s−1/2(ξ)D−2s−1/2(η) ds.

(3.13)

Remark 3.13: Condition (3.12) implies that ξ 2 + η2 ∈ C \ (−∞, 0]. The Bessel function
K0(z) on the left-hand side of (3.13) is evaluated in the sector −π < arg z < π .
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Corollary 3.14: Let ξ , η ∈ C satisfy (3.12). Let σ ∈ C be such that |�σ | < 3/4 . Then,

ξηK1

(
1
4
(ξ 2 + η2)

)
= 21/2(ξ 2 + η2)

π i

∫ σ+i∞

σ−i∞
�

(
3
4

− s
)

× �

(
3
4

+ s
)
D2s−1/2(ξ)D−2s−1/2(η) ds.
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